Subversion Repositories FlightCtrl

Rev

Rev 1887 | Rev 1955 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1887 Rev 1952
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
#include <avr/io.h>
51
#include <avr/io.h>
52
#include <avr/interrupt.h>
52
#include <avr/interrupt.h>
53
#include <avr/pgmspace.h>
53
#include <avr/pgmspace.h>
54
 
54
 
55
#include "analog.h"
55
#include "analog.h"
56
#include "attitude.h"
56
#include "attitude.h"
57
#include "sensors.h"
57
#include "sensors.h"
58
 
58
 
59
// for Delay functions
59
// for Delay functions
60
#include "timer0.h"
60
#include "timer0.h"
61
 
61
 
62
// For DebugOut
62
// For DebugOut
63
#include "uart0.h"
63
#include "uart0.h"
64
 
64
 
65
// For reading and writing acc. meter offsets.
65
// For reading and writing acc. meter offsets.
66
#include "eeprom.h"
66
#include "eeprom.h"
67
 
67
 
68
// For DebugOut.Digital
68
// For DebugOut.Digital
69
#include "output.h"
69
#include "output.h"
-
 
70
 
-
 
71
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
-
 
72
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
70
 
73
 
71
/*
74
/*
72
 * For each A/D conversion cycle, each analog channel is sampled a number of times
75
 * For each A/D conversion cycle, each analog channel is sampled a number of times
73
 * (see array channelsForStates), and the results for each channel are summed.
76
 * (see array channelsForStates), and the results for each channel are summed.
74
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
77
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
75
 * They are exported in the analog.h file - but please do not use them! The only
78
 * They are exported in the analog.h file - but please do not use them! The only
76
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
79
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
77
 * the offsets with the DAC.
80
 * the offsets with the DAC.
78
 */
81
 */
-
 
82
volatile uint16_t sensorInputs[8];
79
volatile int16_t rawGyroSum[3];
83
volatile int16_t rawGyroSum[3];
80
volatile int16_t acc[3];
84
volatile int16_t acc[3];
81
volatile int16_t filteredAcc[2] = { 0,0 };
85
volatile int16_t filteredAcc[2] = { 0,0 };
82
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
86
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
83
 
87
 
84
/*
88
/*
85
 * These 4 exported variables are zero-offset. The "PID" ones are used
89
 * These 4 exported variables are zero-offset. The "PID" ones are used
86
 * in the attitude control as rotation rates. The "ATT" ones are for
90
 * in the attitude control as rotation rates. The "ATT" ones are for
87
 * integration to angles.
91
 * integration to angles.
88
 */
92
 */
89
volatile int16_t gyro_PID[2];
93
volatile int16_t gyro_PID[2];
90
volatile int16_t gyro_ATT[2];
94
volatile int16_t gyro_ATT[2];
91
volatile int16_t gyroD[2];
95
volatile int16_t gyroD[2];
92
volatile int16_t yawGyro;
96
volatile int16_t yawGyro;
93
 
97
 
94
/*
98
/*
95
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
99
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
96
 * standing still. They are used for adjusting the gyro and acc. meter values
100
 * standing still. They are used for adjusting the gyro and acc. meter values
97
 * to be centered on zero.
101
 * to be centered on zero.
98
 */
102
 */
99
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
103
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
100
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
104
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
101
 
105
 
102
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
106
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
103
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
107
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
104
 
108
 
105
/*
109
/*
106
 * This allows some experimentation with the gyro filters.
110
 * This allows some experimentation with the gyro filters.
107
 * Should be replaced by #define's later on...
111
 * Should be replaced by #define's later on...
108
 */
112
 */
109
volatile uint8_t GYROS_PID_FILTER;
113
volatile uint8_t GYROS_PID_FILTER;
110
volatile uint8_t GYROS_ATT_FILTER;
114
volatile uint8_t GYROS_ATT_FILTER;
111
volatile uint8_t GYROS_D_FILTER;
115
volatile uint8_t GYROS_D_FILTER;
112
volatile uint8_t ACC_FILTER;
116
volatile uint8_t ACC_FILTER;
113
 
117
 
114
/*
118
/*
115
 * Air pressure
119
 * Air pressure
116
 */
120
 */
117
volatile uint8_t rangewidth = 106;
121
volatile uint8_t rangewidth = 106;
118
 
122
 
119
// Direct from sensor, irrespective of range.
123
// Direct from sensor, irrespective of range.
120
// volatile uint16_t rawAirPressure;
124
// volatile uint16_t rawAirPressure;
121
 
125
 
122
// Value of 2 samples, with range.
126
// Value of 2 samples, with range.
123
volatile uint16_t simpleAirPressure;
127
volatile uint16_t simpleAirPressure;
124
 
