Subversion Repositories FlightCtrl

Rev

Rev 1969 | Rev 1971 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1969 Rev 1970
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
18
// + eindeutig als Ursprung verlinkt und genannt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
#include <avr/io.h>
52
#include <avr/io.h>
53
#include <avr/interrupt.h>
53
#include <avr/interrupt.h>
54
#include <avr/pgmspace.h>
54
#include <avr/pgmspace.h>
55
 
55
 
56
#include "analog.h"
56
#include "analog.h"
57
#include "attitude.h"
57
#include "attitude.h"
58
#include "sensors.h"
58
#include "sensors.h"
59
#include "printf_P.h"
59
#include "printf_P.h"
60
 
60
 
61
// for Delay functions
61
// for Delay functions
62
#include "timer0.h"
62
#include "timer0.h"
63
 
63
 
64
// For debugOut
64
// For debugOut
65
#include "uart0.h"
65
#include "uart0.h"
66
 
66
 
67
// For reading and writing acc. meter offsets.
67
// For reading and writing acc. meter offsets.
68
#include "eeprom.h"
68
#include "eeprom.h"
69
 
69
 
70
// For debugOut.digital
70
// For debugOut.digital
71
#include "output.h"
71
#include "output.h"
72
 
72
 
73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
75
 
75
 
76
const char* recal = ", recalibration needed.";
76
const char* recal = ", recalibration needed.";
77
 
77
 
78
/*
78
/*
79
 * For each A/D conversion cycle, each analog channel is sampled a number of times
79
 * For each A/D conversion cycle, each analog channel is sampled a number of times
80
 * (see array channelsForStates), and the results for each channel are summed.
80
 * (see array channelsForStates), and the results for each channel are summed.
81
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
81
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
82
 * They are exported in the analog.h file - but please do not use them! The only
82
 * They are exported in the analog.h file - but please do not use them! The only
83
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
83
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
84
 * the offsets with the DAC.
84
 * the offsets with the DAC.
85
 */
85
 */
86
volatile uint16_t sensorInputs[8];
86
volatile uint16_t sensorInputs[8];
87
volatile int16_t rawGyroSum[3];
87
volatile int16_t rawGyroSum[3];
88
volatile int16_t acc[3];
88
volatile int16_t acc[3];
89
volatile int16_t filteredAcc[2] = { 0,0 };
89
volatile int16_t filteredAcc[2] = { 0,0 };
90
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
90
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
91
 
91
 
92
/*
92
/*
93
 * These 4 exported variables are zero-offset. The "PID" ones are used
93
 * These 4 exported variables are zero-offset. The "PID" ones are used
94
 * in the attitude control as rotation rates. The "ATT" ones are for
94
 * in the attitude control as rotation rates. The "ATT" ones are for
95
 * integration to angles.
95
 * integration to angles.
96
 */
96
 */
97
volatile int16_t gyro_PID[2];
97
volatile int16_t gyro_PID[2];
98
volatile int16_t gyro_ATT[2];
98
volatile int16_t gyro_ATT[2];
99
volatile int16_t gyroD[2];
99
volatile int16_t gyroD[2];
100
volatile int16_t yawGyro;
100
volatile int16_t yawGyro;
101
 
101
 
102
/*
102
/*
103
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
103
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
104
 * standing still. They are used for adjusting the gyro and acc. meter values
104
 * standing still. They are used for adjusting the gyro and acc. meter values
105
 * to be centered on zero.
105
 * to be centered on zero.
106
 */
106
 */
107
 
107
 
108
sensorOffset_t gyroOffset;
108
sensorOffset_t gyroOffset;
109
sensorOffset_t accOffset;
109
sensorOffset_t accOffset;
110
sensorOffset_t gyroAmplifierOffset;
110
sensorOffset_t gyroAmplifierOffset;
111
 
111
 
112
/*
112
/*
113
 * This allows some experimentation with the gyro filters.
113
 * This allows some experimentation with the gyro filters.
114
 * Should be replaced by #define's later on...
114
 * Should be replaced by #define's later on...
115
 */
115
 */
116
 
