Subversion Repositories FlightCtrl

Rev

Rev 2099 | Rev 2103 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2099 Rev 2102
1
#include <avr/io.h>
1
#include <avr/io.h>
2
#include <avr/interrupt.h>
2
#include <avr/interrupt.h>
3
#include <avr/pgmspace.h>
3
#include <avr/pgmspace.h>
4
#include <stdlib.h>
4
#include <stdlib.h>
5
 
5
 
6
#include "analog.h"
6
#include "analog.h"
7
#include "attitude.h"
7
#include "attitude.h"
8
#include "sensors.h"
8
#include "sensors.h"
9
#include "printf_P.h"
9
#include "printf_P.h"
-
 
10
#include "isqrt.h"
10
 
11
 
11
// for Delay functions
12
// for Delay functions
12
#include "timer0.h"
13
#include "timer0.h"
13
 
14
 
14
// For reading and writing acc. meter offsets.
15
// For reading and writing acc. meter offsets.
15
#include "eeprom.h"
16
#include "eeprom.h"
16
 
17
 
17
// For debugOut
18
// For debugOut
18
#include "output.h"
19
#include "output.h"
19
 
20
 
20
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
21
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
21
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
22
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
22
 
23
 
23
const char* recal = ", recalibration needed.";
24
const char* recal = ", recalibration needed.";
24
 
25
 
25
/*
26
/*
26
 * For each A/D conversion cycle, each analog channel is sampled a number of times
27
 * For each A/D conversion cycle, each analog channel is sampled a number of times
27
 * (see array channelsForStates), and the results for each channel are summed.
28
 * (see array channelsForStates), and the results for each channel are summed.
28
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
29
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
29
 * They are exported in the analog.h file - but please do not use them! The only
30
 * They are exported in the analog.h file - but please do not use them! The only
30
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
31
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
31
 * the offsets with the DAC.
32
 * the offsets with the DAC.
32
 */
33
 */
33
volatile uint16_t sensorInputs[8];
34
volatile uint16_t sensorInputs[8];
34
//int16_t acc[3];
35
//int16_t acc[3];
35
//int16_t filteredAcc[3] = { 0,0,0 };
36
//int16_t filteredAcc[3] = { 0,0,0 };
36
 
37
 
37
/*
38
/*
38
 * These 4 exported variables are zero-offset. The "PID" ones are used
39
 * These 4 exported variables are zero-offset. The "PID" ones are used
39
 * in the attitude control as rotation rates. The "ATT" ones are for
40
 * in the attitude control as rotation rates. The "ATT" ones are for
40
 * integration to angles.
41
 * integration to angles.
41
 */
42
 */
42
int16_t gyro_PID[3];
43
int16_t gyro_PID[3];
43
int16_t gyro_ATT[3];
44
int16_t gyro_ATT[3];
44
int16_t gyroD[3];
45
int16_t gyroD[3];
45
int16_t gyroDWindow[2][GYRO_D_WINDOW_LENGTH];
46
int16_t gyroDWindow[2][GYRO_D_WINDOW_LENGTH];
46
uint8_t gyroDWindowIdx = 0;
47
uint8_t gyroDWindowIdx = 0;
47
int16_t dHeight;
48
//int16_t dHeight;
48
uint32_t gyroActivity;
49
//uint32_t gyroActivity;
49
 
50
 
50
/*
51
/*
51
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
52
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
52
 * standing still. They are used for adjusting the gyro and acc. meter values
53
 * standing still. They are used for adjusting the gyro and acc. meter values
53
 * to be centered on zero.
54
 * to be centered on zero.
54
 */
55
 */
55
 
56
 
56
sensorOffset_t gyroOffset;
57
sensorOffset_t gyroOffset;
57
sensorOffset_t accOffset;
58
sensorOffset_t accOffset;
58
sensorOffset_t gyroAmplifierOffset;
59
sensorOffset_t gyroAmplifierOffset;
59
 