128
 
125
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
129
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
126
volatile int32_t filteredAirPressure;
130
volatile int32_t filteredAirPressure;
127
 
131
 
128
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
132
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
129
volatile int32_t airPressureSum;
133
volatile int32_t airPressureSum;
130
 
134
 
131
// The number of samples summed into airPressureSum so far.
135
// The number of samples summed into airPressureSum so far.
132
volatile uint8_t pressureMeasurementCount;
136
volatile uint8_t pressureMeasurementCount;
133
 
137
 
134
/*
138
/*
135
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
139
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
136
 * That is divided by 3 below, for a final 10.34 per volt.
140
 * That is divided by 3 below, for a final 10.34 per volt.
137
 * So the initial value of 100 is for 9.7 volts.
141
 * So the initial value of 100 is for 9.7 volts.
138
 */
142
 */
139
volatile int16_t UBat = 100;
143
volatile int16_t UBat = 100;
140
 
144
 
141
/*
145
/*
142
 * Control and status.
146
 * Control and status.
143
 */
147
 */
144
volatile uint16_t ADCycleCount = 0;
148
volatile uint16_t ADCycleCount = 0;
145
volatile uint8_t analogDataReady = 1;
149
volatile uint8_t analogDataReady = 1;
146
 
150
 
147
/*
151
/*
148
 * Experiment: Measuring vibration-induced sensor noise.
152
 * Experiment: Measuring vibration-induced sensor noise.
149
 */
153
 */
150
volatile uint16_t gyroNoisePeak[2];
154
volatile uint16_t gyroNoisePeak[2];
151
volatile uint16_t accNoisePeak[2];
155
volatile uint16_t accNoisePeak[2];
152
 
156
 
153
// ADC channels
157
// ADC channels
154
#define AD_GYRO_YAW       0
158
#define AD_GYRO_YAW       0
155
#define AD_GYRO_ROLL      1
159
#define AD_GYRO_ROLL      1
156
#define AD_GYRO_PITCH     2
160
#define AD_GYRO_PITCH     2
157
#define AD_AIRPRESSURE    3
161
#define AD_AIRPRESSURE    3
158
#define AD_UBAT           4
162
#define AD_UBAT           4
159
#define AD_ACC_Z          5
163
#define AD_ACC_Z          5
160
#define AD_ACC_ROLL       6
164
#define AD_ACC_ROLL       6
161
#define AD_ACC_PITCH      7
165
#define AD_ACC_PITCH      7
162
 
166
 
163
/*
167
/*
164
 * Table of AD converter inputs for each state.
168
 * Table of AD converter inputs for each state.
165
 * The number of samples summed for each channel is equal to
169
 * The number of samples summed for each channel is equal to
166
 * the number of times the channel appears in the array.
170
 * the number of times the channel appears in the array.
167
 * The max. number of samples that can be taken in 2 ms is:
171
 * The max. number of samples that can be taken in 2 ms is:
168
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
172
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
169
 * loop needs a little time between reading AD values and
173
 * loop needs a little time between reading AD values and
170
 * re-enabling ADC, the real limit is (how much?) lower.
174
 * re-enabling ADC, the real limit is (how much?) lower.
171
 * The acc. sensor is sampled even if not used - or installed
175
 * The acc. sensor is sampled even if not used - or installed
172
 * at all. The cost is not significant.
176
 * at all. The cost is not significant.
173
 */
177
 */
174
 
178
 
175
const uint8_t channelsForStates[] PROGMEM = {
179
const uint8_t channelsForStates[] PROGMEM = {
176
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
180
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
177
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
181
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
178
 
182
 
179
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
183
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
180
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
184
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
181
 
185
 
182
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
186
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
183
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
187
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
184
  AD_AIRPRESSURE, // at 14, finish air pressure.
188
  AD_AIRPRESSURE, // at 14, finish air pressure.
185
 
189
 
186
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
190
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
187
  AD_GYRO_ROLL,   // at 16, finish roll gyro
191
  AD_GYRO_ROLL,   // at 16, finish roll gyro
188
  AD_UBAT         // at 17, measure battery.
192
  AD_UBAT         // at 17, measure battery.
189
};
193
};
190
 
194
 
191
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
195
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
192
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
196
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
193
 
197
 
194
void analog_init(void) {
198
void analog_init(void) {
195
        uint8_t sreg = SREG;
199
        uint8_t sreg = SREG;
196
        // disable all interrupts before reconfiguration
200
        // disable all interrupts before reconfiguration
197
        cli();
201
        cli();
198
 
