Subversion Repositories FlightCtrl

Rev

Rev 1955 | Rev 1961 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1955 Rev 1960
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
#include <avr/io.h>
51
#include <avr/io.h>
52
#include <avr/interrupt.h>
52
#include <avr/interrupt.h>
53
#include <avr/pgmspace.h>
53
#include <avr/pgmspace.h>
54
 
54
 
55
#include "analog.h"
55
#include "analog.h"
56
#include "attitude.h"
56
#include "attitude.h"
57
#include "sensors.h"
57
#include "sensors.h"
58
 
58
 
59
// for Delay functions
59
// for Delay functions
60
#include "timer0.h"
60
#include "timer0.h"
61
 
61
 
62
// For debugOut
62
// For debugOut
63
#include "uart0.h"
63
#include "uart0.h"
64
 
64
 
65
// For reading and writing acc. meter offsets.
65
// For reading and writing acc. meter offsets.
66
#include "eeprom.h"
66
#include "eeprom.h"
67
 
67
 
68
// For debugOut.digital
68
// For debugOut.digital
69
#include "output.h"
69
#include "output.h"
70
 
70
 
71
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
71
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
72
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
72
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
73
 
73
 
74
/*
74
/*
75
 * For each A/D conversion cycle, each analog channel is sampled a number of times
75
 * For each A/D conversion cycle, each analog channel is sampled a number of times
76
 * (see array channelsForStates), and the results for each channel are summed.
76
 * (see array channelsForStates), and the results for each channel are summed.
77
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
77
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
78
 * They are exported in the analog.h file - but please do not use them! The only
78
 * They are exported in the analog.h file - but please do not use them! The only
79
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
79
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
80
 * the offsets with the DAC.
80
 * the offsets with the DAC.
81
 */
81
 */
82
volatile uint16_t sensorInputs[8];
82
volatile uint16_t sensorInputs[8];
83
volatile int16_t rawGyroSum[3];
83
volatile int16_t rawGyroSum[3];
84
volatile int16_t acc[3];
84
volatile int16_t acc[3];
85
volatile int16_t filteredAcc[2] = { 0,0 };
85
volatile int16_t filteredAcc[2] = { 0,0 };
86
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
86
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
87
 
87
 
88
/*
88
/*
89
 * These 4 exported variables are zero-offset. The "PID" ones are used
89
 * These 4 exported variables are zero-offset. The "PID" ones are used
90
 * in the attitude control as rotation rates. The "ATT" ones are for
90
 * in the attitude control as rotation rates. The "ATT" ones are for
91
 * integration to angles.
91
 * integration to angles.
92
 */
92
 */
93
volatile int16_t gyro_PID[2];
93
volatile int16_t gyro_PID[2];
94
volatile int16_t gyro_ATT[2];
94
volatile int16_t gyro_ATT[2];
95
volatile int16_t gyroD[2];
95
volatile int16_t gyroD[2];
96
volatile int16_t yawGyro;
96
volatile int16_t yawGyro;
97
 
97
 
98
/*
98
/*
99
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
99
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
100
 * standing still. They are used for adjusting the gyro and acc. meter values
100
 * standing still. They are used for adjusting the gyro and acc. meter values
101
 * to be centered on zero.
101
 * to be centered on zero.
102
 */
102
 */
-
 
103
/*
103
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
104
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
104
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
105
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
105
 
106
 
106
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
107
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
107
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
108
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
-
 
109
                */
-
 
110
 
-
 
111
sensorOffset_t gyroOffset;
-
 
112
sensorOffset_t accOffset;
108
 
113
 
109
/*
114
/*
110
 * This allows some experimentation with the gyro filters.
115
 * This allows some experimentation with the gyro filters.
111
 * Should be replaced by #define's later on...
116
 * Should be replaced by #define's later on...
112
 */
117
 */
113
volatile uint8_t GYROS_PID_FILTER;
-
 
