Subversion Repositories FlightCtrl

Rev

Rev 1646 | Rev 1796 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1646 Rev 1775
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
#include <avr/io.h>
51
#include <avr/io.h>
52
#include <avr/interrupt.h>
52
#include <avr/interrupt.h>
53
#include <avr/pgmspace.h>
53
#include <avr/pgmspace.h>
54
#include "analog.h"
54
#include "analog.h"
55
 
55
 
56
#include "sensors.h"
56
#include "sensors.h"
57
 
57
 
58
// for Delay functions
58
// for Delay functions
59
#include "timer0.h"
59
#include "timer0.h"
60
 
60
 
61
// For DebugOut
61
// For DebugOut
62
#include "uart0.h"
62
#include "uart0.h"
63
 
63
 
64
// For reading and writing acc. meter offsets.
64
// For reading and writing acc. meter offsets.
65
#include "eeprom.h"
65
#include "eeprom.h"
66
 
66
 
67
/*
67
/*
68
 * For each A/D conversion cycle, each analog channel is sampled a number of times
68
 * For each A/D conversion cycle, each analog channel is sampled a number of times
69
 * (see array channelsForStates), and the results for each channel are summed.
69
 * (see array channelsForStates), and the results for each channel are summed.
70
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
70
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
71
 * They are exported in the analog.h file - but please do not use them! The only
71
 * They are exported in the analog.h file - but please do not use them! The only
72
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
72
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
73
 * the offsets with the DAC.
73
 * the offsets with the DAC.
74
 */
74
 */
75
volatile int16_t rawGyroSum[3];
75
volatile int16_t rawGyroSum[3];
76
volatile int16_t acc[3];
76
volatile int16_t acc[3];
77
volatile int16_t filteredAcc[2]={0,0};
77
volatile int16_t filteredAcc[2]={0,0};
78
 
78
 
79
/*
79
/*
80
 * These 4 exported variables are zero-offset. The "PID" ones are used
80
 * These 4 exported variables are zero-offset. The "PID" ones are used
81
 * in the attitude control as rotation rates. The "ATT" ones are for
81
 * in the attitude control as rotation rates. The "ATT" ones are for
82
 * integration to angles.
82
 * integration to angles.
83
 */
83
 */
84
volatile int16_t gyro_PID[2];
84
volatile int16_t gyro_PID[2];
85
volatile int16_t gyro_ATT[2];
85
volatile int16_t gyro_ATT[2];
86
volatile int16_t gyroD[2];
86
volatile int16_t gyroD[2];
87
volatile int16_t yawGyro;
87
volatile int16_t yawGyro;
88
 
88
 
89
/*
89
/*
90
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
90
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
91
 * standing still. They are used for adjusting the gyro and acc. meter values
91
 * standing still. They are used for adjusting the gyro and acc. meter values
92
 * to be centered on zero.
92
 * to be centered on zero.
93
 */
93
 */
94
volatile int16_t gyroOffset[3] = {
94
volatile int16_t gyroOffset[3] = {
95
        512 * GYRO_SUMMATION_FACTOR_PITCHROLL,
95
        512 * GYRO_SUMMATION_FACTOR_PITCHROLL,
96
        512 * GYRO_SUMMATION_FACTOR_PITCHROLL,
96
        512 * GYRO_SUMMATION_FACTOR_PITCHROLL,
97
        512 * GYRO_SUMMATION_FACTOR_YAW
97
        512 * GYRO_SUMMATION_FACTOR_YAW
98
};
98
};
99
 
99
 
100
volatile int16_t accOffset[3] = {
100
volatile int16_t accOffset[3] = {
101
        512 * ACC_SUMMATION_FACTOR_PITCHROLL,
101
        512 * ACC_SUMMATION_FACTOR_PITCHROLL,
102
        512 * ACC_SUMMATION_FACTOR_PITCHROLL,
102
        512 * ACC_SUMMATION_FACTOR_PITCHROLL,
103
        512 * ACC_SUMMATION_FACTOR_Z
103
        512 * ACC_SUMMATION_FACTOR_Z
104
};
104
};
105
 
105
 
106
/*
106
/*
107
 * This allows some experimentation with the gyro filters.
107
 * This allows some experimentation with the gyro filters.
108
 * Should be replaced by #define's later on...
108
 * Should be replaced by #define's later on...
109
 */
109
 */
110
volatile uint8_t GYROS_PID_FILTER;
110
volatile uint8_t GYROS_PID_FILTER;
111
volatile uint8_t GYROS_ATT_FILTER;
111
volatile uint8_t GYROS_ATT_FILTER;
112
volatile uint8_t GYROS_D_FILTER;
112
volatile uint8_t GYROS_D_FILTER;
113
volatile uint8_t ACC_FILTER;
113
volatile uint8_t ACC_FILTER;
114
 
