Subversion Repositories FlightCtrl

Rev

Rev 2052 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2052 Rev 2055
1
#include <stdlib.h>
1
#include <stdlib.h>
2
#include <avr/io.h>
2
#include <avr/io.h>
3
 
3
 
4
#include "attitude.h"
4
#include "attitude.h"
5
#include "dongfangMath.h"
5
#include "dongfangMath.h"
6
#include "commands.h"
6
#include "commands.h"
7
 
7
 
8
// For scope debugging only!
8
// For scope debugging only!
9
#include "rc.h"
9
#include "rc.h"
10
 
10
 
11
// where our main data flow comes from.
11
// where our main data flow comes from.
12
#include "analog.h"
12
#include "analog.h"
13
 
13
 
14
#include "configuration.h"
14
#include "configuration.h"
15
#include "output.h"
15
#include "output.h"
16
 
16
 
17
// Some calculations are performed depending on some stick related things.
17
// Some calculations are performed depending on some stick related things.
18
#include "controlMixer.h"
18
#include "controlMixer.h"
19
 
19
 
20
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
20
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
21
 
21
 
22
/*
22
/*
23
 * Gyro readings, as read from the analog module. It would have been nice to flow
23
 * Gyro readings, as read from the analog module. It would have been nice to flow
24
 * them around between the different calculations as a struct or array (doing
24
 * them around between the different calculations as a struct or array (doing
25
 * things functionally without side effects) but this is shorter and probably
25
 * things functionally without side effects) but this is shorter and probably
26
 * faster too.
26
 * faster too.
27
 * The variables are overwritten at each attitude calculation invocation - the values
27
 * The variables are overwritten at each attitude calculation invocation - the values
28
 * are not preserved or reused.
28
 * are not preserved or reused.
29
 */
29
 */
30
int16_t rate_ATT[2], yawRate;
30
int16_t rate_ATT[2], yawRate;
31
 
31
 
32
// With different (less) filtering
32
// With different (less) filtering
33
int16_t rate_PID[2];
33
int16_t rate_PID[2];
34
int16_t differential[2];
34
int16_t differential[2];
35
 
35
 
36
/*
36
/*
37
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
37
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
38
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
38
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
39
 * coordinate system. If axis copling is disabled, the gyro readings will be
39
 * coordinate system. If axis copling is disabled, the gyro readings will be
40
 * copied into these directly.
40
 * copied into these directly.
41
 * These are global for the same pragmatic reason as with the gyro readings.
41
 * These are global for the same pragmatic reason as with the gyro readings.
42
 * The variables are overwritten at each attitude calculation invocation - the values
42
 * The variables are overwritten at each attitude calculation invocation - the values
43
 * are not preserved or reused.
43
 * are not preserved or reused.
44
 */
44
 */
45
int16_t ACRate[2], ACYawRate;
45
int16_t ACRate[2], ACYawRate;
46
 
46
 
47
/*
47
/*
48
 * Gyro integrals. These are the rotation angles of the airframe compared to the
48
 * Gyro integrals. These are the rotation angles of the airframe compared to the
49
 * horizontal plane, yaw relative to yaw at start.
49
 * horizontal plane, yaw relative to yaw at start.
50
 */
50
 */
51
int32_t attitude[2];
51
int32_t attitude[2];
52
 
52
 
53
//int readingHeight = 0;
53
//int readingHeight = 0;
54
 
54
 
55
// Yaw angle and compass stuff.
55
// Yaw angle and compass stuff.
56
int32_t headingError;
56
int32_t headingError;
57
 
57
 
58
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
58
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
59
// Not necessary. Never read anywhere.
59
// Not necessary. Never read anywhere.
60
// int16_t compassOffCourse = 0;
60
// int16_t compassOffCourse = 0;
61
 
61
 
62
uint16_t ignoreCompassTimer = 0;// 500;
62
uint16_t ignoreCompassTimer = 0;// 500;
63
 