202
 
199
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
203
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
200
        DDRA = 0x00;
204
        DDRA = 0x00;
201
        PORTA = 0x00;
205
        PORTA = 0x00;
202
        // Digital Input Disable Register 0
206
        // Digital Input Disable Register 0
203
        // Disable digital input buffer for analog adc_channel pins
207
        // Disable digital input buffer for analog adc_channel pins
204
        DIDR0 = 0xFF;
208
        DIDR0 = 0xFF;
205
        // external reference, adjust data to the right
209
        // external reference, adjust data to the right
206
        ADMUX &= ~((1 << REFS1) | (1 << REFS0) | (1 << ADLAR));
210
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
207
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
211
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
208
        ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
212
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
209
        //Set ADC Control and Status Register A
213
        //Set ADC Control and Status Register A
210
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
214
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
211
        ADCSRA = (0 << ADEN) | (0 << ADSC) | (0 << ADATE) | (1 << ADPS2) | (1
-
 
212
                        << ADPS1) | (1 << ADPS0) | (0 << ADIE);
215
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
213
        //Set ADC Control and Status Register B
216
        //Set ADC Control and Status Register B
214
        //Trigger Source to Free Running Mode
217
        //Trigger Source to Free Running Mode
215
        ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0));
218
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
-
 
219
 
216
        // Start AD conversion
220
        startAnalogConversionCycle();
217
        analog_start();
-
 
-
 
221
 
218
        // restore global interrupt flags
222
        // restore global interrupt flags
219
        SREG = sreg;
223
        SREG = sreg;
220
}
224
}
221
 
225
 
222
void measureNoise(const int16_t sensor,
226
void measureNoise(const int16_t sensor,
223
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
227
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
224
        if (sensor > (int16_t) (*noiseMeasurement)) {
228
        if (sensor > (int16_t) (*noiseMeasurement)) {
225
                *noiseMeasurement = sensor;
229
                *noiseMeasurement = sensor;
226
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
230
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
227
                *noiseMeasurement = -sensor;
231
                *noiseMeasurement = -sensor;
228
        } else if (*noiseMeasurement > damping) {
232
        } else if (*noiseMeasurement > damping) {
229
                *noiseMeasurement -= damping;
233
                *noiseMeasurement -= damping;
230
        } else {
234
        } else {
231
                *noiseMeasurement = 0;
235
                *noiseMeasurement = 0;
232
        }
236
        }
233
}
237
}
234
 
238
 
235
/*
239
/*
236
 * Min.: 0
240
 * Min.: 0
237
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
241
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
238
 */
242
 */
239
uint16_t getSimplePressure(int advalue) {
243
uint16_t getSimplePressure(int advalue) {
240
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
244
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
241
}
245
}
-
 
246
 
-
 
247
void startAnalogConversionCycle(void) {
-
 
248
  // Stop the sampling. Cycle is over.
-
 
249
  for (uint8_t i = 0; i < 8; i++) {
-
 
250
    sensorInputs[i] = 0;
-
 
251
  }
-
 
252
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
-
 
253
  startADC();
-
 
254
}
242
 
255
 
243
/*****************************************************
256
/*****************************************************
244
 * Interrupt Service Routine for ADC
257
 * Interrupt Service Routine for ADC
245
 * Runs at 312.5 kHz or 3.2 µs. When all states are
258
 * Runs at 312.5 kHz or 3.2 µs. When all states are
246
 * processed the interrupt is disabled and further
-
 
247
 * AD conversions are stopped.
259
 * processed further conversions are stopped.
248
 *****************************************************/
260
 *****************************************************/
249
ISR(ADC_vect) {
261
ISR(ADC_vect) {
250
        static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
262
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
251
        static uint16_t sensorInputs[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
-
 
252
        static uint16_t pressureAutorangingWait = 25;
-
 
253
        uint16_t rawAirPressure;
-
 
254
        uint8_t i, axis;
-
 
255
        int16_t newrange;
-
 
256
 
-
 
257
        // for various filters...
-
 
258
        int16_t tempOffsetGyro, tempGyro;
-
 
259
 
-
 
260
        sensorInputs[ad_channel] += ADC;
263
  sensorInputs[ad_channel] += ADC;
261
 
-
 
262
        /*
-
 
263
         * Actually we don't need this "switch". We could do all the sampling into the
-
 
264
         * sensorInputs array first, and all the processing after the last sample.
-
 
265
         */
-
 
266
        switch (state++) {
-
 
267
 
-
 
268
        case 8: // Z acc
-
 
269
                if (ACC_REVERSED[Z])
-
 
270
                        acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
-
 
271
                else
-
 
272
                        acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
-
 
273
 
-
 
274
                /*
-
 
275
        stronglyFilteredAcc[Z] =
-
 
276
            (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
-
 
277
        */
-
 
278
 
-
 
279
                break;
-
 
280
 
-
 
281
        case 11: // yaw gyro
-
 
282
                rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
-
 
283
                if (GYRO_REVERSED[YAW])
-
 
284
                        yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
-
 