60
 
60
/*
61
/*
61
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
62
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
62
 * If a sensor is used in an orientation where one but not both of the axes has
63
 * If a sensor is used in an orientation where one but not both of the axes has
63
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
64
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
64
 * Transform:
65
 * Transform:
65
 * pitch <- pp*pitch + pr*roll
66
 * pitch <- pp*pitch + pr*roll
66
 * roll  <- rp*pitch + rr*roll
67
 * roll  <- rp*pitch + rr*roll
67
 * Not reversed, GYRO_QUADRANT:
68
 * Not reversed, GYRO_QUADRANT:
68
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
69
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
69
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
70
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
70
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
71
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
71
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
72
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
72
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
73
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
73
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
74
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
74
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
75
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
75
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
76
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
76
 * Reversed, GYRO_QUADRANT:
77
 * Reversed, GYRO_QUADRANT:
77
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
78
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
78
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
79
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
79
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
80
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
80
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
81
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
81
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
82
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
82
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
83
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
83
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
84
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
84
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
85
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
85
 */
86
 */
86
 
87
 
87
void rotate(int16_t* result, uint8_t quadrant, uint8_t reversePR, uint8_t reverseYaw) {
88
void rotate(int16_t* result, uint8_t quadrant, uint8_t reversePR, uint8_t reverseYaw) {
88
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
89
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
89
  // Pitch to Pitch part
90
  // Pitch to Pitch part
90
  int8_t xx = reversePR ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
91
  int8_t xx = reversePR ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
91
  // Roll to Pitch part
92
  // Roll to Pitch part
92
  int8_t xy = rotationTab[(quadrant+2)%8];
93
  int8_t xy = rotationTab[(quadrant+2)%8];
93
  // Pitch to Roll part
94
  // Pitch to Roll part
94
  int8_t yx = reversePR ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
95
  int8_t yx = reversePR ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
95
  // Roll to Roll part
96
  // Roll to Roll part
96
  int8_t yy = rotationTab[quadrant];
97
  int8_t yy = rotationTab[quadrant];
97
 
98
 
98
  int16_t xIn = result[0];
99
  int16_t xIn = result[0];
99
  result[0] = xx*xIn + xy*result[1];
100
  result[0] = xx*xIn + xy*result[1];
100
  result[1] = yx*xIn + yy*result[1];
101
  result[1] = yx*xIn + yy*result[1];
101
 
102
 
102
  if (quadrant & 1) {
103
  if (quadrant & 1) {
103
        // A rotation was used above, where the factors were too large by sqrt(2).
104
        // A rotation was used above, where the factors were too large by sqrt(2).
104
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
105
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
105
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
106
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
106
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
107
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
107
        result[0] = (result[0]*11) >> 4;
108
        result[0] = (result[0]*11) >> 4;
108
        result[1] = (result[1]*11) >> 4;
109
        result[1] = (result[1]*11) >> 4;
109
  }
110
  }
110
 
111
 
111
  if (reverseYaw)
112
  if (reverseYaw)
112
    result[3] =-result[3];
113
    result[3] =-result[3];
113
}
114
}
114
 
115
 
115
/*
116
/*
116
 * Airspeed
117
 * Airspeed
117
 */
118
 */
118
uint16_t simpleAirPressure;
119
uint16_t simpleAirPressure;
-
 
120
uint16_t airspeedVelocity;
119
 
121
 
120
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
122
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
121
// int32_t filteredAirPressure;
123
// int32_t filteredAirPressure;
122
 
124
 
123
#define MAX_AIRPRESSURE_WINDOW_LENGTH 32
125
#define MAX_AIRPRESSURE_WINDOW_LENGTH 32
124
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
126
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
125
int32_t windowedAirPressure;
127
int32_t windowedAirPressure;
126
uint8_t windowPtr = 0;
128
uint8_t windowPtr = 0;
127
 
129
 
128
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
130
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
129
int32_t airPressureSum;
131
int32_t airPressureSum;
130
 
132
 
131
// The number of samples summed into airPressureSum so far.
133
// The number of samples summed into airPressureSum so far.
132
uint8_t pressureMeasurementCount;
134
uint8_t pressureMeasurementCount;
133
 
135
 
134
 
136
 
135
/*
137
/*
136
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
138
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
137
 * That is divided by 3 below, for a final 10.34 per volt.
139
 * That is divided by 3 below, for a final 10.34 per volt.
138
 * So the initial value of 100 is for 9.7 volts.
140
 * So the initial value of 100 is for 9.7 volts.
139
 */
141
 */
140
int16_t UBat = 100;
142
int16_t UBat = 100;
141
 