63
 
64
int32_t heading; // Yaw Gyro Integral supported by compass
64
int32_t heading; // Yaw Gyro Integral supported by compass
65
int16_t yawGyroDrift;
65
int16_t yawGyroDrift;
66
 
66
 
67
int16_t correctionSum[2] = { 0, 0 };
67
int16_t correctionSum[2] = { 0, 0 };
68
 
68
 
69
// For NaviCTRL use.
69
// For NaviCTRL use.
70
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
70
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
71
 
71
 
72
/*
72
/*
73
 * Experiment: Compensating for dynamic-induced gyro biasing.
73
 * Experiment: Compensating for dynamic-induced gyro biasing.
74
 */
74
 */
75
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
75
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
76
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
76
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
77
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
77
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
78
// int16_t dynamicCalCount;
78
// int16_t dynamicCalCount;
79
 
79
 
80
uint16_t accVector;
80
uint16_t accVector;
81
 
81
 
82
/************************************************************************
82
/************************************************************************
83
 * Set inclination angles from the acc. sensor data.                    
83
 * Set inclination angles from the acc. sensor data.                    
84
 * If acc. sensors are not used, set to zero.                          
84
 * If acc. sensors are not used, set to zero.                          
85
 * TODO: One could use inverse sine to calculate the angles more        
85
 * TODO: One could use inverse sine to calculate the angles more        
86
 * accurately, but since: 1) the angles are rather small at times when
86
 * accurately, but since: 1) the angles are rather small at times when
87
 * it makes sense to set the integrals (standing on ground, or flying at  
87
 * it makes sense to set the integrals (standing on ground, or flying at  
88
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
88
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
89
 * it is hardly worth the trouble.                                      
89
 * it is hardly worth the trouble.                                      
90
 ************************************************************************/
90
 ************************************************************************/
91
 
91
 
92
int32_t getAngleEstimateFromAcc(uint8_t axis) {
92
int32_t getAngleEstimateFromAcc(uint8_t axis) {
93
  //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L;
93
  //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L;
94
  return (int32_t) GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis]; // + correctionTerm;
94
  return (int32_t) GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis]; // + correctionTerm;
95
  // return 342L * filteredAcc[axis];
95
  // return 342L * filteredAcc[axis];
96
}
96
}
97
 
97
 
98
void setStaticAttitudeAngles(void) {
98
void setStaticAttitudeAngles(void) {
99
#ifdef ATTITUDE_USE_ACC_SENSORS
99
#ifdef ATTITUDE_USE_ACC_SENSORS
100
  attitude[PITCH] = getAngleEstimateFromAcc(PITCH);
100
  attitude[PITCH] = getAngleEstimateFromAcc(PITCH);
101
  attitude[ROLL] = getAngleEstimateFromAcc(ROLL);
101
  attitude[ROLL] = getAngleEstimateFromAcc(ROLL);
102
#else
102
#else
103
  attitude[PITCH] = attitude[ROLL] = 0;
103
  attitude[PITCH] = attitude[ROLL] = 0;
104
#endif
104
#endif
105
}
105
}
106
 
106
 
107
/************************************************************************
107
/************************************************************************
108
 * Neutral Readings                                                    
108
 * Neutral Readings                                                    
109
 ************************************************************************/
109
 ************************************************************************/
110
void attitude_setNeutral(void) {
110
void attitude_setNeutral(void) {
111
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
111
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
112
  // dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
112
  // dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
113
 
113
 
114
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
114
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
115
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
115
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
116
 
116
 
117
  // Calibrate hardware.
117
  // Calibrate hardware.
118
  analog_setNeutral();
118
  analog_setNeutral();
119
 
119
 
120
  // reset gyro integrals to acc guessing
120
  // reset gyro integrals to acc guessing
121
  setStaticAttitudeAngles();
121
  setStaticAttitudeAngles();
122
#ifdef USE_MK3MAG
122
#ifdef USE_MK3MAG
123
  attitude_resetHeadingToMagnetic();
123
  attitude_resetHeadingToMagnetic();
124
#endif
124
#endif
125
  // Servo_On(); //enable servo output
125
  // Servo_On(); //enable servo output
126
}
126
}
127
 
