Subversion Repositories FlightCtrl

Rev

Rev 2104 | Rev 2109 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2104 Rev 2107
1
#include <stdlib.h>
1
#include <stdlib.h>
2
#include <avr/io.h>
2
#include <avr/io.h>
3
#include <avr/interrupt.h>
3
#include <avr/interrupt.h>
4
 
4
 
5
#include "rc.h"
5
#include "rc.h"
6
#include "controlMixer.h"
6
#include "controlMixer.h"
7
#include "configuration.h"
7
#include "configuration.h"
8
#include "commands.h"
8
#include "commands.h"
9
#include "output.h"
9
#include "output.h"
10
 
10
 
11
// The channel array is 0-based!
11
// The channel array is 0-based!
12
volatile int16_t PPM_in[MAX_CHANNELS];
12
volatile int16_t PPM_in[MAX_CHANNELS];
13
volatile uint8_t RCQuality;
13
volatile uint8_t RCQuality;
14
 
14
 
15
uint8_t lastRCCommand = COMMAND_NONE;
15
uint8_t lastRCCommand = COMMAND_NONE;
16
uint8_t lastFlightMode = FLIGHT_MODE_NONE;
16
uint8_t lastFlightMode = FLIGHT_MODE_NONE;
17
 
17
 
18
/***************************************************************
18
/***************************************************************
19
 *  16bit timer 1 is used to decode the PPM-Signal            
19
 *  16bit timer 1 is used to decode the PPM-Signal            
20
 ***************************************************************/
20
 ***************************************************************/
21
void RC_Init(void) {
21
void RC_Init(void) {
22
  uint8_t sreg = SREG;
22
  uint8_t sreg = SREG;
23
 
23
 
24
  // disable all interrupts before reconfiguration
24
  // disable all interrupts before reconfiguration
25
  cli();
25
  cli();
26
 
26
 
27
  // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
27
  // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
28
  DDRD &= ~(1<<6);
28
  DDRD &= ~(1<<6);
29
  PORTD |= (1<<PORTD6);
29
  PORTD |= (1<<PORTD6);
30
 
30
 
31
  // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
31
  // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
32
  // set as output
32
  // set as output
33
  DDRD |= (1<<DDD5) | (1<<DDD4) | (1<<DDD3);
33
  DDRD |= (1<<DDD5) | (1<<DDD4) | (1<<DDD3);
34
  // low level
34
  // low level
35
  PORTD &= ~((1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3));
35
  PORTD &= ~((1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3));
36
 
36
 
37
  // PD3 can't be used if 2nd UART is activated
37
  // PD3 can't be used if 2nd UART is activated
38
  // because TXD1 is at that port
38
  // because TXD1 is at that port
39
  if (CPUType != ATMEGA644P) {
39
  if (CPUType != ATMEGA644P) {
40
    DDRD |= (1<<PORTD3);
40
    DDRD |= (1<<PORTD3);
41
    PORTD &= ~(1<<PORTD3);
41
    PORTD &= ~(1<<PORTD3);
42
  }
42
  }
43
 
43
 
44
  // Timer/Counter1 Control Register A, B, C
44
  // Timer/Counter1 Control Register A, B, C
45
 
45
 
46
  // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
46
  // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
47
  // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
47
  // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
48
  // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
48
  // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
49
  // Enable input capture noise cancler (bit: ICNC1=1)
49
  // Enable input capture noise cancler (bit: ICNC1=1)
50
  // Trigger on positive edge of the input capture pin (bit: ICES1=1),
50
  // Trigger on positive edge of the input capture pin (bit: ICES1=1),
51
  // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s
51
  // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s
52
  // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
52
  // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
53
  TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0) | (1 << WGM11) | (1 << WGM10));
53
  TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0) | (1 << WGM11) | (1 << WGM10));
54
  TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12));
54
  TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12));
55
  TCCR1B |= (1 << CS11) | (1 << CS10) | (1 << ICES1) | (1 << ICNC1);
55
  TCCR1B |= (1 << CS11) | (1 << CS10) | (1 << ICES1) | (1 << ICNC1);
56
  TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B));
56
  TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B));
57
 