116
 
117
/*
117
/*
118
 * Air pressure
118
 * Air pressure
119
 */
119
 */
120
volatile uint8_t rangewidth = 106;
120
volatile uint8_t rangewidth = 105;
121
 
121
 
122
// Direct from sensor, irrespective of range.
122
// Direct from sensor, irrespective of range.
123
// volatile uint16_t rawAirPressure;
123
// volatile uint16_t rawAirPressure;
124
 
124
 
125
// Value of 2 samples, with range.
125
// Value of 2 samples, with range.
126
volatile uint16_t simpleAirPressure;
126
volatile uint16_t simpleAirPressure;
127
 
127
 
128
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
128
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
129
volatile int32_t filteredAirPressure;
129
volatile int32_t filteredAirPressure;
130
 
130
 
131
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
131
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
132
volatile int32_t airPressureSum;
132
volatile int32_t airPressureSum;
133
 
133
 
134
// The number of samples summed into airPressureSum so far.
134
// The number of samples summed into airPressureSum so far.
135
volatile uint8_t pressureMeasurementCount;
135
volatile uint8_t pressureMeasurementCount;
136
 
136
 
137
/*
137
/*
138
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
138
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
139
 * That is divided by 3 below, for a final 10.34 per volt.
139
 * That is divided by 3 below, for a final 10.34 per volt.
140
 * So the initial value of 100 is for 9.7 volts.
140
 * So the initial value of 100 is for 9.7 volts.
141
 */
141
 */
142
volatile int16_t UBat = 100;
142
volatile int16_t UBat = 100;
143
 
143
 
144
/*
144
/*
145
 * Control and status.
145
 * Control and status.
146
 */
146
 */
147
volatile uint16_t ADCycleCount = 0;
147
volatile uint16_t ADCycleCount = 0;
148
volatile uint8_t analogDataReady = 1;
148
volatile uint8_t analogDataReady = 1;
149
 
149
 
150
/*
150
/*
151
 * Experiment: Measuring vibration-induced sensor noise.
151
 * Experiment: Measuring vibration-induced sensor noise.
152
 */
152
 */
153
volatile uint16_t gyroNoisePeak[2];
153
volatile uint16_t gyroNoisePeak[2];
154
volatile uint16_t accNoisePeak[2];
154
volatile uint16_t accNoisePeak[2];
155
 
155
 
156
// ADC channels
156
// ADC channels
157
#define AD_GYRO_YAW       0
157
#define AD_GYRO_YAW       0
158
#define AD_GYRO_ROLL      1
158
#define AD_GYRO_ROLL      1
159
#define AD_GYRO_PITCH     2
159
#define AD_GYRO_PITCH     2
160
#define AD_AIRPRESSURE    3
160
#define AD_AIRPRESSURE    3
161
#define AD_UBAT           4
161
#define AD_UBAT           4
162
#define AD_ACC_Z          5
162
#define AD_ACC_Z          5
163
#define AD_ACC_ROLL       6
163
#define AD_ACC_ROLL       6
164
#define AD_ACC_PITCH      7
164
#define AD_ACC_PITCH      7
165
 
165
 
166
/*
166
/*
167
 * Table of AD converter inputs for each state.
167
 * Table of AD converter inputs for each state.
168
 * The number of samples summed for each channel is equal to
168
 * The number of samples summed for each channel is equal to
169
 * the number of times the channel appears in the array.
169
 * the number of times the channel appears in the array.
170
 * The max. number of samples that can be taken in 2 ms is:
170
 * The max. number of samples that can be taken in 2 ms is:
171
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
171
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
172
 * loop needs a little time between reading AD values and
172
 * loop needs a little time between reading AD values and
173
 * re-enabling ADC, the real limit is (how much?) lower.
173
 * re-enabling ADC, the real limit is (how much?) lower.
174
 * The acc. sensor is sampled even if not used - or installed
174
 * The acc. sensor is sampled even if not used - or installed
175
 * at all. The cost is not significant.
175
 * at all. The cost is not significant.
176
 */
176
 */
177
 
177
 
178
const uint8_t channelsForStates[] PROGMEM = {
178
const uint8_t channelsForStates[] PROGMEM = {
179
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
179
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
180
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
180
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
181
 