127
 
128
/************************************************************************
128
/************************************************************************
129
 * Get sensor data from the analog module, and release the ADC          
129
 * Get sensor data from the analog module, and release the ADC          
130
 * TODO: Ultimately, the analog module could do this (instead of dumping
130
 * TODO: Ultimately, the analog module could do this (instead of dumping
131
 * the values into variables).
131
 * the values into variables).
132
 * The rate variable end up in a range of about [-1024, 1023].
132
 * The rate variable end up in a range of about [-1024, 1023].
133
 *************************************************************************/
133
 *************************************************************************/
134
void getAnalogData(void) {
134
void getAnalogData(void) {
135
  uint8_t axis;
135
  uint8_t axis;
136
 
136
 
137
  analog_update();
137
  analog_update();
138
 
138
 
139
  for (axis = PITCH; axis <= ROLL; axis++) {
139
  for (axis = PITCH; axis <= ROLL; axis++) {
140
    rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
140
    rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
141
    rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
141
    rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
142
    differential[axis] = gyroD[axis];
142
    differential[axis] = gyroD[axis];
143
    averageAcc[axis] += acc[axis];
143
    averageAcc[axis] += acc[axis];
144
  }
144
  }
145
 
145
 
146
  averageAccCount++;
146
  averageAccCount++;
147
  yawRate = yawGyro + driftCompYaw;
147
  yawRate = yawGyro + driftCompYaw;
148
}
148
}
149
 
149
 
150
/*
150
/*
151
 * This is the standard flight-style coordinate system transformation
151
 * This is the standard flight-style coordinate system transformation
152
 * (from airframe-local axes to a ground-based system). For some reason
152
 * (from airframe-local axes to a ground-based system). For some reason
153
 * the MK uses a left-hand coordinate system. The tranformation has been
153
 * the MK uses a left-hand coordinate system. The tranformation has been
154
 * changed accordingly.
154
 * changed accordingly.
155
 */
155
 */
156
void trigAxisCoupling(void) {
156
void trigAxisCoupling(void) {
157
  int16_t rollAngleInDegrees = attitude[ROLL] / GYRO_DEG_FACTOR_PITCHROLL;
157
  int16_t rollAngleInDegrees = attitude[ROLL] / GYRO_DEG_FACTOR_PITCHROLL;
158
  int16_t pitchAngleInDegrees = attitude[PITCH] / GYRO_DEG_FACTOR_PITCHROLL;
158
  int16_t pitchAngleInDegrees = attitude[PITCH] / GYRO_DEG_FACTOR_PITCHROLL;
159
 
159
 
160
  int16_t cospitch = cos_360(pitchAngleInDegrees);
160
  int16_t cospitch = cos_360(pitchAngleInDegrees);
161
  int16_t cosroll = cos_360(rollAngleInDegrees);
161
  int16_t cosroll = cos_360(rollAngleInDegrees);
162
  int16_t sinroll = sin_360(rollAngleInDegrees);
162
  int16_t sinroll = sin_360(rollAngleInDegrees);
163
 
163
 
164
  ACRate[PITCH] = (((int32_t) rate_ATT[PITCH] * cosroll
164
  ACRate[PITCH] = (((int32_t) rate_ATT[PITCH] * cosroll
165
      - (int32_t) yawRate * sinroll) >> LOG_MATH_UNIT_FACTOR);
165
      - (int32_t) yawRate * sinroll) >> LOG_MATH_UNIT_FACTOR);
166
 
166
 
167
  ACRate[ROLL] = rate_ATT[ROLL]
167
  ACRate[ROLL] = rate_ATT[ROLL]
168
      + (((((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
168
      + (((((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
169
          >> LOG_MATH_UNIT_FACTOR) * tan_360(pitchAngleInDegrees))
169
          >> LOG_MATH_UNIT_FACTOR) * tan_360(pitchAngleInDegrees))
170
          >> LOG_MATH_UNIT_FACTOR);
170
          >> LOG_MATH_UNIT_FACTOR);
171
 
