Subversion Repositories FlightCtrl

Rev

Rev 2107 | Rev 2110 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2107 Rev 2109
1
#include <stdlib.h>
1
#include <stdlib.h>
2
#include <avr/io.h>
2
#include <avr/io.h>
3
#include <avr/interrupt.h>
3
#include <avr/interrupt.h>
4
 
4
 
5
#include "rc.h"
5
#include "rc.h"
6
#include "controlMixer.h"
6
#include "controlMixer.h"
7
#include "configuration.h"
7
#include "configuration.h"
8
#include "commands.h"
8
#include "commands.h"
9
#include "output.h"
9
#include "output.h"
10
 
10
 
11
// The channel array is 0-based!
11
// The channel array is 0-based!
12
volatile int16_t PPM_in[MAX_CHANNELS];
12
volatile int16_t PPM_in[MAX_CHANNELS];
13
volatile uint8_t RCQuality;
13
volatile uint8_t RCQuality;
14
 
14
 
15
uint8_t lastRCCommand = COMMAND_NONE;
15
uint8_t lastRCCommand = COMMAND_NONE;
16
uint8_t lastFlightMode = FLIGHT_MODE_NONE;
16
uint8_t lastFlightMode = FLIGHT_MODE_NONE;
17
 
17
 
18
/***************************************************************
18
/***************************************************************
19
 *  16bit timer 1 is used to decode the PPM-Signal            
19
 *  16bit timer 1 is used to decode the PPM-Signal            
20
 ***************************************************************/
20
 ***************************************************************/
21
void RC_Init(void) {
21
void RC_Init(void) {
22
  uint8_t sreg = SREG;
22
  uint8_t sreg = SREG;
23
 
23
 
24
  // disable all interrupts before reconfiguration
24
  // disable all interrupts before reconfiguration
25
  cli();
25
  cli();
26
 
26
 
27
  // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
27
  // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
28
  DDRD &= ~(1<<6);
28
  DDRD &= ~(1<<6);
29
  PORTD |= (1<<PORTD6);
29
  PORTD |= (1<<PORTD6);
30
 
30
 
31
  // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
31
  // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
32
  // set as output
32
  // set as output
33
  DDRD |= (1<<DDD5) | (1<<DDD4) | (1<<DDD3);
33
  DDRD |= (1<<DDD5) | (1<<DDD4) | (1<<DDD3);
34
  // low level
34
  // low level
35
  PORTD &= ~((1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3));
35
  PORTD &= ~((1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3));
36
 
36
 
37
  // PD3 can't be used if 2nd UART is activated
37
  // PD3 can't be used if 2nd UART is activated
38
  // because TXD1 is at that port
38
  // because TXD1 is at that port
39
  if (CPUType != ATMEGA644P) {
39
  if (CPUType != ATMEGA644P) {
40
    DDRD |= (1<<PORTD3);
40
    DDRD |= (1<<PORTD3);
41
    PORTD &= ~(1<<PORTD3);
41
    PORTD &= ~(1<<PORTD3);
42
  }
42
  }
43
 
43
 
44
  // Timer/Counter1 Control Register A, B, C
44
  // Timer/Counter1 Control Register A, B, C
45
 
45
 
46
  // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
46
  // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
47
  // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
47
  // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
48
  // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
48
  // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
49
  // Enable input capture noise cancler (bit: ICNC1=1)
49
  // Enable input capture noise cancler (bit: ICNC1=1)
50
  // Trigger on positive edge of the input capture pin (bit: ICES1=1),
50
  // Trigger on positive edge of the input capture pin (bit: ICES1=1),
51
  // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s
51
  // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s
52
  // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
52
  // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
53
  TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0) | (1 << WGM11) | (1 << WGM10));
53
  TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0) | (1 << WGM11) | (1 << WGM10));
54
  TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12));
54
  TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12));
55
  TCCR1B |= (1 << CS11) | (1 << CS10) | (1 << ICES1) | (1 << ICNC1);
55
  TCCR1B |= (1 << CS11) | (1 << ICES1) | (1 << ICNC1);
56
  TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B));
56
  TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B));
57
 