285
                else
-
 
286
                        yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
-
 
287
                break;
-
 
288
 
-
 
289
        case 12: // pitch axis acc.
-
 
290
                if (ACC_REVERSED[PITCH])
-
 
291
                        acc[PITCH] = accOffset[PITCH] - sensorInputs[AD_ACC_PITCH];
-
 
292
                else
-
 
293
                        acc[PITCH] = sensorInputs[AD_ACC_PITCH] - accOffset[PITCH];
-
 
294
 
-
 
295
                filteredAcc[PITCH] =
-
 
296
                    (filteredAcc[PITCH] * (ACC_FILTER - 1) + acc[PITCH]) / ACC_FILTER;
-
 
297
 
-
 
298
                /*
-
 
299
                stronglyFilteredAcc[PITCH] =
-
 
300
                    (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
-
 
301
                */
-
 
302
 
-
 
303
                measureNoise(acc[PITCH], &accNoisePeak[PITCH], 1);
-
 
304
                break;
-
 
305
 
-
 
306
        case 13: // roll axis acc.
264
  // set up for next state.
307
                if (ACC_REVERSED[ROLL])
-
 
308
                        acc[ROLL] = accOffset[ROLL] - sensorInputs[AD_ACC_ROLL];
-
 
309
                else
-
 
310
                        acc[ROLL] = sensorInputs[AD_ACC_ROLL] - accOffset[ROLL];
-
 
311
                filteredAcc[ROLL] =
-
 
312
                    (filteredAcc[ROLL] * (ACC_FILTER - 1) + acc[ROLL]) / ACC_FILTER;
-
 
313
 
-
 
314
                /*
-
 
315
        stronglyFilteredAcc[ROLL] =
-
 
316
            (stronglyFilteredAcc[ROLL] * 99 + acc[ROLL] * 10) / 100;
-
 
317
        */
265
  state++;
318
 
-
 
319
                measureNoise(acc[ROLL], &accNoisePeak[ROLL], 1);
-
 
320
                break;
-
 
321
 
-
 
322
        case 14: // air pressure
-
 
323
                if (pressureAutorangingWait) {
-
 
324
                        //A range switch was done recently. Wait for steadying.
-
 
325
                        pressureAutorangingWait--;
-
 
326
                        DebugOut.Analog[27] = (uint16_t) OCR0A;
-
 
327
                        DebugOut.Analog[31] = simpleAirPressure;
-
 
328
                        break;
-
 
329
                }
-
 
330
 
-
 
331
                rawAirPressure = sensorInputs[AD_AIRPRESSURE];
-
 
332
                if (rawAirPressure < MIN_RAWPRESSURE) {
-
 
333
                        // value is too low, so decrease voltage on the op amp minus input, making the value higher.
-
 
334
                        newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
-
 
335
                        if (newrange > MIN_RANGES_EXTRAPOLATION) {
-
 
336
                                pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
-
 
337
                                OCR0A = newrange;
-
 
338
                        } else {
-
 
339
                                if (OCR0A) {
-
 
340
                                        OCR0A--;
-
 
341
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
342
                                }
-
 
343
                        }
-
 
344
                } else if (rawAirPressure > MAX_RAWPRESSURE) {
-
 
345
                        // value is too high, so increase voltage on the op amp minus input, making the value lower.
-
 
346
                        // If near the end, make a limited increase
-
 
347
                        newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
-
 
348
                        if (newrange < MAX_RANGES_EXTRAPOLATION) {
-
 
349
                                pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
-
 
350
                                OCR0A = newrange;
-
 
351
                        } else {
-
 
352
                                if (OCR0A < 254) {
266
  if (state < 18) {
353
                                        OCR0A++;
-
 
354
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
355
                                }
-
 
356
                        }
-
 
357
                }
-
 
358
 
-
 
359
                // Even if the sample is off-range, use it.
-
 
360
                simpleAirPressure = getSimplePressure(rawAirPressure);
267
    ad_channel = pgm_read_byte(&channelsForStates[state]);
361
                DebugOut.Analog[27] = (uint16_t) OCR0A;
268
    // set adc muxer to next ad_channel
362
                DebugOut.Analog[31] = simpleAirPressure;
269
    ADMUX = (ADMUX & 0xE0) | ad_channel;
363
 
-
 
364
                if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
-
 
365
                        // Danger: pressure near lower end of range. If the measurement saturates, the
-
 
366
                        // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
-
 
367
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
-
 
368
                        airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
-
 
369
                                        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
-
 
370
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
371
                } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
-
 