114
 
115
/*
115
/*
116
 * Air pressure measurement.
116
 * Air pressure
117
 */
117
 */
118
#define MIN_RAWPRESSURE 200
118
volatile uint8_t rangewidth = 106;
-
 
119
 
119
#define MAX_RAWPRESSURE (1023-MIN_RAWPRESSURE)
120
// Direct from sensor, irrespective of range.
120
volatile uint8_t rangewidth = 53;
121
// volatile uint16_t rawAirPressure;
-
 
122
 
-
 
123
// Value of 2 samples, with range.
121
volatile uint16_t rawAirPressure;
124
volatile uint16_t simpleAirPressure;
-
 
125
 
-
 
126
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
122
volatile uint16_t filteredAirPressure;
127
volatile int32_t filteredAirPressure;
-
 
128
 
-
 
129
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
-
 
130
volatile int32_t airPressureSum;
-
 
131
 
-
 
132
// The number of samples summed into airPressureSum so far.
-
 
133
volatile uint8_t pressureMeasurementCount;
123
 
134
 
124
/*
135
/*
125
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
136
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
126
 * That is divided by 3 below, for a final 10.34 per volt.
137
 * That is divided by 3 below, for a final 10.34 per volt.
127
 * So the initial value of 100 is for 9.7 volts.
138
 * So the initial value of 100 is for 9.7 volts.
128
 */
139
 */
129
volatile int16_t UBat = 100;
140
volatile int16_t UBat = 100;
130
 
141
 
131
/*
142
/*
132
 * Control and status.
143
 * Control and status.
133
 */
144
 */
134
volatile uint16_t ADCycleCount = 0;
145
volatile uint16_t ADCycleCount = 0;
135
volatile uint8_t analogDataReady = 1;
146
volatile uint8_t analogDataReady = 1;
136
 
147
 
137
/*
148
/*
138
 * Experiment: Measuring vibration-induced sensor noise.
149
 * Experiment: Measuring vibration-induced sensor noise.
139
 */
150
 */
140
volatile uint16_t gyroNoisePeak[2];
151
volatile uint16_t gyroNoisePeak[2];
141
volatile uint16_t accNoisePeak[2];
152
volatile uint16_t accNoisePeak[2];
142
 
153
 
143
// ADC channels
154
// ADC channels
144
#define AD_GYRO_YAW       0
155
#define AD_GYRO_YAW       0
145
#define AD_GYRO_ROLL      1
156
#define AD_GYRO_ROLL      1
146
#define AD_GYRO_PITCH     2
157
#define AD_GYRO_PITCH     2
147
#define AD_AIRPRESSURE    3
158
#define AD_AIRPRESSURE    3
148
#define AD_UBAT           4
159
#define AD_UBAT           4
149
#define AD_ACC_Z          5
160
#define AD_ACC_Z          5
150
#define AD_ACC_ROLL       6
161
#define AD_ACC_ROLL       6
151
#define AD_ACC_PITCH      7
162
#define AD_ACC_PITCH      7
152
 
163
 
153
/*
164
/*
154
 * Table of AD converter inputs for each state.
165
 * Table of AD converter inputs for each state.
155
 * The number of samples summed for each channel is equal to
166
 * The number of samples summed for each channel is equal to
156
 * the number of times the channel appears in the array.
167
 * the number of times the channel appears in the array.
157
 * The max. number of samples that can be taken in 2 ms is:
168
 * The max. number of samples that can be taken in 2 ms is:
158
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
169
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
159
 * loop needs a little time between reading AD values and
170
 * loop needs a little time between reading AD values and
160
 * re-enabling ADC, the real limit is (how much?) lower.
171
 * re-enabling ADC, the real limit is (how much?) lower.
161
 * The acc. sensor is sampled even if not used - or installed
172
 * The acc. sensor is sampled even if not used - or installed
162
 * at all. The cost is not significant.
173
 * at all. The cost is not significant.
163
 */
174
 */
164
 
175
 
165
const uint8_t channelsForStates[] PROGMEM = {
176
const uint8_t channelsForStates[] PROGMEM = {
166
  AD_GYRO_PITCH,
177
  AD_GYRO_PITCH,
167
  AD_GYRO_ROLL,
178
  AD_GYRO_ROLL,
168
  AD_GYRO_YAW,
179
  AD_GYRO_YAW,
169
 