114
volatile uint8_t GYROS_ATT_FILTER;
-
 
115
volatile uint8_t GYROS_D_FILTER;
-
 
116
volatile uint8_t ACC_FILTER;
-
 
117
 
118
 
118
/*
119
/*
119
 * Air pressure
120
 * Air pressure
120
 */
121
 */
121
volatile uint8_t rangewidth = 106;
122
volatile uint8_t rangewidth = 106;
122
 
123
 
123
// Direct from sensor, irrespective of range.
124
// Direct from sensor, irrespective of range.
124
// volatile uint16_t rawAirPressure;
125
// volatile uint16_t rawAirPressure;
125
 
126
 
126
// Value of 2 samples, with range.
127
// Value of 2 samples, with range.
127
volatile uint16_t simpleAirPressure;
128
volatile uint16_t simpleAirPressure;
128
 
129
 
129
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
130
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
130
volatile int32_t filteredAirPressure;
131
volatile int32_t filteredAirPressure;
131
 
132
 
132
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
133
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
133
volatile int32_t airPressureSum;
134
volatile int32_t airPressureSum;
134
 
135
 
135
// The number of samples summed into airPressureSum so far.
136
// The number of samples summed into airPressureSum so far.
136
volatile uint8_t pressureMeasurementCount;
137
volatile uint8_t pressureMeasurementCount;
137
 
138
 
138
/*
139
/*
139
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
140
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
140
 * That is divided by 3 below, for a final 10.34 per volt.
141
 * That is divided by 3 below, for a final 10.34 per volt.
141
 * So the initial value of 100 is for 9.7 volts.
142
 * So the initial value of 100 is for 9.7 volts.
142
 */
143
 */
143
volatile int16_t UBat = 100;
144
volatile int16_t UBat = 100;
144
 
145
 
145
/*
146
/*
146
 * Control and status.
147
 * Control and status.
147
 */
148
 */
148
volatile uint16_t ADCycleCount = 0;
149
volatile uint16_t ADCycleCount = 0;
149
volatile uint8_t analogDataReady = 1;
150
volatile uint8_t analogDataReady = 1;
150
 
151
 
151
/*
152
/*
152
 * Experiment: Measuring vibration-induced sensor noise.
153
 * Experiment: Measuring vibration-induced sensor noise.
153
 */
154
 */
154
volatile uint16_t gyroNoisePeak[2];
155
volatile uint16_t gyroNoisePeak[2];
155
volatile uint16_t accNoisePeak[2];
156
volatile uint16_t accNoisePeak[2];
156
 
157
 
157
// ADC channels
158
// ADC channels
158
#define AD_GYRO_YAW       0
159
#define AD_GYRO_YAW       0
159
#define AD_GYRO_ROLL      1
160
#define AD_GYRO_ROLL      1
160
#define AD_GYRO_PITCH     2
161
#define AD_GYRO_PITCH     2
161
#define AD_AIRPRESSURE    3
162
#define AD_AIRPRESSURE    3
162
#define AD_UBAT           4
163
#define AD_UBAT           4
163
#define AD_ACC_Z          5
164
#define AD_ACC_Z          5
164
#define AD_ACC_ROLL       6
165
#define AD_ACC_ROLL       6
165
#define AD_ACC_PITCH      7
166
#define AD_ACC_PITCH      7
166
 
167
 
167
/*
168
/*
168
 * Table of AD converter inputs for each state.
169
 * Table of AD converter inputs for each state.
169
 * The number of samples summed for each channel is equal to
170
 * The number of samples summed for each channel is equal to
170
 * the number of times the channel appears in the array.
171
 * the number of times the channel appears in the array.
171
 * The max. number of samples that can be taken in 2 ms is:
172
 * The max. number of samples that can be taken in 2 ms is:
172
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
173
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
173
 * loop needs a little time between reading AD values and
174
 * loop needs a little time between reading AD values and
174
 * re-enabling ADC, the real limit is (how much?) lower.
175
 * re-enabling ADC, the real limit is (how much?) lower.
175
 * The acc. sensor is sampled even if not used - or installed
176
 * The acc. sensor is sampled even if not used - or installed
176
 * at all. The cost is not significant.
177
 * at all. The cost is not significant.
177
 */
178
 */
178
 