57
 
58
  // Timer/Counter1 Interrupt Mask Register
58
  // Timer/Counter1 Interrupt Mask Register
59
  // Enable Input Capture Interrupt (bit: ICIE1=1)
59
  // Enable Input Capture Interrupt (bit: ICIE1=1)
60
  // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
60
  // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
61
  // Enable Overflow Interrupt (bit: TOIE1=0)
61
  // Enable Overflow Interrupt (bit: TOIE1=0)
62
  TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1));
62
  TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1));
63
  TIMSK1 |= (1<<ICIE1);
63
  TIMSK1 |= (1<<ICIE1);
64
 
64
 
65
  RCQuality = 0;
65
  RCQuality = 0;
66
 
66
 
67
  SREG = sreg;
67
  SREG = sreg;
68
}
68
}
69
 
69
 
70
/********************************************************************/
70
/********************************************************************/
71
/*         Every time a positive edge is detected at PD6            */
71
/*         Every time a positive edge is detected at PD6            */
72
/********************************************************************/
72
/********************************************************************/
73
/*                               t-Frame
73
/*                               t-Frame
74
    <----------------------------------------------------------------------->
74
    <----------------------------------------------------------------------->
75
     ____   ______   _____   ________                ______    sync gap      ____
75
     ____   ______   _____   ________                ______    sync gap      ____
76
    |    | |      | |     | |        |              |      |                |
76
    |    | |      | |     | |        |              |      |                |
77
    |    | |      | |     | |        |              |      |                |
77
    |    | |      | |     | |        |              |      |                |
78
 ___|    |_|      |_|     |_|        |_.............|      |________________|
78
 ___|    |_|      |_|     |_|        |_.............|      |________________|
79
    <-----><-------><------><-----------            <------>                <---
79
    <-----><-------><------><-----------            <------>                <---
80
 t0       t1      t2       t4                     tn                     t0
80
 t0       t1      t2       t4                     tn                     t0
81
 
81
 
82
 The PPM-Frame length is 22.5 ms.
82
 The PPM-Frame length is 22.5 ms.
83
 Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse.
83
 Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse.
84
 The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms.
84
 The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms.
85
 The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms.
85
 The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms.
86
 The minimum duration of all channels at minimum value is  8 * 1 ms = 8 ms.
86
 The minimum duration of all channels at minimum value is  8 * 1 ms = 8 ms.
87
 The maximum duration of all channels at maximum value is  8 * 2 ms = 16 ms.
87
 The maximum duration of all channels at maximum value is  8 * 2 ms = 16 ms.
88
 The remaining time of (22.5 - 8 ms) ms = 14.5 ms  to (22.5 - 16 ms) ms = 6.5 ms is
88
 The remaining time of (22.5 - 8 ms) ms = 14.5 ms  to (22.5 - 16 ms) ms = 6.5 ms is
89
 the syncronization gap.
89
 the syncronization gap.
90
 */
90
 */
91
ISR(TIMER1_CAPT_vect) { // typical rate of 1 ms to 2 ms
91
ISR(TIMER1_CAPT_vect) { // typical rate of 1 ms to 2 ms
92
  int16_t signal, tmp;
92
  int16_t signal, tmp;
93
  static int16_t index;
93
  static int16_t index;
94
  static uint16_t oldICR1 = 0;
94
  static uint16_t oldICR1 = 0;
95
 
95
 
96
  // 16bit Input Capture Register ICR1 contains the timer value TCNT1
96
  // 16bit Input Capture Register ICR1 contains the timer value TCNT1
97
  // at the time the edge was detected
97
  // at the time the edge was detected
98
 
98
 
99
  // calculate the time delay to the previous event time which is stored in oldICR1
99
  // calculate the time delay to the previous event time which is stored in oldICR1
100
  // calculatiing the difference of the two uint16_t and converting the result to an int16_t
100
  // calculatiing the difference of the two uint16_t and converting the result to an int16_t
101
  // implicit handles a timer overflow 65535 -> 0 the right way.
101
  // implicit handles a timer overflow 65535 -> 0 the right way.
102
  signal = (uint16_t) ICR1 - oldICR1;
102
  signal = (uint16_t) ICR1 - oldICR1;
103
  oldICR1 = ICR1;
103
  oldICR1 = ICR1;
104
 