181
 
182
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
182
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
183
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
183
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
184
 
184
 
185
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
185
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
186
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
186
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
187
  AD_AIRPRESSURE, // at 14, finish air pressure.
187
  AD_AIRPRESSURE, // at 14, finish air pressure.
188
 
188
 
189
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
189
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
190
  AD_GYRO_ROLL,   // at 16, finish roll gyro
190
  AD_GYRO_ROLL,   // at 16, finish roll gyro
191
  AD_UBAT         // at 17, measure battery.
191
  AD_UBAT         // at 17, measure battery.
192
};
192
};
193
 
193
 
194
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
194
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
195
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
195
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
196
 
196
 
197
void analog_init(void) {
197
void analog_init(void) {
198
        uint8_t sreg = SREG;
198
        uint8_t sreg = SREG;
199
        // disable all interrupts before reconfiguration
199
        // disable all interrupts before reconfiguration
200
        cli();
200
        cli();
201
 
201
 
202
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
202
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
203
        DDRA = 0x00;
203
        DDRA = 0x00;
204
        PORTA = 0x00;
204
        PORTA = 0x00;
205
        // Digital Input Disable Register 0
205
        // Digital Input Disable Register 0
206
        // Disable digital input buffer for analog adc_channel pins
206
        // Disable digital input buffer for analog adc_channel pins
207
        DIDR0 = 0xFF;
207
        DIDR0 = 0xFF;
208
        // external reference, adjust data to the right
208
        // external reference, adjust data to the right
209
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
209
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
210
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
210
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
211
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
211
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
212
        //Set ADC Control and Status Register A
212
        //Set ADC Control and Status Register A
213
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
213
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
214
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
214
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
215
        //Set ADC Control and Status Register B
215
        //Set ADC Control and Status Register B
216
        //Trigger Source to Free Running Mode
216
        //Trigger Source to Free Running Mode
217
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
217
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
218
 
218
 
219
        startAnalogConversionCycle();
219
        startAnalogConversionCycle();
220
 
220
 
221
        // restore global interrupt flags
221
        // restore global interrupt flags
222
        SREG = sreg;
222
        SREG = sreg;
223
}
223
}
224
 
224
 
225
void measureNoise(const int16_t sensor,
225
void measureNoise(const int16_t sensor,
226
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
226
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
227
        if (sensor > (int16_t) (*noiseMeasurement)) {
227
        if (sensor > (int16_t) (*noiseMeasurement)) {
228
                *noiseMeasurement = sensor;
228
                *noiseMeasurement = sensor;
229
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
229
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
230
                *noiseMeasurement = -sensor;
230
                *noiseMeasurement = -sensor;
231
        } else if (*noiseMeasurement > damping) {
231
        } else if (*noiseMeasurement > damping) {
232
                *noiseMeasurement -= damping;
232
                *noiseMeasurement -= damping;
233
        } else {
233
        } else {
234
                *noiseMeasurement = 0;
234
                *noiseMeasurement = 0;
235
        }
235
        }
236
}
236
}
237
 
237
 
238
/*
238
/*
239
 * Min.: 0
239
 * Min.: 0
240
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
240
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
241
 */
241
 */
242
uint16_t getSimplePressure(int advalue) {
242
uint16_t getSimplePressure(int advalue) {
243
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
243
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
244
}
244
}
245
 
245
 
246
void startAnalogConversionCycle(void) {
246
void startAnalogConversionCycle(void) {
247
  analogDataReady = 0;
247
  analogDataReady = 0;
248
  // Stop the sampling. Cycle is over.
248
  // Stop the sampling. Cycle is over.
249
  for (uint8_t i = 0; i < 8; i++) {
249
  for (uint8_t i = 0; i < 8; i++) {
250
    sensorInputs[i] = 0;
250
    sensorInputs[i] = 0;
251
  }
251
  }
252
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
252
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
253
  startADC();
253
  startADC();
254
}
254
}
255
 