179
 
179
const uint8_t channelsForStates[] PROGMEM = {
180
const uint8_t channelsForStates[] PROGMEM = {
180
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
181
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
181
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
182
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
182
 
183
 
183
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
184
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
184
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
185
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
185
 
186
 
186
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
187
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
187
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
188
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
188
  AD_AIRPRESSURE, // at 14, finish air pressure.
189
  AD_AIRPRESSURE, // at 14, finish air pressure.
189
 
190
 
190
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
191
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
191
  AD_GYRO_ROLL,   // at 16, finish roll gyro
192
  AD_GYRO_ROLL,   // at 16, finish roll gyro
192
  AD_UBAT         // at 17, measure battery.
193
  AD_UBAT         // at 17, measure battery.
193
};
194
};
194
 
195
 
195
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
196
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
196
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
197
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
197
 
198
 
198
void analog_init(void) {
199
void analog_init(void) {
199
        uint8_t sreg = SREG;
200
        uint8_t sreg = SREG;
200
        // disable all interrupts before reconfiguration
201
        // disable all interrupts before reconfiguration
201
        cli();
202
        cli();
202
 
203
 
203
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
204
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
204
        DDRA = 0x00;
205
        DDRA = 0x00;
205
        PORTA = 0x00;
206
        PORTA = 0x00;
206
        // Digital Input Disable Register 0
207
        // Digital Input Disable Register 0
207
        // Disable digital input buffer for analog adc_channel pins
208
        // Disable digital input buffer for analog adc_channel pins
208
        DIDR0 = 0xFF;
209
        DIDR0 = 0xFF;
209
        // external reference, adjust data to the right
210
        // external reference, adjust data to the right
210
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
211
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
211
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
212
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
212
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
213
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
213
        //Set ADC Control and Status Register A
214
        //Set ADC Control and Status Register A
214
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
215
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
215
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
216
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
216
        //Set ADC Control and Status Register B
217
        //Set ADC Control and Status Register B
217
        //Trigger Source to Free Running Mode
218
        //Trigger Source to Free Running Mode
218
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
219
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
219
 
220
 
220
        startAnalogConversionCycle();
221
        startAnalogConversionCycle();
221
 
222
 
222
        // restore global interrupt flags
223
        // restore global interrupt flags
223
        SREG = sreg;
224
        SREG = sreg;
224
}
225
}
225
 
226
 
226
void measureNoise(const int16_t sensor,
227
void measureNoise(const int16_t sensor,
227
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
228
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
228
        if (sensor > (int16_t) (*noiseMeasurement)) {
229
        if (sensor > (int16_t) (*noiseMeasurement)) {
229
                *noiseMeasurement = sensor;
230
                *noiseMeasurement = sensor;
230
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
231
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
231
                *noiseMeasurement = -sensor;
232
                *noiseMeasurement = -sensor;
232
        } else if (*noiseMeasurement > damping) {
233
        } else if (*noiseMeasurement > damping) {
233
                *noiseMeasurement -= damping;
234
                *noiseMeasurement -= damping;
234
        } else {
235
        } else {
235
                *noiseMeasurement = 0;
236
                *noiseMeasurement = 0;
236
        }
237
        }
237
}
238
}
238
 
239
 
239
/*
240
/*
240
 * Min.: 0
241
 * Min.: 0
241
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
242
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
242
 */
243
 */
243
uint16_t getSimplePressure(int advalue) {
244
uint16_t getSimplePressure(int advalue) {
244
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
245
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
245
}
246
}
246
 