180
 
170
  AD_ACC_PITCH,
181
  AD_ACC_PITCH,
171
  AD_ACC_ROLL,
182
  AD_ACC_ROLL,
172
  // AD_AIRPRESSURE,
183
  AD_AIRPRESSURE,
173
 
184
 
174
  AD_GYRO_PITCH,
185
  AD_GYRO_PITCH,
175
  AD_GYRO_ROLL,
186
  AD_GYRO_ROLL,
176
  AD_ACC_Z,       // at 7, measure Z acc.
187
  AD_ACC_Z,       // at 8, measure Z acc.
177
 
188
 
178
  AD_GYRO_PITCH,
189
  AD_GYRO_PITCH,
179
  AD_GYRO_ROLL,
190
  AD_GYRO_ROLL,
180
  AD_GYRO_YAW,    // at 10, finish yaw gyro
191
  AD_GYRO_YAW,    // at 11, finish yaw gyro
181
 
192
 
182
  AD_ACC_PITCH,   // at 11, finish pitch axis acc.
193
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
183
  AD_ACC_ROLL,    // at 12, finish roll axis acc.
194
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
184
  AD_AIRPRESSURE, // at 13, finish air pressure.
195
  AD_AIRPRESSURE, // at 14, finish air pressure.
185
 
196
 
186
  AD_GYRO_PITCH,  // at 14, finish pitch gyro
197
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
187
  AD_GYRO_ROLL,   // at 15, finish roll gyro
198
  AD_GYRO_ROLL,   // at 16, finish roll gyro
188
  AD_UBAT         // at 16, measure battery.
199
  AD_UBAT         // at 17, measure battery.
189
};
200
};
190
 
201
 
191
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
202
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
192
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
203
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
193
 
204
 
194
void analog_init(void) {
205
void analog_init(void) {
195
  uint8_t sreg = SREG;
206
  uint8_t sreg = SREG;
196
  // disable all interrupts before reconfiguration
207
  // disable all interrupts before reconfiguration
197
  cli();
208
  cli();
198
 
209
 
199
  //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
210
  //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
200
  DDRA = 0x00;
211
  DDRA = 0x00;
201
  PORTA = 0x00;
212
  PORTA = 0x00;
202
  // Digital Input Disable Register 0
213
  // Digital Input Disable Register 0
203
  // Disable digital input buffer for analog adc_channel pins
214
  // Disable digital input buffer for analog adc_channel pins
204
  DIDR0 = 0xFF;
215
  DIDR0 = 0xFF;
205
  // external reference, adjust data to the right
216
  // external reference, adjust data to the right
206
  ADMUX &= ~((1 << REFS1)|(1 << REFS0)|(1 << ADLAR));
217
  ADMUX &= ~((1 << REFS1)|(1 << REFS0)|(1 << ADLAR));
207
  // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
218
  // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
208
  ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
219
  ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
209
  //Set ADC Control and Status Register A
220
  //Set ADC Control and Status Register A
210
  //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
221
  //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
211
  ADCSRA = (0<<ADEN)|(0<<ADSC)|(0<<ADATE)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0)|(0<<ADIE);
222
  ADCSRA = (0<<ADEN)|(0<<ADSC)|(0<<ADATE)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0)|(0<<ADIE);
212
  //Set ADC Control and Status Register B
223
  //Set ADC Control and Status Register B
213
  //Trigger Source to Free Running Mode
224
  //Trigger Source to Free Running Mode
214
  ADCSRB &= ~((1 << ADTS2)|(1 << ADTS1)|(1 << ADTS0));
225
  ADCSRB &= ~((1 << ADTS2)|(1 << ADTS1)|(1 << ADTS0));
215
  // Start AD conversion
226
  // Start AD conversion
216
  analog_start();
227
  analog_start();
217
  // restore global interrupt flags
228
  // restore global interrupt flags
218
  SREG = sreg;
229
  SREG = sreg;
219
}
230
}
220
 
231
 
221
void measureNoise(const int16_t sensor, volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
232
void measureNoise(const int16_t sensor, volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
222
  if (sensor > (int16_t)(*noiseMeasurement)) {
233
  if (sensor > (int16_t)(*noiseMeasurement)) {
223
    *noiseMeasurement = sensor;
234
    *noiseMeasurement = sensor;
224
  } else if (-sensor > (int16_t)(*noiseMeasurement)) {
235
  } else if (-sensor > (int16_t)(*noiseMeasurement)) {
225
    *noiseMeasurement = -sensor;
236
    *noiseMeasurement = -sensor;
226
  } else if (*noiseMeasurement > damping) {
237
  } else if (*noiseMeasurement > damping) {
227
    *noiseMeasurement -= damping;
238
    *noiseMeasurement -= damping;
228
  } else {
239
  } else {
229
    *noiseMeasurement = 0;
240
    *noiseMeasurement = 0;
230
  }
241
  }
231
}
242
}
232
 