143
 
142
/*
144
/*
143
 * Control and status.
145
 * Control and status.
144
 */
146
 */
145
volatile uint8_t analogDataReady = 1;
147
volatile uint8_t analogDataReady = 1;
146
 
148
 
147
/*
149
/*
148
 * Experiment: Measuring vibration-induced sensor noise.
150
 * Experiment: Measuring vibration-induced sensor noise.
149
 */
151
 */
150
uint16_t gyroNoisePeak[3];
152
uint16_t gyroNoisePeak[3];
151
 
153
 
152
volatile uint8_t adState;
154
volatile uint8_t adState;
153
volatile uint8_t adChannel;
155
volatile uint8_t adChannel;
154
 
156
 
155
// ADC channels
157
// ADC channels
156
#define AD_GYRO_YAW       0
158
#define AD_GYRO_YAW       0
157
#define AD_GYRO_ROLL      1
159
#define AD_GYRO_ROLL      1
158
#define AD_GYRO_PITCH     2
160
#define AD_GYRO_PITCH     2
159
#define AD_AIRPRESSURE    3
161
#define AD_AIRPRESSURE    3
160
#define AD_UBAT           4
162
#define AD_UBAT           4
161
#define AD_ACC_Z          5
163
#define AD_ACC_Z          5
162
#define AD_ACC_ROLL       6
164
#define AD_ACC_ROLL       6
163
#define AD_ACC_PITCH      7
165
#define AD_ACC_PITCH      7
164
 
166
 
165
/*
167
/*
166
 * Table of AD converter inputs for each state.
168
 * Table of AD converter inputs for each state.
167
 * The number of samples summed for each channel is equal to
169
 * The number of samples summed for each channel is equal to
168
 * the number of times the channel appears in the array.
170
 * the number of times the channel appears in the array.
169
 * The max. number of samples that can be taken in 2 ms is:
171
 * The max. number of samples that can be taken in 2 ms is:
170
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
172
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
171
 * loop needs a little time between reading AD values and
173
 * loop needs a little time between reading AD values and
172
 * re-enabling ADC, the real limit is (how much?) lower.
174
 * re-enabling ADC, the real limit is (how much?) lower.
173
 * The acc. sensor is sampled even if not used - or installed
175
 * The acc. sensor is sampled even if not used - or installed
174
 * at all. The cost is not significant.
176
 * at all. The cost is not significant.
175
 */
177
 */
176
 
178
 
177
const uint8_t channelsForStates[] PROGMEM = {
179
const uint8_t channelsForStates[] PROGMEM = {
178
  AD_GYRO_PITCH,
180
  AD_GYRO_PITCH,
179
  AD_GYRO_ROLL,
181
  AD_GYRO_ROLL,
180
  AD_GYRO_YAW,
182
  AD_GYRO_YAW,
181
 
183
 
182
  AD_AIRPRESSURE,
184
  AD_AIRPRESSURE,
183
 
185
 
184
  AD_GYRO_PITCH,
186
  AD_GYRO_PITCH,
185
  AD_GYRO_ROLL,
187
  AD_GYRO_ROLL,
186
  AD_GYRO_YAW,
188
  AD_GYRO_YAW,
187
 
189
 
188
  AD_UBAT,
190
  AD_UBAT,
189
 
191
 
190
  AD_GYRO_PITCH,
192
  AD_GYRO_PITCH,
191
  AD_GYRO_ROLL,
193
  AD_GYRO_ROLL,
192
  AD_GYRO_YAW,
194
  AD_GYRO_YAW,
193
 
195
 
194
  AD_AIRPRESSURE,
196
  AD_AIRPRESSURE,
195
 
197
 
196
  AD_GYRO_PITCH,
198
  AD_GYRO_PITCH,
197
  AD_GYRO_ROLL,
199
  AD_GYRO_ROLL,
198
  AD_GYRO_YAW
200
  AD_GYRO_YAW
199
};
201
};
200
 
202
 
201
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
203
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
202
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
204
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
203
 
205
 
204
void analog_init(void) {
206
void analog_init(void) {
205
        uint8_t sreg = SREG;
207
        uint8_t sreg = SREG;
206
        // disable all interrupts before reconfiguration
208
        // disable all interrupts before reconfiguration
207
        cli();
209
        cli();
208
 