247
 
247
void startAnalogConversionCycle(void) {
248
void startAnalogConversionCycle(void) {
-
 
249
  analogDataReady = 0;
248
  // Stop the sampling. Cycle is over.
250
  // Stop the sampling. Cycle is over.
249
  for (uint8_t i = 0; i < 8; i++) {
251
  for (uint8_t i = 0; i < 8; i++) {
250
    sensorInputs[i] = 0;
252
    sensorInputs[i] = 0;
251
  }
253
  }
252
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
254
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
253
  startADC();
255
  startADC();
254
}
256
}
255
 
257
 
256
/*****************************************************
258
/*****************************************************
257
 * Interrupt Service Routine for ADC
259
 * Interrupt Service Routine for ADC
258
 * Runs at 312.5 kHz or 3.2 µs. When all states are
260
 * Runs at 312.5 kHz or 3.2 µs. When all states are
259
 * processed further conversions are stopped.
261
 * processed further conversions are stopped.
260
 *****************************************************/
262
 *****************************************************/
261
ISR(ADC_vect) {
263
ISR(ADC_vect) {
262
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
264
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
263
  sensorInputs[ad_channel] += ADC;
265
  sensorInputs[ad_channel] += ADC;
264
  // set up for next state.
266
  // set up for next state.
265
  state++;
267
  state++;
266
  if (state < 18) {
268
  if (state < 18) {
267
    ad_channel = pgm_read_byte(&channelsForStates[state]);
269
    ad_channel = pgm_read_byte(&channelsForStates[state]);
268
    // set adc muxer to next ad_channel
270
    // set adc muxer to next ad_channel
269
    ADMUX = (ADMUX & 0xE0) | ad_channel;
271
    ADMUX = (ADMUX & 0xE0) | ad_channel;
270
    // after full cycle stop further interrupts
272
    // after full cycle stop further interrupts
271
    startADC();
273
    startADC();
272
  } else {
274
  } else {
273
    state = 0;
275
    state = 0;
274
    ADCycleCount++;
276
    ADCycleCount++;
275
    analogDataReady = 1;
277
    analogDataReady = 1;
276
    // do not restart ADC converter. 
278
    // do not restart ADC converter. 
277
  }
279
  }
278
}
280
}
279
 
281
 
280
void analog_updateGyros(void) {
282
void analog_updateGyros(void) {
281
  // for various filters...
283
  // for various filters...
282
  int16_t tempOffsetGyro, tempGyro;
284
  int16_t tempOffsetGyro, tempGyro;
283
 
285
 
284
  for (uint8_t axis=0; axis<2; axis++) {
286
  for (uint8_t axis=0; axis<2; axis++) {
285
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
287
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
286
    /*
288
    /*
287
     * Process the gyro data for the PID controller.
289
     * Process the gyro data for the PID controller.
288
     */
290
     */
289
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
291
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
290
    //    gyro with a wider range, and helps counter saturation at full control.
292
    //    gyro with a wider range, and helps counter saturation at full control.
291
   
293
   
292
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
294
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
293
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
295
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
294
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
296
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
295
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
297
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
296
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
298
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
297
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
299
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
298
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
300
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
299
          + SENSOR_MAX_PITCHROLL;
301
          + SENSOR_MAX_PITCHROLL;
300
      } else {
302
      } else {
301
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
303
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
302
      }
304
      }
303
    }
305
    }
304
   
306
   
305
    // 2) Apply sign and offset, scale before filtering.
307
    // 2) Apply sign and offset, scale before filtering.
306
    if (GYRO_REVERSED[axis]) {
308
    if (GYRO_REVERSED[axis]) {
307
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
309
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
308
    } else {
310
    } else {
309
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
311
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
310
    }
312
    }
311
   
313
   
312
    // 3) Scale and filter.
314
    // 3) Scale and filter.
313
    tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro) / GYROS_PID_FILTER;
315
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
314
   
