Subversion Repositories FlightCtrl

Rev

Rev 2119 | Rev 2135 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2119 Rev 2125
1
#include <avr/io.h>
1
#include <avr/io.h>
2
#include <avr/interrupt.h>
2
#include <avr/interrupt.h>
3
#include "eeprom.h"
3
#include "eeprom.h"
4
#include "output.h"
4
#include "output.h"
5
#include "flight.h"
5
#include "flight.h"
6
#include "attitude.h"
6
#include "attitude.h"
7
#include "timer2.h"
7
#include "timer2.h"
8
 
8
 
9
// #define COARSERESOLUTION 1
9
// #define COARSERESOLUTION 1
10
 
10
 
11
#ifdef COARSERESOLUTION
11
#ifdef COARSERESOLUTION
12
#define NEUTRAL_PULSELENGTH 938
12
#define NEUTRAL_PULSELENGTH 938
13
#define STABILIZATION_LOG_DIVIDER 6
13
#define STABILIZATION_LOG_DIVIDER 6
14
#define SERVOLIMIT 500
14
#define SERVOLIMIT 500
15
#define SCALE_FACTOR 4
15
#define SCALE_FACTOR 4
16
#define CS2 ((1<<CS21)|(1<<CS20))
16
#define CS2 ((1<<CS21)|(1<<CS20))
17
 
17
 
18
#else
18
#else
19
#define NEUTRAL_PULSELENGTH 3750
19
#define NEUTRAL_PULSELENGTH 3750
20
#define STABILIZATION_LOG_DIVIDER 4
20
#define STABILIZATION_LOG_DIVIDER 4
21
#define SERVOLIMIT 2000
21
#define SERVOLIMIT 2000
22
#define SCALE_FACTOR 16
22
#define SCALE_FACTOR 16
23
#define CS2 (1<<CS21)
23
#define CS2 (1<<CS21)
24
#endif
24
#endif
25
 
25
 
26
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
26
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
27
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
27
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
28
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
28
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
29
 
29
 
30
volatile uint8_t recalculateServoTimes = 0;
30
volatile uint8_t recalculateServoTimes = 0;
31
volatile uint16_t servoValues[MAX_SERVOS];
31
volatile uint16_t servoValues[MAX_SERVOS];
32
volatile uint16_t previousManualValues[2];
32
volatile uint16_t previousManualValues[2];
33
 
33
 
34
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
34
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
35
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
35
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
36
 
36
 
37
//#define HEF4017R_ON ;
37
//#define HEF4017R_ON ;
38
//#define HEF4017R_OFF ;
38
//#define HEF4017R_OFF ;
39
 
39
 
40
/*****************************************************
40
/*****************************************************
41
 *              Initialize Timer 2
41
 *              Initialize Timer 2
42
 *****************************************************/
42
 *****************************************************/
43
void timer2_init(void) {
43
void timer2_init(void) {
44
    uint8_t sreg = SREG;
44
    uint8_t sreg = SREG;
45
 
45
 
46
    // disable all interrupts before reconfiguration
46
    // disable all interrupts before reconfiguration
47
    cli();
47
    cli();
48
 
48
 
49
    // set PD7 as output of the PWM for pitch servo
49
    // set PD7 as output of the PWM for pitch servo
50
    DDRD |= (1 << DDD7);
50
    DDRD |= (1 << DDD7);
51
    PORTD &= ~(1 << PORTD7); // set PD7 to low
51
    PORTD &= ~(1 << PORTD7); // set PD7 to low
52
 
52
 
53
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
53
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
54
    HEF4017R_ON; // reset
54
    HEF4017R_ON; // reset
55
 
55
 
56
    // Timer/Counter 2 Control Register A
56
    // Timer/Counter 2 Control Register A
57
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
57
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
58
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
58
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
59
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
59
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
60
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
60
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
61
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
61
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
62
 
62
 
63
    // Timer/Counter 2 Control Register B
63
    // Timer/Counter 2 Control Register B
64
 
64
 
65
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
65
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
66
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
66
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
67
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
67
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
68
 
68
 
69
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
69
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
70
    TCCR2B |= CS2;
70
    TCCR2B |= CS2;
71
 
71
 
72
    // Initialize the Timer/Counter 2 Register
72
    // Initialize the Timer/Counter 2 Register
73
    TCNT2 = 0;
73
    TCNT2 = 0;
74
 
74
 
75
    // Initialize the Output Compare Register A used for signal generation on port PD7.
75
    // Initialize the Output Compare Register A used for signal generation on port PD7.
76
    OCR2A = 255;
76
    OCR2A = 255;
77
 
77
 
78
    // Timer/Counter 2 Interrupt Mask Register
78
    // Timer/Counter 2 Interrupt Mask Register
79
    // Enable timer output compare match A Interrupt only
79
    // Enable timer output compare match A Interrupt only
80
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
80
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
81
    TIMSK2 |= (1 << OCIE2A);
81
    TIMSK2 |= (1 << OCIE2A);
82
 