243
 
233
uint16_t getAbsPressure(int advalue) {
244
uint16_t getSimplePressure(int advalue) {
234
  return (uint16_t)OCR0A * (uint16_t)rangewidth + advalue;
245
  return (uint16_t)OCR0A * (uint16_t)rangewidth + advalue;
235
}
246
}
236
 
-
 
237
uint16_t filterAirPressure(uint16_t rawpressure) {
-
 
238
  return rawpressure;
-
 
239
}
-
 
240
 
247
 
241
/*****************************************************
248
/*****************************************************
242
 * Interrupt Service Routine for ADC            
249
 * Interrupt Service Routine for ADC            
243
 * Runs at 312.5 kHz or 3.2 µs. When all states are
250
 * Runs at 312.5 kHz or 3.2 µs. When all states are
244
 * processed the interrupt is disabled and further
251
 * processed the interrupt is disabled and further
245
 * AD conversions are stopped.
252
 * AD conversions are stopped.
246
 *****************************************************/
253
 *****************************************************/
247
ISR(ADC_vect) {
254
ISR(ADC_vect) {
248
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
255
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
249
  static uint16_t sensorInputs[8] = {0,0,0,0,0,0,0,0};
256
  static uint16_t sensorInputs[8] = {0,0,0,0,0,0,0,0};
250
  static uint8_t pressure_wait = 10;
257
  static uint16_t pressureAutorangingWait = 25;
-
 
258
  uint16_t rawAirPressure;
251
  uint8_t i, axis;
259
  uint8_t i, axis;
252
  int16_t range;
260
  int16_t newrange;
253
 
261
 
254
  // for various filters...
262
  // for various filters...
255
  int16_t tempOffsetGyro, tempGyro;
263
  int16_t tempOffsetGyro, tempGyro;
256
 
264
 
257
  sensorInputs[ad_channel] += ADC;
265
  sensorInputs[ad_channel] += ADC;
258
 
266
 
259
  /*
267
  /*
260
   * Actually we don't need this "switch". We could do all the sampling into the
268
   * Actually we don't need this "switch". We could do all the sampling into the
261
   * sensorInputs array first, and all the processing after the last sample.
269
   * sensorInputs array first, and all the processing after the last sample.
262
   */
270
   */
263
  switch(state++) {
271
  switch(state++) {
-
 
272
 
264
  case 7: // Z acc      
273
  case 8: // Z acc      
265
  if (ACC_REVERSED[Z])
274
  if (ACC_REVERSED[Z])
266
    acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
275
    acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
267
  else
276
  else
268
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
277
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
269
  break;
278
  break;
270
   
279
   
271
  case 10: // yaw gyro
280
  case 11: // yaw gyro
272
    rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
281
    rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
273
    if (GYRO_REVERSED[YAW])
282
    if (GYRO_REVERSED[YAW])
274
      yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
283
      yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
275
    else
284
    else
276
      yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
285
      yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
277
    break;
286
    break;
278
   
287
   
279
  case 11: // pitch axis acc.
288
  case 12: // pitch axis acc.
280
    if (ACC_REVERSED[PITCH])
289
    if (ACC_REVERSED[PITCH])
281
      acc[PITCH] = accOffset[PITCH] - sensorInputs[AD_ACC_PITCH];
290
      acc[PITCH] = accOffset[PITCH] - sensorInputs[AD_ACC_PITCH];
282
    else
291
    else
283
      acc[PITCH] = sensorInputs[AD_ACC_PITCH] - accOffset[PITCH];
292
      acc[PITCH] = sensorInputs[AD_ACC_PITCH] - accOffset[PITCH];
284
 
293
 
285
    filteredAcc[PITCH] = (filteredAcc[PITCH] * (ACC_FILTER-1) + acc[PITCH]) / ACC_FILTER;
294
    filteredAcc[PITCH] = (filteredAcc[PITCH] * (ACC_FILTER-1) + acc[PITCH]) / ACC_FILTER;
286
    measureNoise(acc[PITCH], &accNoisePeak[PITCH], 1);
295
    measureNoise(acc[PITCH], &accNoisePeak[PITCH], 1);
287
    break;
296
    break;
288
   