171
 
172
  ACYawRate =
172
  ACYawRate =
173
      ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
173
      ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
174
          / cospitch;
174
          / cospitch;
175
 
175
 
176
  ACYawRate =
176
  ACYawRate =
177
      ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
177
      ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
178
          / cospitch;
178
          / cospitch;
179
}
179
}
180
 
180
 
181
// 480 usec with axis coupling - almost no time without.
181
// 480 usec with axis coupling - almost no time without.
182
void integrate(void) {
182
void integrate(void) {
183
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
183
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
184
  uint8_t axis;
184
  uint8_t axis;
185
 
185
 
186
  if (staticParams.bitConfig & CFG_AXIS_COUPLING_ACTIVE) {
186
  if (staticParams.bitConfig & CFG_AXIS_COUPLING_ACTIVE) {
187
    trigAxisCoupling();
187
    trigAxisCoupling();
188
  } else {
188
  } else {
189
    ACRate[PITCH] = rate_ATT[PITCH];
189
    ACRate[PITCH] = rate_ATT[PITCH];
190
    ACRate[ROLL] = rate_ATT[ROLL];
190
    ACRate[ROLL] = rate_ATT[ROLL];
191
    ACYawRate = yawRate;
191
    ACYawRate = yawRate;
192
  }
192
  }
193
 
193
 
194
  /*
194
  /*
195
   * Yaw
195
   * Yaw
196
   * Calculate yaw gyro integral (~ to rotation angle)
196
   * Calculate yaw gyro integral (~ to rotation angle)
197
   * Limit heading proportional to 0 deg to 360 deg
197
   * Limit heading proportional to 0 deg to 360 deg
198
   */
198
   */
199
  heading += ACYawRate;
199
  heading += ACYawRate;
200
  intervalWrap(&heading, YAWOVER360);
200
  intervalWrap(&heading, YAWOVER360);
201
 
201
 
202
  headingError += ACYawRate;
202
  headingError += ACYawRate;
203
 
-
 
204
  debugOut.analog[27] = heading / 100;
-
 
205
 
203
 
206
  /*
204
  /*
207
   * Pitch axis integration and range boundary wrap.
205
   * Pitch axis integration and range boundary wrap.
208
   */
206
   */
209
  for (axis = PITCH; axis <= ROLL; axis++) {
207
  for (axis = PITCH; axis <= ROLL; axis++) {
210
    attitude[axis] += ACRate[axis];
208
    attitude[axis] += ACRate[axis];
211
    if (attitude[axis] > PITCHROLLOVER180) {
209
    if (attitude[axis] > PITCHROLLOVER180) {
212
      attitude[axis] -= PITCHROLLOVER360;
210
      attitude[axis] -= PITCHROLLOVER360;
213
    } else if (attitude[axis] <= -PITCHROLLOVER180) {
211
    } else if (attitude[axis] <= -PITCHROLLOVER180) {
214
      attitude[axis] += PITCHROLLOVER360;
212
      attitude[axis] += PITCHROLLOVER360;
215
    }
213
    }
216
  }
214
  }
217
}
215
}
218
 
216
 
219
/************************************************************************
217
/************************************************************************
220
 * A kind of 0'th order integral correction, that corrects the integrals
218
 * A kind of 0'th order integral correction, that corrects the integrals
221
 * directly. This is the "gyroAccFactor" stuff in the original code.
219
 * directly. This is the "gyroAccFactor" stuff in the original code.
222
 * There is (there) also a drift compensation
220
 * There is (there) also a drift compensation
223
 * - it corrects the differential of the integral = the gyro offsets.
221
 * - it corrects the differential of the integral = the gyro offsets.
224
 * That should only be necessary with drifty gyros like ENC-03.
222
 * That should only be necessary with drifty gyros like ENC-03.
225
 ************************************************************************/
223
 ************************************************************************/
226
void correctIntegralsByAcc0thOrder(void) {
224
void correctIntegralsByAcc0thOrder(void) {
227
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
225
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
228
  // are less than ....., or reintroduce Kalman.
226
  // are less than ....., or reintroduce Kalman.
229
  // Well actually the Z axis acc. check is not so silly.
227
  // Well actually the Z axis acc. check is not so silly.
230
  uint8_t axis;
228
  uint8_t axis;
231
  int32_t temp;
229
  int32_t temp;
232
 