255
 
256
/*****************************************************
256
/*****************************************************
257
 * Interrupt Service Routine for ADC
257
 * Interrupt Service Routine for ADC
258
 * Runs at 312.5 kHz or 3.2 �s. When all states are
258
 * Runs at 312.5 kHz or 3.2 �s. When all states are
259
 * processed further conversions are stopped.
259
 * processed further conversions are stopped.
260
 *****************************************************/
260
 *****************************************************/
261
ISR(ADC_vect) {
261
ISR(ADC_vect) {
262
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
262
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
263
  sensorInputs[ad_channel] += ADC;
263
  sensorInputs[ad_channel] += ADC;
264
  // set up for next state.
264
  // set up for next state.
265
  state++;
265
  state++;
266
  if (state < 18) {
266
  if (state < 18) {
267
    ad_channel = pgm_read_byte(&channelsForStates[state]);
267
    ad_channel = pgm_read_byte(&channelsForStates[state]);
268
    // set adc muxer to next ad_channel
268
    // set adc muxer to next ad_channel
269
    ADMUX = (ADMUX & 0xE0) | ad_channel;
269
    ADMUX = (ADMUX & 0xE0) | ad_channel;
270
    // after full cycle stop further interrupts
270
    // after full cycle stop further interrupts
271
    startADC();
271
    startADC();
272
  } else {
272
  } else {
273
    state = 0;
273
    state = 0;
274
    ADCycleCount++;
274
    ADCycleCount++;
275
    analogDataReady = 1;
275
    analogDataReady = 1;
276
    // do not restart ADC converter. 
276
    // do not restart ADC converter. 
277
  }
277
  }
278
}
278
}
279
 
279
 
280
void analog_updateGyros(void) {
280
void analog_updateGyros(void) {
281
  // for various filters...
281
  // for various filters...
282
  int16_t tempOffsetGyro, tempGyro;
282
  int16_t tempOffsetGyro, tempGyro;
283
 
283
 
284
  for (uint8_t axis=0; axis<2; axis++) {
284
  for (uint8_t axis=0; axis<2; axis++) {
285
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
285
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
286
   
286
   
287
    /*
287
    /*
288
     * Process the gyro data for the PID controller.
288
     * Process the gyro data for the PID controller.
289
     */
289
     */
290
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
290
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
291
    //    gyro with a wider range, and helps counter saturation at full control.
291
    //    gyro with a wider range, and helps counter saturation at full control.
292
   
292
   
293
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
293
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
294
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
294
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
295
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
295
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
296
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
296
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
297
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
297
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
298
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
298
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
299
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
299
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
300
          + SENSOR_MAX_PITCHROLL;
300
          + SENSOR_MAX_PITCHROLL;
301
      } else {
301
      } else {
302
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
302
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
303
      }
303
      }
304
    }
304
    }
305
   
305
   
306
    // 2) Apply sign and offset, scale before filtering.
306
    // 2) Apply sign and offset, scale before filtering.
307
    if (GYRO_REVERSED[axis]) {
307
    if (GYRO_REVERSED[axis]) {
308
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
308
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
309
    } else {
309
    } else {
310
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
310
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
311
    }
311
    }
312
   
312
   
313
    // 3) Scale and filter.
313
    // 3) Scale and filter.
314
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
314
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
315
   
315
   
316
    // 4) Measure noise.
316
    // 4) Measure noise.
317
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
317
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
318
   
318
   
319
    // 5) Differential measurement.
319
    // 5) Differential measurement.
320
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
320
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
321
   
321
   
322
    // 6) Done.
322
    // 6) Done.
323
    gyro_PID[axis] = tempOffsetGyro;
323
    gyro_PID[axis] = tempOffsetGyro;
324
   
324
   
325
    /*
325
    /*
326
     * Now process the data for attitude angles.
326
     * Now process the data for attitude angles.
327
     */
327
     */
328
    tempGyro = rawGyroSum[axis];
328
    tempGyro = rawGyroSum[axis];
329
   
329
   
330
    // 1) Apply sign and offset, scale before filtering.
330
    // 1) Apply sign and offset, scale before filtering.
331
    if (GYRO_REVERSED[axis]) {
331
    if (GYRO_REVERSED[axis]) {
332
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
332
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
333
    } else {
333
    } else {
334
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
334
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
335
    }
335
    }
336
   