104
 
105
  //sync gap? (3.52 ms < signal < 25.6 ms)
105
  //sync gap? (3.5 ms < signal < 25.6 ms)
106
  if ((signal > 1100) && (signal < 8000)) {
106
  if (signal > 8750) {
107
    index = 0;
107
    index = 0;
108
  } else { // within the PPM frame
108
  } else { // within the PPM frame
109
    if (index < MAX_CHANNELS) { // PPM24 supports 12 channels
109
    if (index < MAX_CHANNELS) { // PPM24 supports 12 channels
110
      // check for valid signal length (0.8 ms < signal < 2.1984 ms)
110
      // check for valid signal length (0.8 ms < signal < 2.2 ms)
111
      // signal range is from 1.0ms/3.2us = 312 to 2.0ms/3.2us = 625
-
 
112
      if ((signal > 250) && (signal < 687)) {
111
      if ((signal >= 2000) && (signal < 5500)) {
113
        // shift signal to zero symmetric range  -154 to 159
112
        // shift signal to zero symmetric range  -154 to 159
-
 
113
        //signal -= 3750; // theoretical value
114
        signal -= 475; // offset of 1.4912 ms ??? (469 * 3.2us = 1.5008 ms)
114
        signal -= (3750+56); // best value with my Futaba in zero trim.
115
        // check for stable signal
115
        // check for stable signal
116
        if (abs(signal - PPM_in[index]) < 6) {
116
        if (abs(signal - PPM_in[index]) < 50) {
117
          if (RCQuality < 200)
117
          if (RCQuality < 200)
118
            RCQuality += 10;
118
            RCQuality += 10;
119
          else
119
          else
120
            RCQuality = 200;
120
            RCQuality = 200;
121
        }
121
        }
122
        // If signal is the same as before +/- 1, just keep it there. Naah lets get rid of this slimy sticy stuff.
122
        // If signal is the same as before +/- 1, just keep it there. Naah lets get rid of this slimy sticy stuff.
123
        // if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) {
123
        // if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) {
124
          // In addition, if the signal is very close to 0, just set it to 0.
124
          // In addition, if the signal is very close to 0, just set it to 0.
125
        if (signal >= -1 && signal <= 1) {
125
        if (signal >= -1 && signal <= 1) {
126
          tmp = 0;
126
          tmp = 0;
127
        //} else {
127
        //} else {
128
        //  tmp = PPM_in[index];
128
        //  tmp = PPM_in[index];
129
        //  }
129
        //  }
130
        } else
130
        } else
131
          tmp = signal;
131
          tmp = signal;
132
        PPM_in[index] = tmp; // update channel value
132
        PPM_in[index] = tmp; // update channel value
133
      }
133
      }
134
      index++; // next channel
134
      index++; // next channel
135
      // demux sum signal for channels 5 to 7 to J3, J4, J5
135
      // demux sum signal for channels 5 to 7 to J3, J4, J5
136
      // TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
136
      // TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
137
      // channels are usually available at the receiver anyway.
137
      // channels are usually available at the receiver anyway.
138
      // if(index == 5) J3HIGH; else J3LOW;
138
      // if(index == 5) J3HIGH; else J3LOW;
139
      // if(index == 6) J4HIGH; else J4LOW;
139
      // if(index == 6) J4HIGH; else J4LOW;
140
      // if(CPUType != ATMEGA644P) // not used as TXD1
140
      // if(CPUType != ATMEGA644P) // not used as TXD1
141
      //  {
141
      //  {
142
      //    if(index == 7) J5HIGH; else J5LOW;
142
      //    if(index == 7) J5HIGH; else J5LOW;
143
      //  }
143
      //  }
144
    }
144
    }
145
  }
145
  }
146
}
146
}
147
 
147
 
148
#define RCChannel(dimension) PPM_in[channelMap.channels[dimension]]
148
#define RCChannel(dimension) PPM_in[channelMap.channels[dimension]]
149
#define COMMAND_THRESHOLD 85
-
 