82
 
83
    for (uint8_t axis=0; axis<2; axis++)
83
    for (uint8_t axis=0; axis<2; axis++)
84
      previousManualValues[axis] = dynamicParams.gimbalServoManualControl[axis] * SCALE_FACTOR;
84
      previousManualValues[axis] = dynamicParams.gimbalServoManualControl[axis] * SCALE_FACTOR;
85
 
85
 
86
    SREG = sreg;
86
    SREG = sreg;
87
}
87
}
88
 
88
 
89
/*****************************************************
89
/*****************************************************
90
 * Control (camera gimbal etc.) servos
90
 * Control (camera gimbal etc.) servos
91
 *****************************************************/
91
 *****************************************************/
92
int16_t calculateStabilizedServoAxis(uint8_t axis) {
92
int16_t calculateStabilizedServoAxis(uint8_t axis) {
93
  int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about
93
  int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about
94
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
94
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
95
  // That is a divisor of about 1<<14. Same conclusion as H&I.
95
  // That is a divisor of about 1<<14. Same conclusion as H&I.
96
  value *= staticParams.gimbalServoConfigurations[axis].stabilizationFactor;
96
  value *= staticParams.gimbalServoConfigurations[axis].stabilizationFactor;
97
  value = value >> 8;
97
  value = value >> 8;
98
  if (staticParams.gimbalServoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
98
  if (staticParams.gimbalServoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
99
    return -value;
99
    return -value;
100
  return value;
100
  return value;
101
}
101
}
102
 
102
 
103
// With constant-speed limitation.
103
// With constant-speed limitation.
104
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
104
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
105
  int16_t diff = manualValue - previousManualValues[axis];
105
  int16_t diff = manualValue - previousManualValues[axis];
106
  uint8_t maxSpeed = staticParams.gimbalServoMaxManualSpeed;
106
  uint8_t maxSpeed = staticParams.gimbalServoMaxManualSpeed;
107
  if (diff > maxSpeed) diff = maxSpeed;
107
  if (diff > maxSpeed) diff = maxSpeed;
108
  else if (diff < -maxSpeed) diff = -maxSpeed;
108
  else if (diff < -maxSpeed) diff = -maxSpeed;
109
  manualValue = previousManualValues[axis] + diff;
109
  manualValue = previousManualValues[axis] + diff;
110
  previousManualValues[axis] = manualValue;
110
  previousManualValues[axis] = manualValue;
111
  return manualValue;
111
  return manualValue;
112
}
112
}
113
 
113
 
114
// add stabilization and manual, apply soft position limits.
114
// add stabilization and manual, apply soft position limits.
115
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
115
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
116
int16_t featuredServoValue(uint8_t axis) {
116
int16_t featuredServoValue(uint8_t axis) {
117
  int16_t value = calculateManualServoAxis(axis, dynamicParams.gimbalServoManualControl[axis] * SCALE_FACTOR);
117
  int16_t value = calculateManualServoAxis(axis, dynamicParams.gimbalServoManualControl[axis] * SCALE_FACTOR);
118
  value += calculateStabilizedServoAxis(axis);
118
  value += calculateStabilizedServoAxis(axis);
119
  int16_t limit = staticParams.gimbalServoConfigurations[axis].minValue * SCALE_FACTOR;
119
  int16_t limit = staticParams.gimbalServoConfigurations[axis].minValue * SCALE_FACTOR;
120
  if (value < limit) value = limit;
120
  if (value < limit) value = limit;
121
  limit = staticParams.gimbalServoConfigurations[axis].maxValue * SCALE_FACTOR;
121
  limit = staticParams.gimbalServoConfigurations[axis].maxValue * SCALE_FACTOR;
122
  if (value > limit) value = limit;
122
  if (value > limit) value = limit;
123
  value -= (128 * SCALE_FACTOR);
123
  value -= (128 * SCALE_FACTOR);
124
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
124
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
125
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
125
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
126
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
126
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
127
  return value + NEUTRAL_PULSELENGTH;
127
  return value + NEUTRAL_PULSELENGTH;
128
}
128
}
129
 
129
 
130
void calculateControlServoValues(void) {
130
void calculateControlServoValues(void) {
131
  int16_t value;
131
  int16_t value;
132
  //int16_t minLimit = staticParams.controlServoMinValue * SCALE_FACTOR;
132
  //int16_t minLimit = staticParams.controlServoMinValue * SCALE_FACTOR;
133
  //int16_t maxLimit = staticParams.controlServoMaxValue * SCALE_FACTOR;
133
  //int16_t maxLimit = staticParams.controlServoMaxValue * SCALE_FACTOR;
134
  for (uint8_t axis=0; axis<4; axis++) {
134
  for (uint8_t axis=0; axis<4; axis++) {
135
        value = controlServos[axis];
135
        value = controlServos[axis];
136
        if (value < -SERVOLIMIT) value = -SERVOLIMIT;
136
        if (value < -SERVOLIMIT) value = -SERVOLIMIT;
137
    else if (value > SERVOLIMIT) value = SERVOLIMIT;
137
    else if (value > SERVOLIMIT) value = SERVOLIMIT;
138
        servoValues[axis] = value + NEUTRAL_PULSELENGTH;
138
        servoValues[axis] = value + NEUTRAL_PULSELENGTH;
139
  }
139
  }
140
  debugOut.analog[24] = servoValues[0];
-
 