297
   
289
  case 12: // roll axis acc.
298
  case 13: // roll axis acc.
290
    if (ACC_REVERSED[ROLL])
299
    if (ACC_REVERSED[ROLL])
291
      acc[ROLL] = accOffset[ROLL] - sensorInputs[AD_ACC_ROLL];
300
      acc[ROLL] = accOffset[ROLL] - sensorInputs[AD_ACC_ROLL];
292
    else
301
    else
293
      acc[ROLL] = sensorInputs[AD_ACC_ROLL] - accOffset[ROLL];
302
      acc[ROLL] = sensorInputs[AD_ACC_ROLL] - accOffset[ROLL];
294
    filteredAcc[ROLL] = (filteredAcc[ROLL] * (ACC_FILTER-1) + acc[ROLL]) / ACC_FILTER;
303
    filteredAcc[ROLL] = (filteredAcc[ROLL] * (ACC_FILTER-1) + acc[ROLL]) / ACC_FILTER;
295
    measureNoise(acc[ROLL], &accNoisePeak[ROLL], 1);
304
    measureNoise(acc[ROLL], &accNoisePeak[ROLL], 1);
296
    break;
305
    break;
297
 
306
 
298
  case 13: // air pressure
307
  case 14: // air pressure
299
    if (pressure_wait) {
308
    if (pressureAutorangingWait) {
300
      // A range switch was done recently. Wait for steadying.
309
      //A range switch was done recently. Wait for steadying.
301
      pressure_wait--;
310
      pressureAutorangingWait--;
302
      break;
311
      break;
303
    }
-
 
304
    range = OCR0A;
312
    }
305
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
313
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
306
    if (rawAirPressure < MIN_RAWPRESSURE) {
314
    if (rawAirPressure < MIN_RAWPRESSURE) {
307
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
315
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
308
      range -= (MAX_RAWPRESSURE - rawAirPressure) / rangewidth - 1;
316
      newrange = OCR0A - (MAX_RAWPRESSURE - rawAirPressure) / rangewidth - 1;
309
      if (range < 0) range = 0;
317
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
310
      pressure_wait = (OCR0A - range) * 4;
318
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR;
311
      OCR0A = range;
319
        OCR0A = newrange;
-
 
320
      } else {
-
 
321
        if (OCR0A) {
-
 
322
          OCR0A--;
-
 
323
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
324
        }
-
 
325
      }
312
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
326
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
313
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
327
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
-
 
328
      // If near the end, make a limited increase
314
      range += (rawAirPressure - MIN_RAWPRESSURE) / rangewidth - 1;
329
      newrange = OCR0A + (rawAirPressure - MIN_RAWPRESSURE) / rangewidth - 1;
315
      if (range > 254) range = 254;
330
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
316
      pressure_wait = (range - OCR0A) * 4;
331
      pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
317
      OCR0A = range;
332
      OCR0A = newrange;
-
 
333
      } else {
-
 
334
        if (OCR0A<254) {
-
 
335
          OCR0A++;
-
 
336
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
337
        }
-
 
338
      }
-
 
339
    }
-
 
340
 
-
 
341
    // Even if the sample is off-range, use it.
-
 
342
    simpleAirPressure = getSimplePressure(rawAirPressure);
-
 
343
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
-
 
344
      // Danger: pressure near lower end of range. If the measurement saturates, the 
-
 
345
      // copter may climb uncontrolled... Simulate a drastic reduction in pressure.
-
 
346
      airPressureSum += (int16_t)MIN_RANGES_EXTRAPOLATION * rangewidth + (simpleAirPressure - (int32_t)MIN_RANGES_EXTRAPOLATION * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
347
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
-
 
348
      // Danger: pressure near upper end of range. If the measurement saturates, the 
-
 
349
      // copter may fall uncontrolled... Simulate a drastic increase in pressure.
-
 
350
      airPressureSum += (int16_t)MAX_RANGES_EXTRAPOLATION * rangewidth + (simpleAirPressure - (int32_t)MAX_RANGES_EXTRAPOLATION * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
318
    } else {
351
    } else {
-
 
352
      // normal case.
319
      filteredAirPressure = filterAirPressure(getAbsPressure(rawAirPressure));
353
      airPressureSum += simpleAirPressure;
320
    }
354
    }
-
 
355
   
-
 
356
    // 2 samples were added.
-
 
357
    pressureMeasurementCount += 2;
-
 
358
    if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR) {
-
 
359
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER-1) + airPressureSum + AIRPRESSURE_FILTER/2) / AIRPRESSURE_FILTER;
-
 
360
      pressureMeasurementCount = airPressureSum = 0;
-
 
361
    }
321
   
362
 
322
    DebugOut.Analog[13] = range;
363
    // DebugOut.Analog[14] = OCR0A;
323
    DebugOut.Analog[14] = rawAirPressure;
364
    // DebugOut.Analog[15] = simpleAirPressure;
-
 