336
   
337
    // 2) Filter.
337
    // 2) Filter.
338
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
338
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
339
  }
339
  }
340
 
340
 
341
  // Yaw gyro.
341
  // Yaw gyro.
342
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
342
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
343
  if (GYRO_REVERSED[YAW])
343
  if (GYRO_REVERSED[YAW])
344
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
344
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
345
  else
345
  else
346
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
346
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
347
}
347
}
348
 
348
 
349
void analog_updateAccelerometers(void) {
349
void analog_updateAccelerometers(void) {
350
  // Pitch and roll axis accelerations.
350
  // Pitch and roll axis accelerations.
351
  for (uint8_t axis=0; axis<2; axis++) {
351
  for (uint8_t axis=0; axis<2; axis++) {
352
    if (ACC_REVERSED[axis])
352
    if (ACC_REVERSED[axis])
353
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
353
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
354
    else
354
    else
355
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
355
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
356
   
356
   
357
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
357
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
358
   
358
   
359
    /*
359
    /*
360
      stronglyFilteredAcc[PITCH] =
360
      stronglyFilteredAcc[PITCH] =
361
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
361
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
362
    */
362
    */
363
   
363
   
364
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
364
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
365
  }
365
  }
366
 
366
 
367
  // Z acc.
367
  // Z acc.
368
  if (ACC_REVERSED[Z])
368
  if (ACC_REVERSED[Z])
369
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
369
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
370
  else
370
  else
371
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
371
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
372
 
372
 
373
  /*
373
  /*
374
    stronglyFilteredAcc[Z] =
374
    stronglyFilteredAcc[Z] =
375
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
375
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
376
  */
376
  */
377
}
377
}
378
 
378
 
379
void analog_updateAirPressure(void) {
379
void analog_updateAirPressure(void) {
380
  static uint16_t pressureAutorangingWait = 25;
380
  static uint16_t pressureAutorangingWait = 25;
381
  uint16_t rawAirPressure;
381
  uint16_t rawAirPressure;
382
  int16_t newrange;
382
  int16_t newrange;
383
  // air pressure
383
  // air pressure
384
  if (pressureAutorangingWait) {
384
  if (pressureAutorangingWait) {
385
    //A range switch was done recently. Wait for steadying.
385
    //A range switch was done recently. Wait for steadying.
386
    pressureAutorangingWait--;
386
    pressureAutorangingWait--;
387
    debugOut.analog[27] = (uint16_t) OCR0A;
387
    debugOut.analog[27] = (uint16_t) OCR0A;
388
    debugOut.analog[31] = simpleAirPressure;
388
    debugOut.analog[31] = simpleAirPressure;
389
  } else {
389
  } else {
390
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
390
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
391
    if (rawAirPressure < MIN_RAWPRESSURE) {
391
    if (rawAirPressure < MIN_RAWPRESSURE) {
392
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
392
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
393
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
393
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
394
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
394
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
395
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
395
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
396
        OCR0A = newrange;
396
        OCR0A = newrange;
397
      } else {
397
      } else {
398
        if (OCR0A) {
398
        if (OCR0A) {
399
          OCR0A--;
399
          OCR0A--;
400
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
400
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
401
        }
401
        }
402
      }
402
      }
403
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
403
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
404
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
404
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
405
      // If near the end, make a limited increase
405
      // If near the end, make a limited increase
406
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
406
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
407
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
407
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
408
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
408
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
409
        OCR0A = newrange;
409
        OCR0A = newrange;
410
      } else {
410
      } else {
411
        if (OCR0A < 254) {
411
        if (OCR0A < 254) {
412
          OCR0A++;
412
          OCR0A++;
413
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
413
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
414
        }
414
        }
415
      }
415
      }
416
    }
416
    }
417
   
417
   
418
    // Even if the sample is off-range, use it.
418
    // Even if the sample is off-range, use it.
419
    simpleAirPressure = getSimplePressure(rawAirPressure);
419
    simpleAirPressure = getSimplePressure(rawAirPressure);
420
    debugOut.analog[27] = (uint16_t) OCR0A;
420
    debugOut.analog[27] = (uint16_t) OCR0A;
421
    debugOut.analog[31] = simpleAirPressure;
421
    debugOut.analog[31] = simpleAirPressure;
422
   