150
#define COMMAND_CHANNEL_VERTICAL CH_THROTTLE
149
#define COMMAND_CHANNEL_VERTICAL CH_THROTTLE
151
#define COMMAND_CHANNEL_HORIZONTAL CH_YAW
150
#define COMMAND_CHANNEL_HORIZONTAL CH_YAW
152
 
151
 
153
#define RC_SCALING 4
152
#define RC_SCALING 2
154
 
153
 
155
uint8_t getControlModeSwitch(void) {
154
uint8_t getControlModeSwitch(void) {
156
        int16_t channel = RCChannel(CH_MODESWITCH) + POT_OFFSET;
-
 
157
        uint8_t flightMode = channel < 256/3 ? FLIGHT_MODE_MANUAL :
155
        int16_t channel = RCChannel(CH_MODESWITCH);
158
                (channel > 256*2/3 ? FLIGHT_MODE_ANGLES : FLIGHT_MODE_RATE);
156
        uint8_t flightMode = channel < -330 ? FLIGHT_MODE_MANUAL : (channel > 330 ? FLIGHT_MODE_ANGLES : FLIGHT_MODE_RATE);
159
        return flightMode;
157
        return flightMode;
160
}
158
}
161
 
159
 
162
// Gyro calibration is performed as.... well mode switch with no throttle and no airspeed would be nice.
160
// Gyro calibration is performed as.... well mode switch with no throttle and no airspeed would be nice.
163
// Maybe simply: Very very low throttle.
161
// Maybe simply: Very very low throttle.
164
// Throttle xlow for COMMAND_TIMER: GYROCAL (once).
162
// Throttle xlow for COMMAND_TIMER: GYROCAL (once).
165
// mode switched: CHMOD
163
// mode switched: CHMOD
166
 
164
 
167
uint8_t RC_getCommand(void) {
165
uint8_t RC_getCommand(void) {
168
        uint8_t flightMode = getControlModeSwitch();
166
        uint8_t flightMode = getControlModeSwitch();
169
 
167
 
170
        if (lastFlightMode != flightMode) {
168
        if (lastFlightMode != flightMode) {
171
                lastFlightMode = flightMode;
169
                lastFlightMode = flightMode;
172
                lastRCCommand = COMMAND_CHMOD;
170
                lastRCCommand = COMMAND_CHMOD;
173
                return lastRCCommand;
171
                return lastRCCommand;
174
        }
172
        }
175
 
173
 
176
        int16_t channel = RCChannel(CH_THROTTLE);
174
        int16_t channel = RCChannel(CH_THROTTLE);
177
 
175
 
178
        if (channel <= -140) { // <= 900 us
176
        if (channel <= -1400) {
179
                lastRCCommand = COMMAND_GYROCAL;
177
          lastRCCommand = COMMAND_GYROCAL;
180
        } else {
178
        } else {
181
          lastRCCommand = COMMAND_NONE;
179
          lastRCCommand = COMMAND_NONE;
182
        }
180
        }
183
        return lastRCCommand;
181
        return lastRCCommand;
184
}
182
}
185
 
183
 
186
uint8_t RC_getArgument(void) {
184
uint8_t RC_getArgument(void) {
187
        return lastFlightMode;
185
        return lastFlightMode;
188
}
186
}
189
 
187
 
190
/*
188
/*
191
 * Get Pitch, Roll, Throttle, Yaw values
189
 * Get Pitch, Roll, Throttle, Yaw values
192
 */
190
 */
193
void RC_periodicTaskAndPRYT(int16_t* PRYT) {
191
void RC_periodicTaskAndPRYT(int16_t* PRYT) {
194
  if (RCQuality) {
192
  if (RCQuality) {
195
    RCQuality--;
193
    RCQuality--;
196
 
194
 
197
    debugOut.analog[20] = RCChannel(CH_ELEVATOR);
195
    debugOut.analog[20] = RCChannel(CH_ELEVATOR);
198
    debugOut.analog[21] = RCChannel(CH_AILERONS);
196
    debugOut.analog[21] = RCChannel(CH_AILERONS);
199
    debugOut.analog[22] = RCChannel(CH_RUDDER);
197
    debugOut.analog[22] = RCChannel(CH_RUDDER);
200
    debugOut.analog[23] = RCChannel(CH_THROTTLE);
198
    debugOut.analog[23] = RCChannel(CH_THROTTLE);
201
 