372
                        // Danger: pressure near upper end of range. If the measurement saturates, the
-
 
373
                        // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
-
 
374
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
-
 
375
                        airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
-
 
376
                                        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
-
 
377
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
378
                } else {
-
 
379
                        // normal case.
-
 
380
                        // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
-
 
381
                        // The 2 cases above (end of range) are ignored for this.
270
    // after full cycle stop further interrupts
382
                        DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT;
-
 
383
                        if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
-
 
384
                                airPressureSum += simpleAirPressure / 2;
-
 
385
                        else
-
 
386
                                airPressureSum += simpleAirPressure;
-
 
387
                }
-
 
388
 
-
 
389
                // 2 samples were added.
-
 
390
                pressureMeasurementCount += 2;
-
 
391
                if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
-
 
392
                        filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
-
 
393
                                        + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
-
 
394
                        pressureMeasurementCount = airPressureSum = 0;
-
 
395
                }
-
 
396
 
-
 
397
                break;
-
 
398
 
-
 
399
        case 15:
-
 
400
        case 16: // pitch or roll gyro.
-
 
401
                axis = state - 16;
271
    startADC();
402
                tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
-
 
403
                // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
-
 
404
                /*
-
 
405
                 * Process the gyro data for the PID controller.
-
 
406
                 */
-
 
407
                // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
-
 
408
                //    gyro with a wider range, and helps counter saturation at full control.
-
 
409
 
-
 
410
                if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
-
 
411
                        if (tempGyro < SENSOR_MIN_PITCHROLL) {
-
 
412
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
-
 
413
                                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
-
 
414
                        } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
-
 
415
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
-
 
416
                                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
-
 
417
                                                + SENSOR_MAX_PITCHROLL;
-
 
418
                        } else {
-
 
419
                                DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT;
-
 
420
                        }
-
 
421
                }
-
 
422
 
-
 
423
                // 2) Apply sign and offset, scale before filtering.
-
 
424
                if (GYRO_REVERSED[axis]) {
-
 
425
                        tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
-
 
426
                } else {
272
  } else {
427
                        tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
428
                }
-
 
429
 
-
 
430
                // 3) Scale and filter.
-
 
431
                tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro)
-
 
432
                                / GYROS_PID_FILTER;
-
 
433
 
-
 
434
                // 4) Measure noise.
-
 
435
                measureNoise(tempOffsetGyro, &gyroNoisePeak[axis],
-
 
436
                                GYRO_NOISE_MEASUREMENT_DAMPING);
-
 
437
 
-
 
438
                // 5) Differential measurement.
-
 
439
                gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro
-
 
440
                                - gyro_PID[axis])) / GYROS_D_FILTER;
-
 
441
 
-
 
442
                // 6) Done.
-
 
443
                gyro_PID[axis] = tempOffsetGyro;
-
 
444
 
-
 
445
                /*
-
 
446
                 * Now process the data for attitude angles.
-
 
447
                 */
-
 
448
                tempGyro = rawGyroSum[axis];
-
 
449
 
-
 
450
                // 1) Apply sign and offset, scale before filtering.
-
 
451
                if (GYRO_REVERSED[axis]) {
-
 
452
                        tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
-
 
453
                } else {
273
    state = 0;
454
                        tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
455
                }
-
 
456
 
-
 
457
                // 2) Filter.
-
 
458
                gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro)
-
 
459
                                / GYROS_ATT_FILTER;
-
 
460
                break;
-
 
461
 
-
 
462
        case 17:
-
 
463
                // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
-
 
464
                // This is divided by 3 --> 10.34 counts per volt.
-
 
465
                UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
-
 
466
                DebugOut.Analog[11] = UBat;
-
 
467
                analogDataReady = 1; // mark
-
 
468
                ADCycleCount++;
274
    ADCycleCount++;
469
                // Stop the sampling. Cycle is over.
-
 
470
                state = 0;
275
    analogDataReady = 1;
471
                for (i = 0; i < 8; i++) {
276
    // do not restart ADC converter. 
472
                        sensorInputs[i] = 0;
-
 
473
                }
277
  }
474
                break;
-
 
475
        default: {
-
 
476
        } // do nothing.
-
 
477
        }
278
}
-
 
279
 
478
 
280
void analog_updateGyros(void) {
-
 
281
  // for various filters...
-
 
282
  int16_t tempOffsetGyro, tempGyro;
-
 
283
 
479
        // set up for next state.
284
  for (uint8_t axis=0; axis<2; axis++) {
480
        ad_channel = pgm_read_byte(&channelsForStates[state]);
285
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
-
 
286
    // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
-
 
287
    /*
-
 
288
     * Process the gyro data for the PID controller.
-
 
289
     */
-
 
290
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
-
 
291
    //    gyro with a wider range, and helps counter saturation at full control.
-
 
