Subversion Repositories FlightCtrl

Rev

Rev 1910 | Rev 2125 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1910 Rev 2099
1
#include <inttypes.h>
1
#include <inttypes.h>
2
#include <avr/io.h>
2
#include <avr/io.h>
3
#include <avr/interrupt.h>
3
#include <avr/interrupt.h>
4
#include "eeprom.h"
4
#include "eeprom.h"
5
#include "analog.h"
5
#include "analog.h"
-
 
6
#include "controlMixer.h"
6
 
-
 
7
// for debugging!
7
 
8
#include "uart0.h"
8
#include "timer0.h"
9
#include "output.h"
9
#include "output.h"
10
 
10
 
11
#ifdef USE_MK3MAG
11
#ifdef USE_MK3MAG
12
#include "mk3mag.h"
12
#include "mk3mag.h"
13
#endif
13
#endif
14
 
14
 
15
volatile uint16_t millisecondsCount = 0;
15
volatile uint32_t globalMillisClock = 0;
16
volatile uint8_t  runFlightControl = 0;
-
 
17
volatile uint16_t cntKompass = 0;
16
volatile uint8_t  runFlightControl = 0;
18
volatile uint16_t beepTime = 0;
17
volatile uint16_t beepTime = 0;
19
volatile uint16_t beepModulation = 0xFFFF;
18
volatile uint16_t beepModulation = BEEP_MODULATION_NONE;
20
 
19
 
21
#ifdef USE_NAVICTRL
20
#ifdef USE_NAVICTRL
22
volatile uint8_t SendSPI = 0;
21
volatile uint8_t SendSPI = 0;
23
#endif
22
#endif
24
 
23
 
25
/*****************************************************
24
/*****************************************************
26
 * Initialize Timer 0                  
25
 * Initialize Timer 0                  
27
 *****************************************************/
26
 *****************************************************/
28
// timer 0 is used for the PWM generation to control the offset voltage at the air pressure sensor
27
// timer 0 is used for the PWM generation to control the offset voltage at the air pressure sensor
29
// Its overflow interrupt routine is used to generate the beep signal and the flight control motor update rate
28
// Its overflow interrupt routine is used to generate the beep signal and the flight control motor update rate
30
void timer0_init(void) {
29
void timer0_init(void) {
31
  uint8_t sreg = SREG;
30
  uint8_t sreg = SREG;
32
 
31
 
33
  // disable all interrupts before reconfiguration
32
  // disable all interrupts before reconfiguration
34
  cli();
33
  cli();
35
 
34
 
36
  // Configure speaker port as output.
35
  // Configure speaker port as output.
37
 
-
 
38
  if (BoardRelease == 10) { // Speaker at PD2
36
  if (boardRelease == 10) { // Speaker at PD2
39
    DDRD |= (1 << DDD2);
37
    DDRD |= (1 << DDD2);
40
    PORTD &= ~(1 << PORTD2);
38
    PORTD &= ~(1 << PORTD2);
41
  } else { // Speaker at PC7
39
  } else { // Speaker at PC7
42
    DDRC |= (1 << DDC7);
40
    DDRC |= (1 << DDC7);
43
    PORTC &= ~(1 << PORTC7);
41
    PORTC &= ~(1 << PORTC7);
44
  }
42
  }
45
 
43
 
46
  // set PB3 and PB4 as output for the PWM used as offset for the pressure sensor
44
  // set PB3 and PB4 as output for the PWM used as offset for the pressure sensor
47
  DDRB |= (1 << DDB4) | (1 << DDB3);
45
  DDRB |= (1 << DDB4) | (1 << DDB3);
48
  PORTB &= ~((1 << PORTB4) | (1 << PORTB3));
46
  PORTB &= ~((1 << PORTB4) | (1 << PORTB3));
49
 
47
 
50
  // Timer/Counter 0 Control Register A
48
  // Timer/Counter 0 Control Register A
51
 
49
 
52
  // Waveform Generation Mode is Fast PWM (Bits WGM02 = 0, WGM01 = 1, WGM00 = 1)
50
  // Waveform Generation Mode is Fast PWM (Bits WGM02 = 0, WGM01 = 1, WGM00 = 1)
53
  // Clear OC0A on Compare Match, set OC0A at BOTTOM, noninverting PWM (Bits COM0A1 = 1, COM0A0 = 0)
51
  // Clear OC0A on Compare Match, set OC0A at BOTTOM, noninverting PWM (Bits COM0A1 = 1, COM0A0 = 0)
54
  // Clear OC0B on Compare Match, set OC0B at BOTTOM, (Bits COM0B1 = 1, COM0B0 = 0)
52
  // Clear OC0B on Compare Match, set OC0B at BOTTOM, (Bits COM0B1 = 1, COM0B0 = 0)
55
  TCCR0A &= ~((1 << COM0A0) | (1 << COM0B0));
53
  TCCR0A &= ~((1 << COM0A0) | (1 << COM0B0));
56
  TCCR0A |= (1 << COM0A1) | (1 << COM0B1) | (1 << WGM01) | (1 << WGM00);
54
  TCCR0A |= (1 << COM0A1) | (1 << COM0B1) | (1 << WGM01) | (1 << WGM00);
57
 