57
 
58
  // Timer/Counter1 Interrupt Mask Register
58
  // Timer/Counter1 Interrupt Mask Register
59
  // Enable Input Capture Interrupt (bit: ICIE1=1)
59
  // Enable Input Capture Interrupt (bit: ICIE1=1)
60
  // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
60
  // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
61
  // Enable Overflow Interrupt (bit: TOIE1=0)
61
  // Enable Overflow Interrupt (bit: TOIE1=0)
62
  TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1));
62
  TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1));
63
  TIMSK1 |= (1<<ICIE1);
63
  TIMSK1 |= (1<<ICIE1);
64
 
64
 
65
  RCQuality = 0;
65
  RCQuality = 0;
66
 
66
 
67
  SREG = sreg;
67
  SREG = sreg;
68
}
68
}
69
 
69
 
70
/********************************************************************/
70
/********************************************************************/
71
/*         Every time a positive edge is detected at PD6            */
71
/*         Every time a positive edge is detected at PD6            */
72
/********************************************************************/
72
/********************************************************************/
73
/*                               t-Frame
73
/*                               t-Frame
74
    <----------------------------------------------------------------------->
74
    <----------------------------------------------------------------------->
75
     ____   ______   _____   ________                ______    sync gap      ____
75
     ____   ______   _____   ________                ______    sync gap      ____
76
    |    | |      | |     | |        |              |      |                |
76
    |    | |      | |     | |        |              |      |                |
77
    |    | |      | |     | |        |              |      |                |
77
    |    | |      | |     | |        |              |      |                |
78
 ___|    |_|      |_|     |_|        |_.............|      |________________|
78
 ___|    |_|      |_|     |_|        |_.............|      |________________|
79
    <-----><-------><------><-----------            <------>                <---
79
    <-----><-------><------><-----------            <------>                <---
80
 t0       t1      t2       t4                     tn                     t0
80
 t0       t1      t2       t4                     tn                     t0
81
 
81
 
82
 The PPM-Frame length is 22.5 ms.
82
 The PPM-Frame length is 22.5 ms.
83
 Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse.
83
 Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse.
84
 The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms.
84
 The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms.
85
 The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms.
85
 The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms.
86
 The minimum duration of all channels at minimum value is  8 * 1 ms = 8 ms.
86
 The minimum duration of all channels at minimum value is  8 * 1 ms = 8 ms.
87
 The maximum duration of all channels at maximum value is  8 * 2 ms = 16 ms.
87
 The maximum duration of all channels at maximum value is  8 * 2 ms = 16 ms.
88
 The remaining time of (22.5 - 8 ms) ms = 14.5 ms  to (22.5 - 16 ms) ms = 6.5 ms is
88
 The remaining time of (22.5 - 8 ms) ms = 14.5 ms  to (22.5 - 16 ms) ms = 6.5 ms is
89
 the syncronization gap.
89
 the syncronization gap.
90
 */
90
 */
91
ISR(TIMER1_CAPT_vect) { // typical rate of 1 ms to 2 ms
91
ISR(TIMER1_CAPT_vect) { // typical rate of 1 ms to 2 ms
92
  int16_t signal = 0, tmp;
92
  int16_t signal, tmp;
93
  static int16_t index;
93
  static int16_t index;
94
  static uint16_t oldICR1 = 0;
94
  static uint16_t oldICR1 = 0;
95
 
95
 
96
  // 16bit Input Capture Register ICR1 contains the timer value TCNT1
96
  // 16bit Input Capture Register ICR1 contains the timer value TCNT1
97
  // at the time the edge was detected
97
  // at the time the edge was detected
98
 
98
 
99
  // calculate the time delay to the previous event time which is stored in oldICR1
99
  // calculate the time delay to the previous event time which is stored in oldICR1
100
  // calculatiing the difference of the two uint16_t and converting the result to an int16_t
100
  // calculatiing the difference of the two uint16_t and converting the result to an int16_t
101
  // implicit handles a timer overflow 65535 -> 0 the right way.
101
  // implicit handles a timer overflow 65535 -> 0 the right way.
102
  signal = (uint16_t) ICR1 - oldICR1;
102
  signal = (uint16_t) ICR1 - oldICR1;
103
  oldICR1 = ICR1;
103
  oldICR1 = ICR1;
104
 