292
   
-
 
293
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
-
 
294
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
-
 
295
        DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
-
 
296
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
-
 
297
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
-
 
298
        DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
-
 
299
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
-
 
300
          + SENSOR_MAX_PITCHROLL;
-
 
301
      } else {
-
 
302
        DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT;
-
 
303
      }
-
 
304
    }
-
 
305
   
-
 
306
    // 2) Apply sign and offset, scale before filtering.
-
 
307
    if (GYRO_REVERSED[axis]) {
-
 
308
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
-
 
309
    } else {
-
 
310
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
311
    }
-
 
312
   
-
 
313
    // 3) Scale and filter.
-
 
314
    tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro) / GYROS_PID_FILTER;
-
 
315
   
-
 
316
    // 4) Measure noise.
481
        // ad_channel = channelsForStates[state];
317
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
482
 
318
   
-
 
319
    // 5) Differential measurement.
-
 
320
    gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro - gyro_PID[axis])) / GYROS_D_FILTER;
-
 
321
   
483
        // set adc muxer to next ad_channel
322
    // 6) Done.
-
 
323
    gyro_PID[axis] = tempOffsetGyro;
-
 
324
   
484
        ADMUX = (ADMUX & 0xE0) | ad_channel;
325
    /*
-
 
326
     * Now process the data for attitude angles.
-
 
327
     */
-
 
328
    tempGyro = rawGyroSum[axis];
-
 
329
   
-
 
330
    // 1) Apply sign and offset, scale before filtering.
-
 
331
    if (GYRO_REVERSED[axis]) {
485
        // after full cycle stop further interrupts
332
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
-
 
333
    } else {
-
 
334
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
335
    }
486
        if (state)
336
   
-
 
337
    // 2) Filter.
-
 
338
    gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro) / GYROS_ATT_FILTER;
-
 
339
  }
-
 
340
 
-
 
341
  // Yaw gyro.
-
 
342
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
-
 
343
  if (GYRO_REVERSED[YAW])
-
 
344
    yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
-
 
345
  else
487
                analog_start();
346
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
488
}
347
}
-
 
348
 
-
 
349
void analog_updateAccelerometers(void) {
489
 
350
  // Pitch and roll axis accelerations.
-
 
351
  for (uint8_t axis=0; axis<2; axis++) {
-
 
352
    if (ACC_REVERSED[axis])
-
 
353
      acc[axis] = accOffset[axis] - sensorInputs[AD_ACC_PITCH-axis];
-
 
354
    else
-
 
355
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset[axis];
-
 
356
   
-
 
357
    filteredAcc[axis] = (filteredAcc[axis] * (ACC_FILTER - 1) + acc[axis]) / ACC_FILTER;
-
 
358
   
-
 
359
    /*
-
 
360
      stronglyFilteredAcc[PITCH] =
-
 
361
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
-
 
362
    */
-
 
363
   
-
 
364
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
490
void analog_calibrate(void) {
365
  }
-
 
366
 
491
#define GYRO_OFFSET_CYCLES 32
367
  // Z acc.
-
 
368
  if (ACC_REVERSED[Z])
-
 
369
    acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
-
 
370
  else
-
 
371
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
-
 
372
 
-
 
373
  /*
-
 
374
    stronglyFilteredAcc[Z] =
-
 
375
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
-
 
376
  */
492
        uint8_t i, axis;
377
}
-
 
378
 
-
 
379
void analog_updateAirPressure(void) {
-
 
380
  static uint16_t pressureAutorangingWait = 25;
493
        int32_t deltaOffsets[3] = { 0, 0, 0 };
381
  uint16_t rawAirPressure;
494
 
382
  int16_t newrange;
-
 
383
  // air pressure
495
        // Set the filters... to be removed again, once some good settings are found.
384
  if (pressureAutorangingWait) {
496
        GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
385
    //A range switch was done recently. Wait for steadying.
497
        GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
386
    pressureAutorangingWait--;
-
 
387
    DebugOut.Analog[27] = (uint16_t) OCR0A;
498
        GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
388
    DebugOut.Analog[31] = simpleAirPressure;
499
        ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
-
 
500
 
389
  } else {
-
 
390
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
501
        gyro_calibrate();
391
    if (rawAirPressure < MIN_RAWPRESSURE) {
-
 
392
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
502
 
393
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
503
        // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
394
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
504
        for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
395
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
505
                delay_ms_Mess(20);
396
        OCR0A = newrange;
-
 
397
      } else {
506
                for (axis = PITCH; axis <= YAW; axis++) {
398
        if (OCR0A) {
507
                        deltaOffsets[axis] += rawGyroSum[axis];
399
          OCR0A--;
508
                }
400
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
401
        }
-
 