55
 
58
  // Timer/Counter 0 Control Register B
56
  // Timer/Counter 0 Control Register B
59
 
-
 
60
  // set clock divider for timer 0 to SYSKLOCK/8 = 20MHz / 8 = 2.5MHz
57
  // set clock divider for timer 0 to SYSCLOCK/8 = 20MHz/8 = 2.5MHz
61
  // i.e. the timer increments from 0x00 to 0xFF with an update rate of 2.5 MHz
58
  // i.e. the timer increments from 0x00 to 0xFF with an update rate of 2.5 MHz
62
  // hence the timer overflow interrupt frequency is 2.5 MHz / 256 = 9.765 kHz
59
  // hence the timer overflow interrupt frequency is 2.5 MHz/256 = 9.765 kHz
63
 
60
 
64
  // divider 8 (Bits CS02 = 0, CS01 = 1, CS00 = 0)
61
  // divider 8 (Bits CS02 = 0, CS01 = 1, CS00 = 0)
65
  TCCR0B &= ~((1 << FOC0A) | (1 << FOC0B) | (1 << WGM02));
62
  TCCR0B &= ~((1 << FOC0A) | (1 << FOC0B) | (1 << WGM02));
66
  TCCR0B = (TCCR0B & 0xF8) | (0 << CS02) | (1 << CS01) | (0 << CS00);
63
  TCCR0B = (TCCR0B & 0xF8) | (0 << CS02) | (1 << CS01) | (0 << CS00);
67
 
64
 
68
  // initialize the Output Compare Register A & B used for PWM generation on port PB3 & PB4
65
  // initialize the Output Compare Register A & B used for PWM generation on port PB3 & PB4
69
  OCR0A = 0; // for PB3
66
  OCR0A = 0; // for PB3
70
  OCR0B = 120; // for PB4
67
  OCR0B = 120; // for PB4
71
 
68
 
72
  // init Timer/Counter 0 Register
69
  // init Timer/Counter 0 Register
73
  TCNT0 = 0;
70
  TCNT0 = 0;
74
 
71
 
75
  // Timer/Counter 0 Interrupt Mask Register
72
  // Timer/Counter 0 Interrupt Mask Register
76
  // enable timer overflow interrupt only
73
  // enable timer overflow interrupt only
77
  TIMSK0 &= ~((1 << OCIE0B) | (1 << OCIE0A));
74
  TIMSK0 &= ~((1 << OCIE0B) | (1 << OCIE0A));
78
  TIMSK0 |= (1 << TOIE0);
75
  TIMSK0 |= (1 << TOIE0);
79
 
76
 
80
  SREG = sreg;
77
  SREG = sreg;
81
}
78
}
82
 
79
 
83
/*****************************************************/
80
/*****************************************************/
84
/*          Interrupt Routine of Timer 0             */
81
/*          Interrupt Routine of Timer 0             */
85
/*****************************************************/
82
/*****************************************************/
86
ISR(TIMER0_OVF_vect)
83
ISR(TIMER0_OVF_vect) { // 9765.625 Hz
87
{ // 9765.625 Hz
-
 
88
  static uint8_t cnt_1ms = 1, cnt = 0;
84
  static uint8_t cnt_1ms = 1, cnt = 0;
89
  uint8_t beeper_On = 0;
85
  uint8_t beeperOn = 0;
90
 
86
 
91
#ifdef USE_NAVICTRL
87
#ifdef USE_NAVICTRL
92
  if(SendSPI) SendSPI--; // if SendSPI is 0, the transmit of a byte via SPI bus to and from The Navicontrol is done
88
  if(SendSPI) SendSPI--; // if SendSPI is 0, the transmit of a byte via SPI bus to and from The Navicontrol is done
93
#endif
89
#endif
94
 
90
 
95
  if (!cnt--) { // every 10th run (9.765625kHz/10 = 976.5625Hz)
91
  if (!cnt--) { // every 10th run (9.765625kHz/10 = 976.5625Hz)
96
    cnt = 9;
92
    cnt = 9;
97
    cnt_1ms ^= 1;
93
    cnt_1ms ^= 1;
98
    if (!cnt_1ms) {
94
    if (!cnt_1ms) {
99
      if (runFlightControl == 1)
95
      if (runFlightControl == 1)
100
        DebugOut.Digital[1] |= DEBUG_MAINLOOP_TIMER;
96
        debugOut.digital[1] |= DEBUG_MAINLOOP_TIMER;
101
      else
97
      else
102
        DebugOut.Digital[1] &= ~DEBUG_MAINLOOP_TIMER;
98
        debugOut.digital[1] &= ~DEBUG_MAINLOOP_TIMER;
103
      runFlightControl = 1; // every 2nd run (976.5625 Hz/2 = 488.28125 Hz)
99
      runFlightControl = 1; // every 2nd run (976.5625 Hz/2 = 488.28125 Hz)
104
    }
100
    }
105
    millisecondsCount++; // increment millisecond counter
101
    globalMillisClock++; // increment millisecond counter
106
  }
102
  }
107
 