104
 
105
  //sync gap? (3.52 ms < signal < 25.6 ms)
105
  //sync gap? (3.52 ms < signal < 25.6 ms)
106
  if ((signal > 1100) && (signal < 8000)) {
106
  if ((signal > 1100) && (signal < 8000)) {
107
    index = 0;
107
    index = 0;
108
  } else { // within the PPM frame
108
  } else { // within the PPM frame
109
    if (index < MAX_CHANNELS) { // PPM24 supports 12 channels
109
    if (index < MAX_CHANNELS) { // PPM24 supports 12 channels
110
      // check for valid signal length (0.8 ms < signal < 2.1984 ms)
110
      // check for valid signal length (0.8 ms < signal < 2.1984 ms)
111
      // signal range is from 1.0ms/3.2us = 312 to 2.0ms/3.2us = 625
111
      // signal range is from 1.0ms/3.2us = 312 to 2.0ms/3.2us = 625
112
      if ((signal > 250) && (signal < 687)) {
112
      if ((signal > 250) && (signal < 687)) {
113
        // shift signal to zero symmetric range  -154 to 159
113
        // shift signal to zero symmetric range  -154 to 159
114
        signal -= 475; // offset of 1.4912 ms ??? (469 * 3.2us = 1.5008 ms)
114
        signal -= 475; // offset of 1.4912 ms ??? (469 * 3.2us = 1.5008 ms)
115
        // check for stable signal
115
        // check for stable signal
116
        if (abs(signal - PPM_in[index]) < 6) {
116
        if (abs(signal - PPM_in[index]) < 6) {
117
          if (RCQuality < 200)
117
          if (RCQuality < 200)
118
            RCQuality += 10;
118
            RCQuality += 10;
119
          else
119
          else
120
            RCQuality = 200;
120
            RCQuality = 200;
121
        }
121
        }
122
        // If signal is the same as before +/- 1, just keep it there. Naah lets get rid of this slimy sticy stuff.
122
        // If signal is the same as before +/- 1, just keep it there. Naah lets get rid of this slimy sticy stuff.
123
        // if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) {
123
        // if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) {
124
          // In addition, if the signal is very close to 0, just set it to 0.
124
          // In addition, if the signal is very close to 0, just set it to 0.
125
        if (signal >= -1 && signal <= 1) {
125
        if (signal >= -1 && signal <= 1) {
126
          tmp = 0;
126
          tmp = 0;
127
        //} else {
127
        //} else {
128
        //  tmp = PPM_in[index];
128
        //  tmp = PPM_in[index];
129
        //  }
129
        //  }
130
        } else
130
        } else
131
          tmp = signal;
131
          tmp = signal;
132
        PPM_in[index] = tmp; // update channel value
132
        PPM_in[index] = tmp; // update channel value
133
      }
133
      }
134
      index++; // next channel
134
      index++; // next channel
135
      // demux sum signal for channels 5 to 7 to J3, J4, J5
135
      // demux sum signal for channels 5 to 7 to J3, J4, J5
136
      // TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
136
      // TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
137
      // channels are usually available at the receiver anyway.
137
      // channels are usually available at the receiver anyway.
138
      // if(index == 5) J3HIGH; else J3LOW;
138
      // if(index == 5) J3HIGH; else J3LOW;
139
      // if(index == 6) J4HIGH; else J4LOW;
139
      // if(index == 6) J4HIGH; else J4LOW;
140
      // if(CPUType != ATMEGA644P) // not used as TXD1
140
      // if(CPUType != ATMEGA644P) // not used as TXD1
141
      //  {
141
      //  {
142
      //    if(index == 7) J5HIGH; else J5LOW;
142
      //    if(index == 7) J5HIGH; else J5LOW;
143
      //  }
143
      //  }
144
    }
144
    }
145
  }
145
  }
146
}
146
}
147
 