199
 
202
    PRYT[CONTROL_ELEVATOR]   = RCChannel(CH_ELEVATOR) * RC_SCALING;
200
    PRYT[CONTROL_ELEVATOR]   = RCChannel(CH_ELEVATOR) / RC_SCALING;
203
    PRYT[CONTROL_AILERONS]   = RCChannel(CH_AILERONS) * RC_SCALING;
201
    PRYT[CONTROL_AILERONS]   = RCChannel(CH_AILERONS) / RC_SCALING;
204
    PRYT[CONTROL_RUDDER]     = RCChannel(CH_RUDDER)   * RC_SCALING;
202
    PRYT[CONTROL_RUDDER]     = RCChannel(CH_RUDDER)   / RC_SCALING;
205
    PRYT[CONTROL_THROTTLE]   = RCChannel(CH_THROTTLE) * RC_SCALING;
203
    PRYT[CONTROL_THROTTLE]   = RCChannel(CH_THROTTLE) / RC_SCALING;
206
  } // if RCQuality is no good, we just do nothing.
204
  } // if RCQuality is no good, we just do nothing.
207
}
205
}
208
 
206
 
209
/*
207
/*
210
 * Get other channel value
208
 * Get other channel value
211
 */
209
 */
212
int16_t RC_getVariable(uint8_t varNum) {
210
int16_t RC_getVariable(uint8_t varNum) {
213
  if (varNum < 4)
211
  if (varNum < 4)
214
    // 0th variable is 5th channel (1-based) etc.
212
    // 0th variable is 5th channel (1-based) etc.
215
    return RCChannel(varNum + CH_POTS) + POT_OFFSET;
213
    return (RCChannel(varNum + CH_POTS) >> 3) + POT_OFFSET;
216
  /*
214
  /*
217
   * Let's just say:
215
   * Let's just say:
218
   * The RC variable i is hardwired to channel i, i>=4
216
   * The RC variable i is hardwired to channel i, i>=4
219
   */
217
   */
220
  return PPM_in[varNum] + POT_OFFSET;
218
  return (PPM_in[varNum] >> 3) + POT_OFFSET;
221
}
219
}
222
 
220
 
223
uint8_t RC_getSignalQuality(void) {
221
uint8_t RC_getSignalQuality(void) {
224
  if (RCQuality >= 160)
222
  if (RCQuality >= 160)
225
    return SIGNAL_GOOD;
223
    return SIGNAL_GOOD;
226
  if (RCQuality >= 140)
224
  if (RCQuality >= 140)
227
    return SIGNAL_OK;
225
    return SIGNAL_OK;
228
  if (RCQuality >= 120)
226
  if (RCQuality >= 120)
229
    return SIGNAL_BAD;
227
    return SIGNAL_BAD;
230
  return SIGNAL_LOST;
228
  return SIGNAL_LOST;
231
}
229
}
232
 
230
 
233
/*
231
/*
234
 * To should fired only when the right stick is in the center position.
232
 * To should fired only when the right stick is in the center position.
235
 * This will cause the value of pitch and roll stick to be adjusted
233
 * This will cause the value of pitch and roll stick to be adjusted
236
 * to zero (not just to near zero, as per the assumption in rc.c
234
 * to zero (not just to near zero, as per the assumption in rc.c
237
 * about the rc signal. I had values about 50..70 with a Futaba
235
 * about the rc signal. I had values about 50..70 with a Futaba
238
 * R617 receiver.) This calibration is not strictly necessary, but
236
 * R617 receiver.) This calibration is not strictly necessary, but
239
 * for control logic that depends on the exact (non)center position
237
 * for control logic that depends on the exact (non)center position
240
 * of a stick, it may be useful.
238
 * of a stick, it may be useful.
241
 */
239
 */
242
void RC_calibrate(void) {
240
void RC_calibrate(void) {
243
  // Do nothing.
241
  // Do nothing.
244
}
242
}
245
 
243