230
 
233
  uint8_t ca = controlActivity >> 8;
231
  uint8_t ca = controlActivity >> 8;
234
  uint8_t highControlActivity = (ca > staticParams.maxControlActivity);
232
  uint8_t highControlActivity = (ca > staticParams.maxControlActivity);
235
 
233
 
236
  if (highControlActivity) {
234
  if (highControlActivity) {
237
    debugOut.digital[1] |= DEBUG_ACC0THORDER;
235
    debugOut.digital[1] |= DEBUG_ACC0THORDER;
238
  } else {
236
  } else {
239
    debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
237
    debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
240
  }
238
  }
241
 
239
 
242
  if (accVector <= dynamicParams.maxAccVector) {
240
  if (accVector <= dynamicParams.maxAccVector) {
243
    debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
241
    debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
244
 
242
 
245
    uint8_t permilleAcc = staticParams.zerothOrderCorrection;
243
    uint8_t permilleAcc = staticParams.zerothOrderCorrection;
246
    int32_t accDerived;
244
    int32_t accDerived;
247
 
245
 
248
    /*
246
    /*
249
     if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
247
     if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
250
     permilleAcc /= 2;
248
     permilleAcc /= 2;
251
     debugFullWeight = 0;
249
     debugFullWeight = 0;
252
     }
250
     }
253
 
251
 
254
     if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
252
     if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
255
     permilleAcc /= 2;
253
     permilleAcc /= 2;
256
     debugFullWeight = 0;
254
     debugFullWeight = 0;
257
     */
255
     */
258
 
256
 
259
    if (highControlActivity) { // reduce effect during stick control activity
257
    if (highControlActivity) { // reduce effect during stick control activity
260
      permilleAcc /= 4;
258
      permilleAcc /= 4;
261
      if (controlActivity > staticParams.maxControlActivity * 2) { // reduce effect during stick control activity
259
      if (controlActivity > staticParams.maxControlActivity * 2) { // reduce effect during stick control activity
262
        permilleAcc /= 4;
260
        permilleAcc /= 4;
263
      }
261
      }
264
    }
262
    }
265
 
263
 
266
    /*
264
    /*
267
     * Add to each sum: The amount by which the angle is changed just below.
265
     * Add to each sum: The amount by which the angle is changed just below.
268
     */
266
     */
269
    for (axis = PITCH; axis <= ROLL; axis++) {
267
    for (axis = PITCH; axis <= ROLL; axis++) {
270
      accDerived = getAngleEstimateFromAcc(axis);
268
      accDerived = getAngleEstimateFromAcc(axis);
271
      debugOut.analog[9 + axis] = accDerived / (GYRO_DEG_FACTOR_PITCHROLL / 10);
269
      //debugOut.analog[9 + axis] = accDerived / (GYRO_DEG_FACTOR_PITCHROLL / 10);
272
      // 1000 * the correction amount that will be added to the gyro angle in next line.
270
      // 1000 * the correction amount that will be added to the gyro angle in next line.
273
      temp = attitude[axis];
271
      temp = attitude[axis];
274
      attitude[axis] = ((int32_t) (1000L - permilleAcc) * temp
272
      attitude[axis] = ((int32_t) (1000L - permilleAcc) * temp
275
          + (int32_t) permilleAcc * accDerived) / 1000L;
273
          + (int32_t) permilleAcc * accDerived) / 1000L;
276
      correctionSum[axis] += attitude[axis] - temp;
274
      correctionSum[axis] += attitude[axis] - temp;
277
    }
275
    }
278
  } else {
276
  } else {
279
    debugOut.analog[9] = 0;
-
 