422
   
423
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
423
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
424
      // Danger: pressure near lower end of range. If the measurement saturates, the
424
      // Danger: pressure near lower end of range. If the measurement saturates, the
425
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
425
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
426
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
426
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
427
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
427
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
428
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
428
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
429
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
429
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
430
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
430
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
431
      // Danger: pressure near upper end of range. If the measurement saturates, the
431
      // Danger: pressure near upper end of range. If the measurement saturates, the
432
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
432
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
433
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
433
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
434
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
434
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
435
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
435
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
436
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
436
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
437
    } else {
437
    } else {
438
      // normal case.
438
      // normal case.
439
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
439
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
440
      // The 2 cases above (end of range) are ignored for this.
440
      // The 2 cases above (end of range) are ignored for this.
441
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
441
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
442
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
442
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
443
        airPressureSum += simpleAirPressure / 2;
443
        airPressureSum += simpleAirPressure / 2;
444
      else
444
      else
445
        airPressureSum += simpleAirPressure;
445
        airPressureSum += simpleAirPressure;
446
    }
446
    }
447
   
447
   
448
    // 2 samples were added.
448
    // 2 samples were added.
449
    pressureMeasurementCount += 2;
449
    pressureMeasurementCount += 2;
450
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
450
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
451
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
451
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
452
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
452
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
453
      pressureMeasurementCount = airPressureSum = 0;
453
      pressureMeasurementCount = airPressureSum = 0;
454
    }
454
    }
455
  }
455
  }
456
}
456
}
457
 
457
 
458
void analog_updateBatteryVoltage(void) {
458
void analog_updateBatteryVoltage(void) {
459
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
459
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
460
  // This is divided by 3 --> 10.34 counts per volt.
460
  // This is divided by 3 --> 10.34 counts per volt.
461
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
461
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
462
  debugOut.analog[11] = UBat;
462
  debugOut.analog[11] = UBat;
463
}
463
}
464
 
464
 
465
void analog_update(void) {
465
void analog_update(void) {
466
  analog_updateGyros();
466
  analog_updateGyros();
467
  analog_updateAccelerometers();
467
  analog_updateAccelerometers();
468
  analog_updateAirPressure();
468
  analog_updateAirPressure();
469
  analog_updateBatteryVoltage();
469
  analog_updateBatteryVoltage();
470
}
470
}
471
 
471
 
472
void analog_setNeutral() {
472
void analog_setNeutral() {
473
  if (gyroAmplifierOffset_readFromEEProm()) {
473
  if (gyroAmplifierOffset_readFromEEProm()) {
474
    printf("gyro amp invalid%s",recal);
474
    printf("gyro amp invalid%s",recal);
475
    gyro_loadOffsets(1);
475
    gyro_loadOffsets(1);
476
  } else
476
  } else
477
      gyro_loadOffsets(0);
477
      gyro_loadOffsets(0);
478
 
478
 
479
  if (gyroOffset_readFromEEProm()) {
479
  if (gyroOffset_readFromEEProm()) {
480
    printf("gyro offsets invalid%s",recal);
480
    printf("gyro offsets invalid%s",recal);
481
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
481
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
482
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
482
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
483
  }
483
  }
484
 
484
 
485
  debugOut.analog[6] = gyroOffset.offsets[PITCH];
485
  debugOut.analog[6] = gyroOffset.offsets[PITCH];
486
  debugOut.analog[7] = gyroOffset.offsets[ROLL];
486
  debugOut.analog[7] = gyroOffset.offsets[ROLL];
487
 
487
 
488
  if (accOffset_readFromEEProm()) {
488
  if (accOffset_readFromEEProm()) {
489
    printf("acc. meter offsets invalid%s",recal);
489
    printf("acc. meter offsets invalid%s",recal);
490
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
490
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
491
    accOffset.offsets[Z] = 512 * ACC_SUMMATION_FACTOR_Z;
491
    accOffset.offsets[Z] = 512 * ACC_SUMMATION_FACTOR_Z;
492
  }
492
  }
493
 