141
  debugOut.analog[25] = servoValues[1];
-
 
142
  debugOut.analog[26] = servoValues[2];
-
 
143
  debugOut.analog[27] = servoValues[3];
-
 
144
}
140
}
145
 
141
 
146
void calculateFeaturedServoValues(void) {
142
void calculateFeaturedServoValues(void) {
147
  int16_t value;
143
  int16_t value;
148
  uint8_t axis;
144
  uint8_t axis;
149
 
145
 
150
  // Save the computation cost of computing a new value before the old one is used.
146
  // Save the computation cost of computing a new value before the old one is used.
151
  if (!recalculateServoTimes) return;
147
  if (!recalculateServoTimes) return;
152
 
148
 
153
  for (axis= MAX_CONTROL_SERVOS; axis<MAX_CONTROL_SERVOS+2; axis++) {
149
  for (axis= MAX_CONTROL_SERVOS; axis<MAX_CONTROL_SERVOS+2; axis++) {
154
        value = featuredServoValue(axis-MAX_CONTROL_SERVOS);
150
        value = featuredServoValue(axis-MAX_CONTROL_SERVOS);
155
        servoValues[axis] = value;
151
        servoValues[axis] = value;
156
  }
152
  }
157
  for (axis=MAX_CONTROL_SERVOS+2; axis<MAX_SERVOS; axis++) {
153
  for (axis=MAX_CONTROL_SERVOS+2; axis<MAX_SERVOS; axis++) {
158
        value = 128 * SCALE_FACTOR;
154
        value = 128 * SCALE_FACTOR;
159
        servoValues[axis] = value;
155
        servoValues[axis] = value;
160
  }
156
  }
161
 
157
 
162
  recalculateServoTimes = 0;
158
  recalculateServoTimes = 0;
163
}
159
}
164
 
160
 
165
ISR(TIMER2_COMPA_vect) {
161
ISR(TIMER2_COMPA_vect) {
166
  static uint16_t remainingPulseTime;
162
  static uint16_t remainingPulseTime;
167
  static uint8_t servoIndex = 0;
163
  static uint8_t servoIndex = 0;
168
  static uint16_t sumOfPulseTimes = 0;
164
  static uint16_t sumOfPulseTimes = 0;
169
 
165
 
170
  if (!remainingPulseTime) {
166
  if (!remainingPulseTime) {
171
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
167
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
172
    if (servoIndex < staticParams.servoCount) {
168
    if (servoIndex < staticParams.servoCount) {
173
      // There are more signals to output.
169
      // There are more signals to output.
174
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]);
170
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]);
175
      servoIndex++;
171
      servoIndex++;
176
    } else {
172
    } else {
177
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
173
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
178
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
174
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
179
      sumOfPulseTimes = servoIndex = 0;
175
      sumOfPulseTimes = servoIndex = 0;
180
      recalculateServoTimes = 1;
176
      recalculateServoTimes = 1;
181
      HEF4017R_ON;
177
      HEF4017R_ON;
182
    }
178
    }
183
  }
179
  }
184
 
180
 
185
  // Schedule the next OCR2A event. The counter is already reset at this time.
181
  // Schedule the next OCR2A event. The counter is already reset at this time.
186
  if (remainingPulseTime > 256+128) {
182
  if (remainingPulseTime > 256+128) {
187
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
183
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
188
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
184
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
189
    OCR2A = 255;
185
    OCR2A = 255;
190
    TCCR2A &= ~(1<<COM2A0);
186
    TCCR2A &= ~(1<<COM2A0);
191
    remainingPulseTime-=256;
187
    remainingPulseTime-=256;
192
  } else if (remainingPulseTime > 256) {
188
  } else if (remainingPulseTime > 256) {
193
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
189
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
194
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
190
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
195
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
191
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
196
    remainingPulseTime-=128;
192
    remainingPulseTime-=128;
197
    OCR2A=127;
193
    OCR2A=127;
198
  } else {
194
  } else {
199
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
195
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
200
    TCCR2A |= (1<<COM2A0);
196
    TCCR2A |= (1<<COM2A0);
201
    OCR2A = remainingPulseTime-1;
197
    OCR2A = remainingPulseTime-1;
202
    remainingPulseTime=0;
198
    remainingPulseTime=0;
203
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
199
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
204
  }
200
  }
205
}
201
}
206
 
202