316
   
315
    // 4) Measure noise.
317
    // 4) Measure noise.
316
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
318
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
317
   
319
   
318
    // 5) Differential measurement.
320
    // 5) Differential measurement.
319
    gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro - gyro_PID[axis])) / GYROS_D_FILTER;
321
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
320
   
322
   
321
    // 6) Done.
323
    // 6) Done.
322
    gyro_PID[axis] = tempOffsetGyro;
324
    gyro_PID[axis] = tempOffsetGyro;
323
   
325
   
324
    /*
326
    /*
325
     * Now process the data for attitude angles.
327
     * Now process the data for attitude angles.
326
     */
328
     */
327
    tempGyro = rawGyroSum[axis];
329
    tempGyro = rawGyroSum[axis];
328
   
330
   
329
    // 1) Apply sign and offset, scale before filtering.
331
    // 1) Apply sign and offset, scale before filtering.
330
    if (GYRO_REVERSED[axis]) {
332
    if (GYRO_REVERSED[axis]) {
331
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
333
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
332
    } else {
334
    } else {
333
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
335
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
334
    }
336
    }
335
   
337
   
336
    // 2) Filter.
338
    // 2) Filter.
337
    gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro) / GYROS_ATT_FILTER;
339
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
338
  }
340
  }
339
 
341
 
340
  // Yaw gyro.
342
  // Yaw gyro.
341
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
343
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
342
  if (GYRO_REVERSED[YAW])
344
  if (GYRO_REVERSED[YAW])
343
    yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
345
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
344
  else
346
  else
345
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
347
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
346
 
348
 
347
  debugOut.analog[3] = gyro_ATT[PITCH];
349
  debugOut.analog[3] = gyro_ATT[PITCH];
348
  debugOut.analog[4] = gyro_ATT[ROLL];
350
  debugOut.analog[4] = gyro_ATT[ROLL];
349
  debugOut.analog[5] = yawGyro;
351
  debugOut.analog[5] = yawGyro;
350
}
352
}
351
 
353
 
352
void analog_updateAccelerometers(void) {
354
void analog_updateAccelerometers(void) {
353
  // Pitch and roll axis accelerations.
355
  // Pitch and roll axis accelerations.
354
  for (uint8_t axis=0; axis<2; axis++) {
356
  for (uint8_t axis=0; axis<2; axis++) {
355
    if (ACC_REVERSED[axis])
357
    if (ACC_REVERSED[axis])
356
      acc[axis] = accOffset[axis] - sensorInputs[AD_ACC_PITCH-axis];
358
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
357
    else
359
    else
358
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset[axis];
360
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
359
   
361
   
360
    filteredAcc[axis] = (filteredAcc[axis] * (ACC_FILTER - 1) + acc[axis]) / ACC_FILTER;
362
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
361
   
363
   
362
    /*
364
    /*
363
      stronglyFilteredAcc[PITCH] =
365
      stronglyFilteredAcc[PITCH] =
364
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
366
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
365
    */
367
    */
366
   
368
   
367
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
369
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
368
  }
370
  }
369
 
371
 
370
  // Z acc.
372
  // Z acc.
371
  if (ACC_REVERSED[Z])
373
  if (ACC_REVERSED[Z])
372
    acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
374
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
373
  else
375
  else
374
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
376
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
375
 
377
 
376
  /*
378
  /*
377
    stronglyFilteredAcc[Z] =
379
    stronglyFilteredAcc[Z] =
378
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
380
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
379
  */
381
  */
380
 