493
 
494
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
494
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
495
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
495
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
496
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
496
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
497
 
497
 
498
  // Setting offset values has an influence in the analog.c ISR
498
  // Setting offset values has an influence in the analog.c ISR
499
  // Therefore run measurement for 100ms to achive stable readings
499
  // Therefore run measurement for 100ms to achive stable readings
500
  delay_ms_with_adc_measurement(100);
500
  delay_ms_with_adc_measurement(100);
501
 
501
 
502
  // Rough estimate. Hmm no nothing happens at calibration anyway.
502
  // Rough estimate. Hmm no nothing happens at calibration anyway.
503
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
503
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
504
  // pressureMeasurementCount = 0;
504
  // pressureMeasurementCount = 0;
505
}
505
}
506
 
506
 
507
void analog_calibrateGyros(void) {
507
void analog_calibrateGyros(void) {
508
#define GYRO_OFFSET_CYCLES 32
508
#define GYRO_OFFSET_CYCLES 32
509
  uint8_t i, axis;
509
  uint8_t i, axis;
510
  int32_t offsets[3] = { 0, 0, 0 };
510
  int32_t offsets[3] = { 0, 0, 0 };
511
  gyro_calibrate();
511
  gyro_calibrate();
512
 
512
 
513
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
513
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
514
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
514
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
515
    delay_ms_with_adc_measurement(20);
515
    delay_ms_with_adc_measurement(20);
516
    for (axis = PITCH; axis <= YAW; axis++) {
516
    for (axis = PITCH; axis <= YAW; axis++) {
517
      offsets[axis] += rawGyroSum[axis];
517
      offsets[axis] += rawGyroSum[axis];
518
    }
518
    }
519
  }
519
  }
520
 
520
 
521
  for (axis = PITCH; axis <= YAW; axis++) {
521
  for (axis = PITCH; axis <= YAW; axis++) {
522
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
522
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
523
  }
523
  }
524
 
524
 
525
  gyroOffset_writeToEEProm();  
525
  gyroOffset_writeToEEProm();  
526
}
526
}
527
 
527
 
528
/*
528
/*
529
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
529
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
530
 * Does not (!} update the local variables. This must be done with a
530
 * Does not (!} update the local variables. This must be done with a
531
 * call to analog_calibrate() - this always (?) is done by the caller
531
 * call to analog_calibrate() - this always (?) is done by the caller
532
 * anyway. There would be nothing wrong with updating the variables
532
 * anyway. There would be nothing wrong with updating the variables
533
 * directly from here, though.
533
 * directly from here, though.
534
 */
534
 */
535
void analog_calibrateAcc(void) {
535
void analog_calibrateAcc(void) {
536
#define ACC_OFFSET_CYCLES 10
536
#define ACC_OFFSET_CYCLES 10
537
  uint8_t i, axis;
537
  uint8_t i, axis;
538
  int32_t deltaOffset[3] = { 0, 0, 0 };
538
  int32_t deltaOffset[3] = { 0, 0, 0 };
539
  int16_t filteredDelta;
539
  int16_t filteredDelta;
540
 
540
 
541
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
541
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
542
    delay_ms_with_adc_measurement(10);
542
    delay_ms_with_adc_measurement(10);
543
    for (axis = PITCH; axis <= YAW; axis++) {
543
    for (axis = PITCH; axis <= YAW; axis++) {
544
      deltaOffset[axis] += acc[axis];
544
      deltaOffset[axis] += acc[axis];
545
    }
545
    }
546
  }
546
  }
547
 
547
 
548
  for (axis = PITCH; axis <= YAW; axis++) {
548
  for (axis = PITCH; axis <= YAW; axis++) {
549
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
549
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
550
      / ACC_OFFSET_CYCLES;
550
      / ACC_OFFSET_CYCLES;
551
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
551
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
552
  }
552
  }
553
 
553
 
554
  accOffset_writeToEEProm();  
554
  accOffset_writeToEEProm();  
555
}
555
}
556
 
556