210
 
209
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
211
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
210
        DDRA = 0x00;
212
        DDRA = 0x00;
211
        PORTA = 0x00;
213
        PORTA = 0x00;
212
        // Digital Input Disable Register 0
214
        // Digital Input Disable Register 0
213
        // Disable digital input buffer for analog adc_channel pins
215
        // Disable digital input buffer for analog adc_channel pins
214
        DIDR0 = 0xFF;
216
        DIDR0 = 0xFF;
215
        // external reference, adjust data to the right
217
        // external reference, adjust data to the right
216
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
218
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
217
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
219
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
218
        ADMUX = (ADMUX & 0xE0);
220
        ADMUX = (ADMUX & 0xE0);
219
        //Set ADC Control and Status Register A
221
        //Set ADC Control and Status Register A
220
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
222
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
221
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
223
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
222
        //Set ADC Control and Status Register B
224
        //Set ADC Control and Status Register B
223
        //Trigger Source to Free Running Mode
225
        //Trigger Source to Free Running Mode
224
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
226
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
225
 
227
 
226
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
228
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
227
          airPressureWindow[i] = 0;
229
          airPressureWindow[i] = 0;
228
        }
230
        }
229
    windowedAirPressure = 0;
231
    windowedAirPressure = 0;
230
 
232
 
231
        startAnalogConversionCycle();
233
        startAnalogConversionCycle();
232
 
234
 
233
        // restore global interrupt flags
235
        // restore global interrupt flags
234
        SREG = sreg;
236
        SREG = sreg;
235
}
237
}
236
 
238
 
237
uint16_t rawGyroValue(uint8_t axis) {
239
uint16_t rawGyroValue(uint8_t axis) {
238
        return sensorInputs[AD_GYRO_PITCH-axis];
240
        return sensorInputs[AD_GYRO_PITCH-axis];
239
}
241
}
240
 
242
 
241
/*
243
/*
242
uint16_t rawAccValue(uint8_t axis) {
244
uint16_t rawAccValue(uint8_t axis) {
243
        return sensorInputs[AD_ACC_PITCH-axis];
245
        return sensorInputs[AD_ACC_PITCH-axis];
244
}
246
}
245
*/
247
*/
246
 
248
 
247
void measureNoise(const int16_t sensor,
249
void measureNoise(const int16_t sensor,
248
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
250
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
249
        if (sensor > (int16_t) (*noiseMeasurement)) {
251
        if (sensor > (int16_t) (*noiseMeasurement)) {
250
                *noiseMeasurement = sensor;
252
                *noiseMeasurement = sensor;
251
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
253
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
252
                *noiseMeasurement = -sensor;
254
                *noiseMeasurement = -sensor;
253
        } else if (*noiseMeasurement > damping) {
255
        } else if (*noiseMeasurement > damping) {
254
                *noiseMeasurement -= damping;
256
                *noiseMeasurement -= damping;
255
        } else {
257
        } else {
256
                *noiseMeasurement = 0;
258
                *noiseMeasurement = 0;
257
        }
259
        }
258
}
260
}
259
 
261
 
260
/*
262
/*
261
 * Min.: 0
263
 * Min.: 0
262
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
264
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
263
 */
265
 */
264
uint16_t getSimplePressure(int advalue) {
266
uint16_t getSimplePressure(int advalue) {
265
        return advalue;
267
        return advalue;
266
}
268
}
267
 
269
 
268
void startAnalogConversionCycle(void) {
270
void startAnalogConversionCycle(void) {
269
  analogDataReady = 0;
271
  analogDataReady = 0;
270
 
272
 
271
  // Stop the sampling. Cycle is over.
273
  // Stop the sampling. Cycle is over.
272
  for (uint8_t i = 0; i < 8; i++) {
274
  for (uint8_t i = 0; i < 8; i++) {
273
    sensorInputs[i] = 0;
275
    sensorInputs[i] = 0;
274
  }
276
  }
275
  adState = 0;
277
  adState = 0;
276
  adChannel = AD_GYRO_PITCH;
278
  adChannel = AD_GYRO_PITCH;
277
  ADMUX = (ADMUX & 0xE0) | adChannel;
279
  ADMUX = (ADMUX & 0xE0) | adChannel;
278
  startADC();
280
  startADC();
279
}
281
}
280
 