-
 
381
  debugOut.analog[6] = acc[PITCH];
-
 
382
  debugOut.analog[7] = acc[ROLL];
-
 
383
}
382
}
384
 
383
 
385
void analog_updateAirPressure(void) {
384
void analog_updateAirPressure(void) {
386
  static uint16_t pressureAutorangingWait = 25;
385
  static uint16_t pressureAutorangingWait = 25;
387
  uint16_t rawAirPressure;
386
  uint16_t rawAirPressure;
388
  int16_t newrange;
387
  int16_t newrange;
389
  // air pressure
388
  // air pressure
390
  if (pressureAutorangingWait) {
389
  if (pressureAutorangingWait) {
391
    //A range switch was done recently. Wait for steadying.
390
    //A range switch was done recently. Wait for steadying.
392
    pressureAutorangingWait--;
391
    pressureAutorangingWait--;
393
    debugOut.analog[27] = (uint16_t) OCR0A;
392
    debugOut.analog[27] = (uint16_t) OCR0A;
394
    debugOut.analog[31] = simpleAirPressure;
393
    debugOut.analog[31] = simpleAirPressure;
395
  } else {
394
  } else {
396
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
395
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
397
    if (rawAirPressure < MIN_RAWPRESSURE) {
396
    if (rawAirPressure < MIN_RAWPRESSURE) {
398
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
397
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
399
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
398
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
400
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
399
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
401
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
400
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
402
        OCR0A = newrange;
401
        OCR0A = newrange;
403
      } else {
402
      } else {
404
        if (OCR0A) {
403
        if (OCR0A) {
405
          OCR0A--;
404
          OCR0A--;
406
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
405
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
407
        }
406
        }
408
      }
407
      }
409
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
408
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
410
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
409
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
411
      // If near the end, make a limited increase
410
      // If near the end, make a limited increase
412
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
411
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
413
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
412
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
414
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
413
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
415
        OCR0A = newrange;
414
        OCR0A = newrange;
416
      } else {
415
      } else {
417
        if (OCR0A < 254) {
416
        if (OCR0A < 254) {
418
          OCR0A++;
417
          OCR0A++;
419
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
418
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
420
        }
419
        }
421
      }
420
      }
422
    }
421
    }
423
   
422
   
424
    // Even if the sample is off-range, use it.
423
    // Even if the sample is off-range, use it.
425
    simpleAirPressure = getSimplePressure(rawAirPressure);
424
    simpleAirPressure = getSimplePressure(rawAirPressure);
426
    debugOut.analog[27] = (uint16_t) OCR0A;
425
    debugOut.analog[27] = (uint16_t) OCR0A;
427
    debugOut.analog[31] = simpleAirPressure;
426
    debugOut.analog[31] = simpleAirPressure;
428
   
427
   
429
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
428
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
430
      // Danger: pressure near lower end of range. If the measurement saturates, the
429
      // Danger: pressure near lower end of range. If the measurement saturates, the
431
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
430
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
432
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
431
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
433
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
432
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
434
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
433
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
435
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
434
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
436
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
435
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
437
      // Danger: pressure near upper end of range. If the measurement saturates, the
436
      // Danger: pressure near upper end of range. If the measurement saturates, the
438
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
437
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
439
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
438
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
440
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
439
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
441
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
440
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
442
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
441
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
443
    } else {
442
    } else {
444
      // normal case.
443
      // normal case.
445
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
444
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
446
      // The 2 cases above (end of range) are ignored for this.
445
      // The 2 cases above (end of range) are ignored for this.
447
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
446
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
448
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
447
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
449
        airPressureSum += simpleAirPressure / 2;
448
        airPressureSum += simpleAirPressure / 2;
450
      else
449
      else
451
        airPressureSum += simpleAirPressure;
450
        airPressureSum += simpleAirPressure;
452
    }
451
    }
453
   
452
   
454
    // 2 samples were added.
453
    // 2 samples were added.
455
    pressureMeasurementCount += 2;
454
    pressureMeasurementCount += 2;
456
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
455
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
457
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
456
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
458
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
457
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
459
      pressureMeasurementCount = airPressureSum = 0;
458
      pressureMeasurementCount = airPressureSum = 0;
460
    }
459
    }
461
  }
460
  }
462
}
461
}
463
 