147
 
148
#define RCChannel(dimension) PPM_in[channelMap.channels[dimension]]
148
#define RCChannel(dimension) PPM_in[channelMap.channels[dimension]]
149
#define COMMAND_THRESHOLD 85
149
#define COMMAND_THRESHOLD 85
150
#define COMMAND_CHANNEL_VERTICAL CH_THROTTLE
150
#define COMMAND_CHANNEL_VERTICAL CH_THROTTLE
151
#define COMMAND_CHANNEL_HORIZONTAL CH_YAW
151
#define COMMAND_CHANNEL_HORIZONTAL CH_YAW
152
 
152
 
153
#define RC_SCALING 4
153
#define RC_SCALING 4
154
 
154
 
155
uint8_t getControlModeSwitch(void) {
155
uint8_t getControlModeSwitch(void) {
156
        int16_t channel = RCChannel(CH_MODESWITCH) + POT_OFFSET;
156
        int16_t channel = RCChannel(CH_MODESWITCH) + POT_OFFSET;
157
        uint8_t flightMode = channel < 256/3 ? FLIGHT_MODE_MANUAL :
157
        uint8_t flightMode = channel < 256/3 ? FLIGHT_MODE_MANUAL :
158
                (channel > 256*2/3 ? FLIGHT_MODE_ANGLES : FLIGHT_MODE_RATE);
158
                (channel > 256*2/3 ? FLIGHT_MODE_ANGLES : FLIGHT_MODE_RATE);
159
        return flightMode;
159
        return flightMode;
160
}
160
}
161
 
161
 
162
// Gyro calibration is performed as.... well mode switch with no throttle and no airspeed would be nice.
162
// Gyro calibration is performed as.... well mode switch with no throttle and no airspeed would be nice.
163
// Maybe simply: Very very low throttle.
163
// Maybe simply: Very very low throttle.
164
// Throttle xlow for COMMAND_TIMER: GYROCAL (once).
164
// Throttle xlow for COMMAND_TIMER: GYROCAL (once).
165
// mode switched: CHMOD
165
// mode switched: CHMOD
166
 
166
 
167
uint8_t RC_getCommand(void) {
167
uint8_t RC_getCommand(void) {
168
        uint8_t flightMode = getControlModeSwitch();
168
        uint8_t flightMode = getControlModeSwitch();
169
 
169
 
170
        if (lastFlightMode != flightMode) {
170
        if (lastFlightMode != flightMode) {
171
                lastFlightMode = flightMode;
171
                lastFlightMode = flightMode;
172
                lastRCCommand = COMMAND_CHMOD;
172
                lastRCCommand = COMMAND_CHMOD;
173
                return lastRCCommand;
173
                return lastRCCommand;
174
        }
174
        }
175
 
175
 
176
        int16_t channel = RCChannel(CH_THROTTLE);
176
        int16_t channel = RCChannel(CH_THROTTLE);
177
 
177
 
178
        if (channel <= -140) { // <= 900 us
178
        if (channel <= -140) { // <= 900 us
179
                lastRCCommand = COMMAND_GYROCAL;
179
                lastRCCommand = COMMAND_GYROCAL;
180
        } else {
180
        } else {
181
          lastRCCommand = COMMAND_NONE;
181
          lastRCCommand = COMMAND_NONE;
182
        }
182
        }
183
        return lastRCCommand;
183
        return lastRCCommand;
184
}
184
}
185
 
185
 
186
uint8_t RC_getArgument(void) {
186
uint8_t RC_getArgument(void) {
187
        return lastFlightMode;
187
        return lastFlightMode;
188
}
188
}
189
 
189
 
190
/*
190
/*
191
 * Get Pitch, Roll, Throttle, Yaw values
191
 * Get Pitch, Roll, Throttle, Yaw values
192
 */
192
 */
193
void RC_periodicTaskAndPRYT(int16_t* PRYT) {
193
void RC_periodicTaskAndPRYT(int16_t* PRYT) {
194
  if (RCQuality) {
194
  if (RCQuality) {
195
    RCQuality--;
195
    RCQuality--;
196
 
196
 
197
    debugOut.analog[20] = RCChannel(CH_ELEVATOR);
197
    debugOut.analog[20] = RCChannel(CH_ELEVATOR);
198
    debugOut.analog[21] = RCChannel(CH_AILERONS);
198
    debugOut.analog[21] = RCChannel(CH_AILERONS);
199
    debugOut.analog[22] = RCChannel(CH_RUDDER);
199
    debugOut.analog[22] = RCChannel(CH_RUDDER);
200
    debugOut.analog[23] = RCChannel(CH_THROTTLE);
200
    debugOut.analog[23] = RCChannel(CH_THROTTLE);
201
 