402
      }
-
 
403
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
-
 
404
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
509
        }
405
      // If near the end, make a limited increase
-
 
406
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
-
 
407
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
-
 
408
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
-
 
409
        OCR0A = newrange;
510
 
410
      } else {
511
        for (axis = PITCH; axis <= YAW; axis++) {
411
        if (OCR0A < 254) {
-
 
412
          OCR0A++;
-
 
413
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
414
        }
-
 
415
      }
-
 
416
    }
-
 
417
   
-
 
418
    // Even if the sample is off-range, use it.
-
 
419
    simpleAirPressure = getSimplePressure(rawAirPressure);
-
 
420
    DebugOut.Analog[27] = (uint16_t) OCR0A;
-
 
421
    DebugOut.Analog[31] = simpleAirPressure;
-
 
422
   
-
 
423
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
-
 
424
      // Danger: pressure near lower end of range. If the measurement saturates, the
-
 
425
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
-
 
426
      DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
-
 
427
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
-
 
428
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
-
 
429
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
430
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
-
 
431
      // Danger: pressure near upper end of range. If the measurement saturates, the
-
 
432
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
-
 
433
      DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
-
 
434
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
-
 
435
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
-
 
436
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
437
    } else {
-
 
438
      // normal case.
-
 
439
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
-
 
440
      // The 2 cases above (end of range) are ignored for this.
-
 
441
      DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT;
-
 
442
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
-
 
443
        airPressureSum += simpleAirPressure / 2;
-
 
444
      else
-
 
445
        airPressureSum += simpleAirPressure;
-
 
446
    }
-
 
447
   
-
 
448
    // 2 samples were added.
-
 
449
    pressureMeasurementCount += 2;
-
 
450
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
-
 
451
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
-
 
452
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
-
 
453
      pressureMeasurementCount = airPressureSum = 0;
-
 
454
    }
-
 
455
  }
512
                gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
456
}
513
                // DebugOut.Analog[20 + axis] = gyroOffset[axis];
457
 
-
 
458
void analog_updateBatteryVoltage(void) {
-
 
459
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
-
 
460
  // This is divided by 3 --> 10.34 counts per volt.
-
 
461
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
514
        }
462
  DebugOut.Analog[11] = UBat;
515
 
463
}
516
        // Noise is relativ to offset. So, reset noise measurements when changing offsets.
464
 
517
        gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
465
void analog_update(void) {
518
 
-
 
519
        accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
-
 
520
        accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
-
 
-
 
466
  analog_updateGyros();
-
 
467
  analog_updateAccelerometers();
-
 
468
  analog_updateAirPressure();
-
 
469
  analog_updateBatteryVoltage();
-
 
470
}
-
 
471
 
-
 
472
void analog_calibrate(void) {
-
 
473
#define GYRO_OFFSET_CYCLES 32
-
 
474
  uint8_t i, axis;
-
 
475
  int32_t deltaOffsets[3] = { 0, 0, 0 };
-
 
476
 
-
 
477
  // Set the filters... to be removed again, once some good settings are found.
-
 
478
  GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
-
 
479
  GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
-
 
480
  GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
-
 
481
  ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
-
 
482
 
-
 
483
  gyro_calibrate();
-
 
484
 
-
 
485
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
-
 
486
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
-
 
487
    delay_ms_Mess(20);
-
 
488
    for (axis = PITCH; axis <= YAW; axis++) {
-
 
489
      deltaOffsets[axis] += rawGyroSum[axis];
-
 
490
    }
-
 
491
  }
-
 
492
 
-
 
493
  for (axis = PITCH; axis <= YAW; axis++) {
-
 
494
    gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
-
 
495
    // DebugOut.Analog[20 + axis] = gyroOffset[axis];
-
 
496
  }
-
 
497
 
-
 
498
  // Noise is relativ to offset. So, reset noise measurements when changing offsets.
-
 
499
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
-
 
500
 
-
 
501
  accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
-
 
502
  accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
521
        accOffset[Z] = GetParamWord(PID_ACC_Z);
503
  accOffset[Z] = GetParamWord(PID_ACC_Z);
522
 
504
 
523
        // Rough estimate. Hmm no nothing happens at calibration anyway.
505
  // Rough estimate. Hmm no nothing happens at calibration anyway.
524
        // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
506
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
525
        // pressureMeasurementCount = 0;
507
  // pressureMeasurementCount = 0;
526
 