282
 
281
/*****************************************************
283
/*****************************************************
282
 * Interrupt Service Routine for ADC
284
 * Interrupt Service Routine for ADC
283
 * Runs at 312.5 kHz or 3.2 �s. When all states are
285
 * Runs at 312.5 kHz or 3.2 �s. When all states are
284
 * processed further conversions are stopped.
286
 * processed further conversions are stopped.
285
 *****************************************************/
287
 *****************************************************/
286
ISR(ADC_vect) {
288
ISR(ADC_vect) {
287
  sensorInputs[adChannel] += ADC;
289
  sensorInputs[adChannel] += ADC;
288
  // set up for next state.
290
  // set up for next state.
289
  adState++;
291
  adState++;
290
  if (adState < sizeof(channelsForStates)) {
292
  if (adState < sizeof(channelsForStates)) {
291
    adChannel = pgm_read_byte(&channelsForStates[adState]);
293
    adChannel = pgm_read_byte(&channelsForStates[adState]);
292
    // set adc muxer to next adChannel
294
    // set adc muxer to next adChannel
293
    ADMUX = (ADMUX & 0xE0) | adChannel;
295
    ADMUX = (ADMUX & 0xE0) | adChannel;
294
    // after full cycle stop further interrupts
296
    // after full cycle stop further interrupts
295
    startADC();
297
    startADC();
296
  } else {
298
  } else {
297
    analogDataReady = 1;
299
    analogDataReady = 1;
298
    // do not restart ADC converter. 
300
    // do not restart ADC converter. 
299
  }
301
  }
300
}
302
}
301
 
303
 
302
/*
304
/*
303
void measureGyroActivity(int16_t newValue) {
305
void measureGyroActivity(int16_t newValue) {
304
  gyroActivity += (uint32_t)((int32_t)newValue * newValue);
306
  gyroActivity += (uint32_t)((int32_t)newValue * newValue);
305
}
307
}
306
 
308
 
307
#define GADAMPING 6
309
#define GADAMPING 6
308
void dampenGyroActivity(void) {
310
void dampenGyroActivity(void) {
309
  static uint8_t cnt = 0;
311
  static uint8_t cnt = 0;
310
  if (++cnt >= IMUConfig.gyroActivityDamping) {
312
  if (++cnt >= IMUConfig.gyroActivityDamping) {
311
    cnt = 0;
313
    cnt = 0;
312
    gyroActivity *= (uint32_t)((1L<<GADAMPING)-1);
314
    gyroActivity *= (uint32_t)((1L<<GADAMPING)-1);
313
    gyroActivity >>= GADAMPING;
315
    gyroActivity >>= GADAMPING;
314
  }
316
  }
315
}
317
}
316
*/
318
*/
317
 
319
 
318
void analog_updateGyros(void) {
320
void analog_updateGyros(void) {
319
  // for various filters...
321
  // for various filters...
320
  int16_t tempOffsetGyro[3], tempGyro;
322
  int16_t tempOffsetGyro[3], tempGyro;
321
 
323
 
322
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
324
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
323
  for (uint8_t axis=0; axis<3; axis++) {
325
  for (uint8_t axis=0; axis<3; axis++) {
324
    tempGyro = rawGyroValue(axis);
326
    tempGyro = rawGyroValue(axis);
325
    /*
327
    /*
326
     * Process the gyro data for the PID controller.
328
     * Process the gyro data for the PID controller.
327
     */
329
     */
328
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
330
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
329
    //    gyro with a wider range, and helps counter saturation at full control.
331
    //    gyro with a wider range, and helps counter saturation at full control.
330
   
332
   
331
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
333
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
332
      if (tempGyro < SENSOR_MIN) {
334
      if (tempGyro < SENSOR_MIN) {
333
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
335
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
334
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
336
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
335
      } else if (tempGyro > SENSOR_MAX) {
337
      } else if (tempGyro > SENSOR_MAX) {
336
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
338
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
337
                tempGyro = (tempGyro - SENSOR_MAX) * EXTRAPOLATION_SLOPE + SENSOR_MAX;
339
                tempGyro = (tempGyro - SENSOR_MAX) * EXTRAPOLATION_SLOPE + SENSOR_MAX;
338
      }
340
      }
339
    }
341
    }
340
 