201
 
202
    PRYT[CONTROL_ELEVATOR]   = RCChannel(CH_ELEVATOR) * RC_SCALING;
202
    PRYT[CONTROL_ELEVATOR]   = RCChannel(CH_ELEVATOR) * RC_SCALING;
203
    PRYT[CONTROL_AILERONS]   = RCChannel(CH_AILERONS) * RC_SCALING;
203
    PRYT[CONTROL_AILERONS]   = RCChannel(CH_AILERONS) * RC_SCALING;
204
    PRYT[CONTROL_RUDDER]     = RCChannel(CH_RUDDER)   * RC_SCALING;
204
    PRYT[CONTROL_RUDDER]     = RCChannel(CH_RUDDER)   * RC_SCALING;
205
    PRYT[CONTROL_THROTTLE]   = RCChannel(CH_THROTTLE) * RC_SCALING;
205
    PRYT[CONTROL_THROTTLE]   = RCChannel(CH_THROTTLE) * RC_SCALING;
206
  } // if RCQuality is no good, we just do nothing.
206
  } // if RCQuality is no good, we just do nothing.
207
}
207
}
208
 
208
 
209
/*
209
/*
210
 * Get other channel value
210
 * Get other channel value
211
 */
211
 */
212
int16_t RC_getVariable(uint8_t varNum) {
212
int16_t RC_getVariable(uint8_t varNum) {
213
  if (varNum < 4)
213
  if (varNum < 4)
214
    // 0th variable is 5th channel (1-based) etc.
214
    // 0th variable is 5th channel (1-based) etc.
215
    return RCChannel(varNum + CH_POTS) + POT_OFFSET;
215
    return RCChannel(varNum + CH_POTS) + POT_OFFSET;
216
  /*
216
  /*
217
   * Let's just say:
217
   * Let's just say:
218
   * The RC variable i is hardwired to channel i, i>=4
218
   * The RC variable i is hardwired to channel i, i>=4
219
   */
219
   */
220
  return PPM_in[varNum] + POT_OFFSET;
220
  return PPM_in[varNum] + POT_OFFSET;
221
}
221
}
222
 
222
 
223
uint8_t RC_getSignalQuality(void) {
223
uint8_t RC_getSignalQuality(void) {
224
  if (RCQuality >= 160)
224
  if (RCQuality >= 160)
225
    return SIGNAL_GOOD;
225
    return SIGNAL_GOOD;
226
  if (RCQuality >= 140)
226
  if (RCQuality >= 140)
227
    return SIGNAL_OK;
227
    return SIGNAL_OK;
228
  if (RCQuality >= 120)
228
  if (RCQuality >= 120)
229
    return SIGNAL_BAD;
229
    return SIGNAL_BAD;
230
  return SIGNAL_LOST;
230
  return SIGNAL_LOST;
231
}
231
}
232
 
232
 
233
/*
233
/*
234
 * To should fired only when the right stick is in the center position.
234
 * To should fired only when the right stick is in the center position.
235
 * This will cause the value of pitch and roll stick to be adjusted
235
 * This will cause the value of pitch and roll stick to be adjusted
236
 * to zero (not just to near zero, as per the assumption in rc.c
236
 * to zero (not just to near zero, as per the assumption in rc.c
237
 * about the rc signal. I had values about 50..70 with a Futaba
237
 * about the rc signal. I had values about 50..70 with a Futaba
238
 * R617 receiver.) This calibration is not strictly necessary, but
238
 * R617 receiver.) This calibration is not strictly necessary, but
239
 * for control logic that depends on the exact (non)center position
239
 * for control logic that depends on the exact (non)center position
240
 * of a stick, it may be useful.
240
 * of a stick, it may be useful.
241
 */
241
 */
242
void RC_calibrate(void) {
242
void RC_calibrate(void) {
243
  // Do nothing.
243
  // Do nothing.
244
}
244
}
245
 
245