462
 
464
void analog_updateBatteryVoltage(void) {
463
void analog_updateBatteryVoltage(void) {
465
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
464
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
466
  // This is divided by 3 --> 10.34 counts per volt.
465
  // This is divided by 3 --> 10.34 counts per volt.
467
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
466
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
468
  debugOut.analog[11] = UBat;
467
  debugOut.analog[11] = UBat;
469
}
468
}
470
 
469
 
471
void analog_update(void) {
470
void analog_update(void) {
472
  analog_updateGyros();
471
  analog_updateGyros();
473
  analog_updateAccelerometers();
472
  analog_updateAccelerometers();
474
  analog_updateAirPressure();
473
  analog_updateAirPressure();
475
  analog_updateBatteryVoltage();
474
  analog_updateBatteryVoltage();
476
}
475
}
477
 
476
 
478
void analog_calibrate(void) {
477
void analog_calibrate(void) {
479
#define GYRO_OFFSET_CYCLES 32
478
#define GYRO_OFFSET_CYCLES 32
480
  uint8_t i, axis;
479
  uint8_t i, axis;
481
  int32_t deltaOffsets[3] = { 0, 0, 0 };
480
  int32_t deltaOffsets[3] = { 0, 0, 0 };
482
 
-
 
483
  // Set the filters... to be removed again, once some good settings are found.
-
 
484
  GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
-
 
485
  GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
-
 
486
  GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
-
 
487
  ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
-
 
488
 
-
 
489
  gyro_calibrate();
481
  gyro_calibrate();
490
 
482
 
491
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
483
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
492
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
484
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
493
    delay_ms_Mess(20);
485
    delay_ms_Mess(20);
494
    for (axis = PITCH; axis <= YAW; axis++) {
486
    for (axis = PITCH; axis <= YAW; axis++) {
495
      deltaOffsets[axis] += rawGyroSum[axis];
487
      deltaOffsets[axis] += rawGyroSum[axis];
496
    }
488
    }
497
  }
489
  }
498
 
490
 
499
  for (axis = PITCH; axis <= YAW; axis++) {
491
  for (axis = PITCH; axis <= YAW; axis++) {
500
    gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
492
    gyroOffset.offsets[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
501
    // DebugOut.Analog[20 + axis] = gyroOffset[axis];
493
    debugOut.analog[6+axis] = gyroOffset.offsets[axis];
502
  }
494
  }
503
 
495
 
504
  // Noise is relativ to offset. So, reset noise measurements when changing offsets.
496
  // Noise is relativ to offset. So, reset noise measurements when changing offsets.
505
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
497
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
-
 
498
 
506
 
499
  accOffset_readFromEEProm();
507
  accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
500
  // accOffset[PITCH] = getParamWord(PID_ACC_PITCH);
508
  accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
501
  // accOffset[ROLL] = getParamWord(PID_ACC_ROLL);
509
  accOffset[Z] = GetParamWord(PID_ACC_Z);
502
  // accOffset[Z] = getParamWord(PID_ACC_Z);
510
 
503
 
511
  // Rough estimate. Hmm no nothing happens at calibration anyway.
504
  // Rough estimate. Hmm no nothing happens at calibration anyway.
512
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
505
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
513
  // pressureMeasurementCount = 0;
506
  // pressureMeasurementCount = 0;
514
 