508
 
527
        delay_ms_Mess(100);
509
  delay_ms_Mess(100);
528
}
510
}
529
 
511
 
530
/*
512
/*
531
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
513
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
532
 * Does not (!} update the local variables. This must be done with a
514
 * Does not (!} update the local variables. This must be done with a
533
 * call to analog_calibrate() - this always (?) is done by the caller
515
 * call to analog_calibrate() - this always (?) is done by the caller
534
 * anyway. There would be nothing wrong with updating the variables
516
 * anyway. There would be nothing wrong with updating the variables
535
 * directly from here, though.
517
 * directly from here, though.
536
 */
518
 */
537
void analog_calibrateAcc(void) {
519
void analog_calibrateAcc(void) {
538
#define ACC_OFFSET_CYCLES 10
520
#define ACC_OFFSET_CYCLES 10
539
        uint8_t i, axis;
521
        uint8_t i, axis;
540
        int32_t deltaOffset[3] = { 0, 0, 0 };
522
        int32_t deltaOffset[3] = { 0, 0, 0 };
541
        int16_t filteredDelta;
523
        int16_t filteredDelta;
542
        // int16_t pressureDiff, savedRawAirPressure;
524
        // int16_t pressureDiff, savedRawAirPressure;
543
 
525
 
544
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
526
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
545
                delay_ms_Mess(10);
527
                delay_ms_Mess(10);
546
                for (axis = PITCH; axis <= YAW; axis++) {
528
                for (axis = PITCH; axis <= YAW; axis++) {
547
                        deltaOffset[axis] += acc[axis];
529
                        deltaOffset[axis] += acc[axis];
548
                }
530
                }
549
        }
531
        }
550
 
532
 
551
        for (axis = PITCH; axis <= YAW; axis++) {
533
        for (axis = PITCH; axis <= YAW; axis++) {
552
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
534
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
553
                                / ACC_OFFSET_CYCLES;
535
                                / ACC_OFFSET_CYCLES;
554
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
536
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
555
        }
537
        }
556
 
538
 
557
        // Save ACC neutral settings to eeprom
539
        // Save ACC neutral settings to eeprom
558
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
540
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
559
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
541
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
560
        SetParamWord(PID_ACC_Z, accOffset[Z]);
542
        SetParamWord(PID_ACC_Z, accOffset[Z]);
561
 
543
 
562
        // Noise is relative to offset. So, reset noise measurements when
544
        // Noise is relative to offset. So, reset noise measurements when
563
        // changing offsets.
545
        // changing offsets.
564
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
546
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
565
 
547
 
566
        // Setting offset values has an influence in the analog.c ISR
548
        // Setting offset values has an influence in the analog.c ISR
567
        // Therefore run measurement for 100ms to achive stable readings
549
        // Therefore run measurement for 100ms to achive stable readings
568
        delay_ms_Mess(100);
550
        delay_ms_Mess(100);
569
 
551
 
570
        // Set the feedback so that air pressure ends up in the middle of the range.
552
        // Set the feedback so that air pressure ends up in the middle of the range.
571
        // (raw pressure high --> OCR0A also high...)
553
        // (raw pressure high --> OCR0A also high...)
572
        /*
554
        /*
573
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
555
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
574
         delay_ms_Mess(1000);
556
         delay_ms_Mess(1000);
575
 
557
 
576
         pressureDiff = 0;
558
         pressureDiff = 0;
577
         // DebugOut.Analog[16] = rawAirPressure;
559
         // DebugOut.Analog[16] = rawAirPressure;
578
 
560
 
579
         #define PRESSURE_CAL_CYCLE_COUNT 5
561
         #define PRESSURE_CAL_CYCLE_COUNT 5
580
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
562
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
581
         savedRawAirPressure = rawAirPressure;
563
         savedRawAirPressure = rawAirPressure;
582
         OCR0A+=2;
564
         OCR0A+=2;
583
         delay_ms_Mess(500);
565
         delay_ms_Mess(500);
584
         // raw pressure will decrease.
566
         // raw pressure will decrease.
585
         pressureDiff += (savedRawAirPressure - rawAirPressure);
567
         pressureDiff += (savedRawAirPressure - rawAirPressure);
586
         savedRawAirPressure = rawAirPressure;
568
         savedRawAirPressure = rawAirPressure;
587
         OCR0A-=2;
569
         OCR0A-=2;
588
         delay_ms_Mess(500);
570
         delay_ms_Mess(500);
589
         // raw pressure will increase.
571
         // raw pressure will increase.
590
         pressureDiff += (rawAirPressure - savedRawAirPressure);
572
         pressureDiff += (rawAirPressure - savedRawAirPressure);
591
         }
573
         }
592
 
574
 
593
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
575
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
594
         DebugOut.Analog[27] = rangewidth;
576
         DebugOut.Analog[27] = rangewidth;
595
         */
577
         */
596
}
578
}
597
 
579