342
 
341
    // 2) Apply sign and offset, scale before filtering.
343
    // 2) Apply sign and offset, scale before filtering.
342
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]);
344
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]);
343
  }
345
  }
344
 
346
 
345
  // 2.1: Transform axes.
347
  // 2.1: Transform axes.
346
  rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW);
348
  rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW);
347
 
349
 
348
  for (uint8_t axis=0; axis<3; axis++) {
350
  for (uint8_t axis=0; axis<3; axis++) {
349
        // 3) Filter.
351
        // 3) Filter.
350
    tempOffsetGyro[axis] = (gyro_PID[axis] * (IMUConfig.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / IMUConfig.gyroPIDFilterConstant;
352
    tempOffsetGyro[axis] = (gyro_PID[axis] * (IMUConfig.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / IMUConfig.gyroPIDFilterConstant;
351
 
353
 
352
    // 4) Measure noise.
354
    // 4) Measure noise.
353
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
355
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
354
 
356
 
355
    // 5) Differential measurement.
357
    // 5) Differential measurement.
356
    // gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
358
    // gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
357
    int16_t diff = tempOffsetGyro[axis] - gyro_PID[axis];
359
    int16_t diff = tempOffsetGyro[axis] - gyro_PID[axis];
358
    gyroD[axis] -= gyroDWindow[axis][gyroDWindowIdx];
360
    gyroD[axis] -= gyroDWindow[axis][gyroDWindowIdx];
359
    gyroD[axis] += diff;
361
    gyroD[axis] += diff;
360
    gyroDWindow[axis][gyroDWindowIdx] = diff;
362
    gyroDWindow[axis][gyroDWindowIdx] = diff;
361
 
363
 
362
    // 6) Done.
364
    // 6) Done.
363
    gyro_PID[axis] = tempOffsetGyro[axis];
365
    gyro_PID[axis] = tempOffsetGyro[axis];
364
 
366
 
365
    // Prepare tempOffsetGyro for next calculation below...
367
    // Prepare tempOffsetGyro for next calculation below...
366
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]);
368
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]);
367
  }
369
  }
368
 
370
 
369
  /*
371
  /*
370
   * Now process the data for attitude angles.
372
   * Now process the data for attitude angles.
371
   */
373
   */
372
  rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW);
374
  rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW);
373
 
375
 
374
  // dampenGyroActivity();
376
  // dampenGyroActivity();
375
  gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
377
  gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
376
  gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
378
  gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
377
 
-
 
378
  /*
-
 
379
  measureGyroActivity(gyroD[PITCH]);
-
 
380
  measureGyroActivity(gyroD[ROLL]);
-
 
381
  measureGyroActivity(yawGyro);
-
 
382
  */
-
 
383
 
379
 
384
  if (++gyroDWindowIdx >= IMUConfig.gyroDWindowLength) {
380
  if (++gyroDWindowIdx >= IMUConfig.gyroDWindowLength) {
385
      gyroDWindowIdx = 0;
381
      gyroDWindowIdx = 0;
386
  }
382
  }
387
}
383
}
388
 
384
 
389
void analog_updateAirPressure(void) {
385
void analog_updateAirPressure(void) {
390
  uint16_t rawAirPressure = sensorInputs[AD_AIRPRESSURE];
386
  uint16_t rawAirPressure = sensorInputs[AD_AIRPRESSURE];
391
  simpleAirPressure = rawAirPressure;
387
  simpleAirPressure = rawAirPressure;
-
 
388
  airspeedVelocity = isqrt16(simpleAirPressure);
392
}
389
}
393
 
390
 
394
void analog_updateBatteryVoltage(void) {
391
void analog_updateBatteryVoltage(void) {
395
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
392
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
396
  // This is divided by 3 --> 10.34 counts per volt.
393
  // This is divided by 3 --> 10.34 counts per volt.
397
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
394
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
398
}
395
}
399
 