507
 
515
  delay_ms_Mess(100);
508
  delay_ms_Mess(100);
516
}
509
}
517
 
510
 
518
/*
511
/*
519
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
512
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
520
 * Does not (!} update the local variables. This must be done with a
513
 * Does not (!} update the local variables. This must be done with a
521
 * call to analog_calibrate() - this always (?) is done by the caller
514
 * call to analog_calibrate() - this always (?) is done by the caller
522
 * anyway. There would be nothing wrong with updating the variables
515
 * anyway. There would be nothing wrong with updating the variables
523
 * directly from here, though.
516
 * directly from here, though.
524
 */
517
 */
525
void analog_calibrateAcc(void) {
518
void analog_calibrateAcc(void) {
526
#define ACC_OFFSET_CYCLES 10
519
#define ACC_OFFSET_CYCLES 10
527
        uint8_t i, axis;
520
  uint8_t i, axis;
528
        int32_t deltaOffset[3] = { 0, 0, 0 };
521
  int32_t deltaOffset[3] = { 0, 0, 0 };
529
        int16_t filteredDelta;
522
  int16_t filteredDelta;
530
        // int16_t pressureDiff, savedRawAirPressure;
523
  // int16_t pressureDiff, savedRawAirPressure;
531
 
524
 
532
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
525
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
533
                delay_ms_Mess(10);
526
    delay_ms_Mess(10);
534
                for (axis = PITCH; axis <= YAW; axis++) {
527
    for (axis = PITCH; axis <= YAW; axis++) {
535
                        deltaOffset[axis] += acc[axis];
528
      deltaOffset[axis] += acc[axis];
536
                }
529
    }
537
        }
530
  }
538
 
531
 
539
        for (axis = PITCH; axis <= YAW; axis++) {
532
  for (axis = PITCH; axis <= YAW; axis++) {
540
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
533
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
541
                                / ACC_OFFSET_CYCLES;
534
      / ACC_OFFSET_CYCLES;
542
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
535
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
543
        }
536
  }
544
 
537
 
545
        // Save ACC neutral settings to eeprom
538
  // Save ACC neutral settings to eeprom
546
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
539
  // setParamWord(PID_ACC_PITCH, accOffset[PITCH]);
547
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
540
  // setParamWord(PID_ACC_ROLL, accOffset[ROLL]);
548
        SetParamWord(PID_ACC_Z, accOffset[Z]);
541
  // setParamWord(PID_ACC_Z, accOffset[Z]);
-
 
542
  accOffset_writeToEEProm();  
549
 
543
 
550
        // Noise is relative to offset. So, reset noise measurements when
544
  // Noise is relative to offset. So, reset noise measurements when
551
        // changing offsets.
545
  // changing offsets.
552
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
546
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
553
 
547
 
554
        // Setting offset values has an influence in the analog.c ISR
548
  // Setting offset values has an influence in the analog.c ISR
555
        // Therefore run measurement for 100ms to achive stable readings
549
  // Therefore run measurement for 100ms to achive stable readings
556
        delay_ms_Mess(100);
-
 
557
 
-
 
558
        // Set the feedback so that air pressure ends up in the middle of the range.
-
 
559
        // (raw pressure high --> OCR0A also high...)
-
 
560
        /*
-
 
561
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
-
 
562
         delay_ms_Mess(1000);
550
  delay_ms_Mess(100);
563
 
-
 
564
         pressureDiff = 0;
-
 
565
         // DebugOut.Analog[16] = rawAirPressure;
-
 
566
 
-
 
567
         #define PRESSURE_CAL_CYCLE_COUNT 5
-
 
568
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
-
 
569
         savedRawAirPressure = rawAirPressure;
-
 
570
         OCR0A+=2;
-
 
571
         delay_ms_Mess(500);
-
 
572
         // raw pressure will decrease.
-
 
573
         pressureDiff += (savedRawAirPressure - rawAirPressure);
-
 
574
         savedRawAirPressure = rawAirPressure;
-
 
575
         OCR0A-=2;
-
 
576
         delay_ms_Mess(500);
-
 
577
         // raw pressure will increase.
-
 
578
         pressureDiff += (rawAirPressure - savedRawAirPressure);
-
 
579
         }
-
 
580
 
-
 
581
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
-
 
582
         DebugOut.Analog[27] = rangewidth;
-
 
583
         */
-
 
584
}
551
}
585
 
552