365
    DebugOut.Analog[11] = UBat;
324
    DebugOut.Analog[15] = filteredAirPressure;
366
    DebugOut.Analog[27] = acc[Z];
325
    break;
367
    break;
326
 
368
 
327
  case 14:
369
  case 15:
328
  case 15: // pitch or roll gyro.
370
  case 16: // pitch or roll gyro.
329
    axis = state - 15;
371
    axis = state - 16;
330
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
372
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
331
        // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
373
        // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
332
    /*
374
    /*
333
     * Process the gyro data for the PID controller.
375
     * Process the gyro data for the PID controller.
334
     */
376
     */
335
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
377
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
336
    //    gyro with a wider range, and helps counter saturation at full control.
378
    //    gyro with a wider range, and helps counter saturation at full control.
337
 
379
 
338
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
380
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
339
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
381
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
340
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
382
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
341
      }
383
      }
342
      else if (tempGyro > SENSOR_MAX_PITCHROLL) {
384
      else if (tempGyro > SENSOR_MAX_PITCHROLL) {
343
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
385
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
344
      }
386
      }
345
    }
387
    }
346
 
388
 
347
    // 2) Apply sign and offset, scale before filtering.
389
    // 2) Apply sign and offset, scale before filtering.
348
    if (GYRO_REVERSED[axis]) {
390
    if (GYRO_REVERSED[axis]) {
349
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
391
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
350
    } else {
392
    } else {
351
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
393
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
352
    }
394
    }
353
 
395
 
354
    // 3) Scale and filter.
396
    // 3) Scale and filter.
355
    tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER-1) + tempOffsetGyro) / GYROS_PID_FILTER;
397
    tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER-1) + tempOffsetGyro) / GYROS_PID_FILTER;
356
 
398
 
357
    // 4) Measure noise.
399
    // 4) Measure noise.
358
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
400
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
359
 
401
 
360
    // 5) Differential measurement. 
402
    // 5) Differential measurement. 
361
    gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER-1) + (tempOffsetGyro - gyro_PID[axis])) / GYROS_D_FILTER;
403
    gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER-1) + (tempOffsetGyro - gyro_PID[axis])) / GYROS_D_FILTER;
362
 
404
 
363
    // 6) Done.
405
    // 6) Done.
364
    gyro_PID[axis] = tempOffsetGyro;
406
    gyro_PID[axis] = tempOffsetGyro;
365
 
407
 
366
    /*
408
    /*
367
     * Now process the data for attitude angles.
409
     * Now process the data for attitude angles.
368
     */
410
     */
369
    tempGyro = rawGyroSum[axis];
411
    tempGyro = rawGyroSum[axis];
370
   
412
   
371
    // 1) Apply sign and offset, scale before filtering.
413
    // 1) Apply sign and offset, scale before filtering.
372
    if (GYRO_REVERSED[axis]) {
414
    if (GYRO_REVERSED[axis]) {
373
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
415
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
374
    } else {
416
    } else {
375
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
417
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
376
    }
418
    }
377
   
419
   
378
    // 2) Filter.
420
    // 2) Filter.
379
    gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER-1) + tempOffsetGyro) / GYROS_ATT_FILTER;
421
    gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER-1) + tempOffsetGyro) / GYROS_ATT_FILTER;
380
    break;
422
    break;
381
   
423
   
-
 
424
  case 17:
382
  case 16:
425
    // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
383
    // battery
426
    // This is divided by 3 --> 10.34 counts per volt.
384
    UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
427
    UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
385
    analogDataReady = 1; // mark
428
    analogDataReady = 1; // mark
386
    ADCycleCount++;
429
    ADCycleCount++;
387
    // Stop the sampling. Cycle is over.
430
    // Stop the sampling. Cycle is over.
388
    state = 0;
431
    state = 0;
389
    for (i=0; i<8; i++) {
432
    for (i=0; i<8; i++) {
390
      sensorInputs[i] = 0;
433
      sensorInputs[i] = 0;
391
    }
434
    }
392
    break;
435
    break;
393
  default: {} // do nothing.
436
  default: {} // do nothing.
394
  }
437
  }
395
 
438
 
396
  // set up for next state.
439
  // set up for next state.
397
  ad_channel = pgm_read_byte(&channelsForStates[state]);
440
  ad_channel = pgm_read_byte(&channelsForStates[state]);
398
  // ad_channel = channelsForStates[state];
441
  // ad_channel = channelsForStates[state];
399
     