103
 
108
  // beeper on if duration is not over
104
  // beeper on if duration is not over
109
  if (beepTime) {
105
  if (beepTime) {
110
    beepTime--; // decrement BeepTime
106
    beepTime--; // decrement BeepTime
111
    if (beepTime & beepModulation)
107
    if (beepTime & beepModulation)
112
      beeper_On = 1;
108
      beeperOn = 1;
113
    else
109
    else
114
      beeper_On = 0;
110
      beeperOn = 0;
115
  } else { // beeper off if duration is over
111
  } else { // beeper off if duration is over
116
    beeper_On = 0;
112
    beeperOn = 0;
117
    beepModulation = 0xFFFF;
113
    beepModulation = BEEP_MODULATION_NONE;
118
  }
114
  }
119
 
-
 
120
  // if beeper is on
115
 
121
  if (beeper_On) {
116
  if (beeperOn) {
122
    // set speaker port to high.
117
    // set speaker port to high.
123
    if (BoardRelease == 10)
118
    if (boardRelease == 10)
124
      PORTD |= (1 << PORTD2); // Speaker at PD2
119
      PORTD |= (1 << PORTD2); // Speaker at PD2
125
    else
120
    else
126
      PORTC |= (1 << PORTC7); // Speaker at PC7
121
      PORTC |= (1 << PORTC7); // Speaker at PC7
127
  } else { // beeper is off
122
  } else { // beeper is off
128
    // set speaker port to low
123
    // set speaker port to low
129
    if (BoardRelease == 10)
124
    if (boardRelease == 10)
130
      PORTD &= ~(1 << PORTD2);// Speaker at PD2
125
      PORTD &= ~(1 << PORTD2);// Speaker at PD2
131
    else
126
    else
132
      PORTC &= ~(1 << PORTC7);// Speaker at PC7
127
      PORTC &= ~(1 << PORTC7);// Speaker at PC7
133
  }
128
  }
134
 
-
 
135
#ifndef USE_NAVICTRL
-
 
136
  // update compass value if this option is enabled in the settings
-
 
137
  if (staticParams.GlobalConfig & (CFG_COMPASS_ACTIVE | CFG_GPS_ACTIVE)) {
129
 
-
 
130
#ifdef USE_MK3MAG
-
 
131
  // update compass value if this option is enabled in the settings
138
#ifdef USE_MK3MAG
132
  if (staticParams.bitConfig & CFG_COMPASS_ENABLED) {
139
    MK3MAG_Update(); // read out mk3mag pwm
-
 
140
#endif
133
    MK3MAG_periodicTask(); // read out mk3mag pwm
141
  }
134
  }
142
#endif
135
#endif
143
}
136
}
144
 
137
 
145
// -----------------------------------------------------------------------
138
// -----------------------------------------------------------------------
146
uint16_t setDelay(uint16_t t) {
139
uint16_t setDelay(uint16_t t) {
147
  return (millisecondsCount + t - 1);
140
  return (globalMillisClock + t - 1);
148
}
141
}
149
 
142
 
150
// -----------------------------------------------------------------------
143
// -----------------------------------------------------------------------
151
int8_t checkDelay(uint16_t t) {
144
int8_t checkDelay(uint16_t t) {
152
  return (((t - millisecondsCount) & 0x8000) >> 8); // check sign bit
145
  return (((t - globalMillisClock) & 0x8000) >> 8); // check sign bit
153
}
146
}
154
 
147
 
155
// -----------------------------------------------------------------------
148
// -----------------------------------------------------------------------
156
void delay_ms(uint16_t w) {
149
void delay_ms(uint16_t w) {
157
  uint16_t t_stop = setDelay(w);
150
  uint16_t t_stop = setDelay(w);
158
  while (!checkDelay(t_stop))
151
  while (!checkDelay(t_stop))
159
    ;
152
    ;
160
}
153
}
161
 
154
 
162
// -----------------------------------------------------------------------
155
// -----------------------------------------------------------------------
163
void delay_ms_Mess(uint16_t w) {
156
void delay_ms_with_adc_measurement(uint16_t w, uint8_t stop) {
164
  uint16_t t_stop;
157
  uint16_t t_stop;
165
  t_stop = setDelay(w);
158
  t_stop = setDelay(w);
166
  while (!checkDelay(t_stop)) {
159
  while (!checkDelay(t_stop)) {
167
    if (analogDataReady) {
160
        if (analogDataReady) {
168
      analogDataReady = 0;
161
          analog_update();
169
      analog_start();
162
          startAnalogConversionCycle();
170
    }
163
        }
-
 
164
  }
-
 
165
  if (stop) {
-
 
166
  // Wait for new samples to get prepared but do not restart AD conversion after that!
-
 
167
  // Caller MUST to that.
-
 
168
        while (!analogDataReady);
171
  }
169
  }
172
}
170
}
173
 
171