396
 
400
void analog_update(void) {
397
void analog_update(void) {
401
  analog_updateGyros();
398
  analog_updateGyros();
402
  // analog_updateAccelerometers();
399
  // analog_updateAccelerometers();
403
  analog_updateAirPressure();
400
  analog_updateAirPressure();
404
  analog_updateBatteryVoltage();
401
  analog_updateBatteryVoltage();
405
#ifdef USE_MK3MAG
402
#ifdef USE_MK3MAG
406
  magneticHeading = volatileMagneticHeading;
403
  magneticHeading = volatileMagneticHeading;
407
#endif
404
#endif
408
 
405
 
409
}
406
}
410
 
407
 
411
void analog_setNeutral() {
408
void analog_setNeutral() {
412
  gyro_init();
409
  gyro_init();
413
 
410
 
414
  if (gyroOffset_readFromEEProm()) {
411
  if (gyroOffset_readFromEEProm()) {
415
    printf("gyro offsets invalid%s",recal);
412
    printf("gyro offsets invalid%s",recal);
416
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING;
413
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING;
417
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING;
414
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING;
418
  }
415
  }
419
 
-
 
420
  /*
-
 
421
  if (accOffset_readFromEEProm()) {
-
 
422
    printf("acc. meter offsets invalid%s",recal);
-
 
423
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
-
 
424
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
-
 
425
  }
-
 
426
  */
-
 
427
 
416
 
428
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
417
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
429
  for (uint8_t i=PITCH; i<=YAW; i++) {
418
  for (uint8_t i=PITCH; i<=YAW; i++) {
430
          gyroNoisePeak[i] = 0;
419
          gyroNoisePeak[i] = 0;
431
          gyroD[i] = 0;
420
          gyroD[i] = 0;
432
          for (uint8_t j=0; j<GYRO_D_WINDOW_LENGTH; j++) {
421
          for (uint8_t j=0; j<GYRO_D_WINDOW_LENGTH; j++) {
433
                  gyroDWindow[i][j] = 0;
422
                  gyroDWindow[i][j] = 0;
434
          }
423
          }
435
  }
424
  }
436
  // Setting offset values has an influence in the analog.c ISR
425
  // Setting offset values has an influence in the analog.c ISR
437
  // Therefore run measurement for 100ms to achive stable readings
426
  // Therefore run measurement for 100ms to achive stable readings
438
  delay_ms_with_adc_measurement(100, 0);
427
  delay_ms_with_adc_measurement(100, 0);
439
 
428
 
440
  gyroActivity = 0;
429
  // gyroActivity = 0;
441
}
430
}
442
 
431
 
443
void analog_calibrateGyros(void) {
432
void analog_calibrateGyros(void) {
444
#define GYRO_OFFSET_CYCLES 32
433
#define GYRO_OFFSET_CYCLES 32
445
  uint8_t i, axis;
434
  uint8_t i, axis;
446
  int32_t offsets[3] = { 0, 0, 0 };
435
  int32_t offsets[3] = { 0, 0, 0 };
447
  gyro_calibrate();
436
  gyro_calibrate();
448
 
437
 
449
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
438
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
450
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
439
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
451
    delay_ms_with_adc_measurement(10, 1);
440
    delay_ms_with_adc_measurement(10, 1);
452
    for (axis = PITCH; axis <= YAW; axis++) {
441
    for (axis = PITCH; axis <= YAW; axis++) {
453
      offsets[axis] += rawGyroValue(axis);
442
      offsets[axis] += rawGyroValue(axis);
454
    }
443
    }
455
  }
444
  }
456
 
445
 
457
  for (axis = PITCH; axis <= YAW; axis++) {
446
  for (axis = PITCH; axis <= YAW; axis++) {
458
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
447
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
459
 
448
 
460
    int16_t min = (512-200) * GYRO_OVERSAMPLING;
449
    int16_t min = (512-200) * GYRO_OVERSAMPLING;
461
    int16_t max = (512+200) * GYRO_OVERSAMPLING;
450
    int16_t max = (512+200) * GYRO_OVERSAMPLING;
462
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
451
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
463
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
452
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
464
  }
453
  }
465
 
454
 
466
  gyroOffset_writeToEEProm();  
455
  gyroOffset_writeToEEProm();  
467
  startAnalogConversionCycle();
456
  startAnalogConversionCycle();
468
}
457
}
469
 
458