442
     
400
  // set adc muxer to next ad_channel
443
  // set adc muxer to next ad_channel
401
  ADMUX = (ADMUX & 0xE0) | ad_channel;
444
  ADMUX = (ADMUX & 0xE0) | ad_channel;
402
  // after full cycle stop further interrupts
445
  // after full cycle stop further interrupts
403
  if(state) analog_start();
446
  if(state) analog_start();
404
}
447
}
405
 
448
 
406
void analog_calibrate(void) {
449
void analog_calibrate(void) {
407
#define GYRO_OFFSET_CYCLES 32
450
#define GYRO_OFFSET_CYCLES 32
408
  uint8_t i, axis;
451
  uint8_t i, axis;
409
  int32_t deltaOffsets[3] = {0,0,0};
452
  int32_t deltaOffsets[3] = {0,0,0};
410
  int16_t filteredDelta;
-
 
411
 
453
 
412
  // Set the filters... to be removed again, once some good settings are found.
454
  // Set the filters... to be removed again, once some good settings are found.
413
  GYROS_PID_FILTER = (dynamicParams.UserParams[4]   & 0b00000011)       + 1;
455
  GYROS_PID_FILTER = (dynamicParams.UserParams[4]   & 0b00000011)       + 1;
414
  GYROS_ATT_FILTER = ((dynamicParams.UserParams[4]  & 0b00001100) >> 2) + 1;
456
  GYROS_ATT_FILTER = ((dynamicParams.UserParams[4]  & 0b00001100) >> 2) + 1;
415
  GYROS_D_FILTER = ((dynamicParams.UserParams[4]    & 0b00110000) >> 4) + 1;
457
  GYROS_D_FILTER = ((dynamicParams.UserParams[4]    & 0b00110000) >> 4) + 1;
416
  ACC_FILTER = ((dynamicParams.UserParams[4]        & 0b11000000) >> 6) + 1;
458
  ACC_FILTER = ((dynamicParams.UserParams[4]        & 0b11000000) >> 6) + 1;
417
 
459
 
418
  gyro_calibrate();
460
  gyro_calibrate();
419
 
461
 
420
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
462
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
421
  for(i=0; i < GYRO_OFFSET_CYCLES; i++) {
463
  for(i=0; i < GYRO_OFFSET_CYCLES; i++) {
422
    Delay_ms_Mess(10);
464
    Delay_ms_Mess(20);
423
    for (axis=0; axis<=YAW; axis++) {
465
    for (axis=PITCH; axis<=YAW; axis++) {
424
      deltaOffsets[axis] += rawGyroSum[axis] - gyroOffset[axis];
466
      deltaOffsets[axis] += rawGyroSum[axis];
425
    }
467
    }
426
  }
468
  }
427
 
469
 
428
  for (axis=0; axis<=YAW; axis++) {
470
  for (axis=PITCH; axis<=YAW; axis++) {
429
    filteredDelta = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
471
    gyroOffset[axis] =  (deltaOffsets[axis] + GYRO_OFFSET_CYCLES/2) / GYRO_OFFSET_CYCLES;
430
    gyroOffset[axis] += filteredDelta;
472
    DebugOut.Analog[20+axis] = gyroOffset[axis];
431
  }
473
  }
432
 
474
 
433
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
475
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
434
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
476
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
435
 
477
 
436
  accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
478
  accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
437
  accOffset[ROLL]  = GetParamWord(PID_ACC_ROLL);
479
  accOffset[ROLL]  = GetParamWord(PID_ACC_ROLL);
438
  accOffset[Z]     = GetParamWord(PID_ACC_Z);
480
  accOffset[Z]     = GetParamWord(PID_ACC_Z);
-
 
481
 
-
 
482
  // Rough estimate. Hmm no nothing happens at calibration anyway.
-
 
483
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
-
 
484
  // pressureMeasurementCount = 0;
-
 
485
 
-
 
486
  // Experiment!
-
 
487
  // filteredAirPressureOffset = filteredAirPressure - 1000L;
439
 
488
 
440
  Delay_ms_Mess(100);
489
  Delay_ms_Mess(100);
441
}
490
}
442
 
491
 
443
/*
492
/*
444
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
493
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
445
 * Does not (!} update the local variables. This must be done with a
494
 * Does not (!} update the local variables. This must be done with a
446
 * call to analog_calibrate() - this always (?) is done by the caller
495
 * call to analog_calibrate() - this always (?) is done by the caller
447
 * anyway. There would be nothing wrong with updating the variables
496
 * anyway. There would be nothing wrong with updating the variables
448
 * directly from here, though.
497
 * directly from here, though.
449
 */
498
 */
450
void analog_calibrateAcc(void) {
499
void analog_calibrateAcc(void) {
451
#define ACC_OFFSET_CYCLES 10
500
#define ACC_OFFSET_CYCLES 10
452
  uint8_t i, axis;
501
  uint8_t i, axis;
453
  int32_t deltaOffset[3] = {0,0,0};
502
  int32_t deltaOffset[3] = {0,0,0};
454
  int16_t filteredDelta;
503
  int16_t filteredDelta;
455
  // int16_t pressureDiff, savedRawAirPressure;
504
  // int16_t pressureDiff, savedRawAirPressure;
456
 
505
 
457
  for(i=0; i < ACC_OFFSET_CYCLES; i++) {
506
  for(i=0; i < ACC_OFFSET_CYCLES; i++) {
458
    Delay_ms_Mess(10);
507
    Delay_ms_Mess(10);
459
    for (axis=0; axis<=YAW; axis++) {
508
    for (axis=PITCH; axis<=YAW; axis++) {
460
          deltaOffset[axis] += acc[axis];
509
      deltaOffset[axis] += acc[axis];
461
        }
510
    }
462
  }
511
  }
463
 
512
 
464
  for (axis=0; axis<=YAW; axis++) {
513
  for (axis=PITCH; axis<=YAW; axis++) {
465
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
514
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
466
    accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
515
    accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
467
  }
516
  }
468
 
517
 
469
  // Save ACC neutral settings to eeprom
518
  // Save ACC neutral settings to eeprom
470
  SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
519
  SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
471
  SetParamWord(PID_ACC_ROLL,  accOffset[ROLL]);
520
  SetParamWord(PID_ACC_ROLL,  accOffset[ROLL]);
472
  SetParamWord(PID_ACC_Z,     accOffset[Z]);
521
  SetParamWord(PID_ACC_Z,     accOffset[Z]);
473
 
522
 
474
  // Noise is relative to offset. So, reset noise measurements when
523
  // Noise is relative to offset. So, reset noise measurements when
475
  // changing offsets.
524
  // changing offsets.
476
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
525
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
477
 
526
 
478
  // Setting offset values has an influence in the analog.c ISR
527
  // Setting offset values has an influence in the analog.c ISR
479
  // Therefore run measurement for 100ms to achive stable readings
528
  // Therefore run measurement for 100ms to achive stable readings
480
  Delay_ms_Mess(100);
529
  Delay_ms_Mess(100);
481
 
530
 
482
  // Set the feedback so that air pressure ends up in the middle of the range.
531
  // Set the feedback so that air pressure ends up in the middle of the range.
483
  // (raw pressure high --> OCR0A also high...)
532
  // (raw pressure high --> OCR0A also high...)
484
  // OCR0A += (rawAirPressure - 512) / rangewidth;
533
  // OCR0A += (rawAirPressure - 512) / rangewidth;
485
  // Delay_ms_Mess(500);
534
  // Delay_ms_Mess(500);
486
 
535
 
487
  /*
536
  /*
488
    pressureDiff = 0;
537
    pressureDiff = 0;
489
    DebugOut.Analog[16] = rawAirPressure;
538
    // DebugOut.Analog[16] = rawAirPressure;
490
 
539
 
491
    #define PRESSURE_CAL_CYCLE_COUNT 2
540
    #define PRESSURE_CAL_CYCLE_COUNT 2
492
    for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
541
    for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
493
    savedRawAirPressure = rawAirPressure;
542
    savedRawAirPressure = rawAirPressure;
494
    OCR0A++;
543
    OCR0A++;
495
    Delay_ms_Mess(200);
544
    Delay_ms_Mess(200);
496
    // raw pressure will decrease.
545
    // raw pressure will decrease.
497
    pressureDiff += (savedRawAirPressure - rawAirPressure);
546
    pressureDiff += (savedRawAirPressure - rawAirPressure);
498
 
547
 
499
    savedRawAirPressure = rawAirPressure;
548
    savedRawAirPressure = rawAirPressure;
500
    OCR0A--;
549
    OCR0A--;
501
    Delay_ms_Mess(200);
550
    Delay_ms_Mess(200);
502
    // raw pressure will increase.
551
    // raw pressure will increase.
503
    pressureDiff += (rawAirPressure - savedRawAirPressure);
552
    pressureDiff += (rawAirPressure - savedRawAirPressure);
504
    }
553
    }
505
 
554
 
506
    DebugOut.Analog[16] = rangewidth =
555
    // DebugOut.Analog[16] =
507
    (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2);
556
    rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2);
508
  */
557
  */
509
}
558
}
510
 
559