280
    debugOut.analog[10] = 0;
-
 
281
    // experiment: Kill drift compensation updates when not flying smooth.
277
    // experiment: Kill drift compensation updates when not flying smooth.
282
    // correctionSum[PITCH] = correctionSum[ROLL] = 0;
278
    // correctionSum[PITCH] = correctionSum[ROLL] = 0;
283
    debugOut.digital[0] |= DEBUG_ACC0THORDER;
279
    debugOut.digital[0] |= DEBUG_ACC0THORDER;
284
  }
280
  }
285
}
281
}
286
 
282
 
287
/************************************************************************
283
/************************************************************************
288
 * This is an attempt to correct not the error in the angle integrals
284
 * This is an attempt to correct not the error in the angle integrals
289
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
285
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
290
 * cause of it: Gyro drift, vibration and rounding errors.
286
 * cause of it: Gyro drift, vibration and rounding errors.
291
 * All the corrections made in correctIntegralsByAcc0thOrder over
287
 * All the corrections made in correctIntegralsByAcc0thOrder over
292
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
288
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
293
 * then divided by DRIFTCORRECTION_TIME to get the approx.
289
 * then divided by DRIFTCORRECTION_TIME to get the approx.
294
 * correction that should have been applied to each iteration to fix
290
 * correction that should have been applied to each iteration to fix
295
 * the error. This is then added to the dynamic offsets.
291
 * the error. This is then added to the dynamic offsets.
296
 ************************************************************************/
292
 ************************************************************************/
297
// 2 times / sec. = 488/2
293
// 2 times / sec. = 488/2
298
#define DRIFTCORRECTION_TIME 256L
294
#define DRIFTCORRECTION_TIME 256L
299
void driftCorrection(void) {
295
void driftCorrection(void) {
300
  static int16_t timer = DRIFTCORRECTION_TIME;
296
  static int16_t timer = DRIFTCORRECTION_TIME;
301
  int16_t deltaCorrection;
297
  int16_t deltaCorrection;
302
  int16_t round;
298
  int16_t round;
303
  uint8_t axis;
299
  uint8_t axis;
304
 
300
 
305
  if (!--timer) {
301
  if (!--timer) {
306
    timer = DRIFTCORRECTION_TIME;
302
    timer = DRIFTCORRECTION_TIME;
307
    for (axis = PITCH; axis <= ROLL; axis++) {
303
    for (axis = PITCH; axis <= ROLL; axis++) {
308
      // Take the sum of corrections applied, add it to delta
304
      // Take the sum of corrections applied, add it to delta
309
      if (correctionSum[axis] >= 0)
305
      if (correctionSum[axis] >= 0)
310
        round = DRIFTCORRECTION_TIME / 2;
306
        round = DRIFTCORRECTION_TIME / 2;
311
      else
307
      else
312
        round = -DRIFTCORRECTION_TIME / 2;
308
        round = -DRIFTCORRECTION_TIME / 2;
313
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
309
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
314
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
310
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
315
      driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
311
      driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
316
      CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
312
      CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
317
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
313
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
318
      // DebugOut.Analog[16 + axis] = correctionSum[axis];
314
      // DebugOut.Analog[16 + axis] = correctionSum[axis];
319
      // debugOut.analog[28 + axis] = driftComp[axis];
315
      // debugOut.analog[28 + axis] = driftComp[axis];
320
      correctionSum[axis] = 0;
316
      correctionSum[axis] = 0;
321
    }
317
    }
322
  }
318
  }
323
}
319
}
324
 
320
 
325
void calculateAccVector(void) {
321
void calculateAccVector(void) {
326
  int16_t temp;
322
  int16_t temp;
327
  temp = filteredAcc[0] >> 3;
323
  temp = filteredAcc[0] >> 3;
328
  accVector = temp * temp;
324
  accVector = temp * temp;
329
  temp = filteredAcc[1] >> 3;
325
  temp = filteredAcc[1] >> 3;
330
  accVector += temp * temp;
326
  accVector += temp * temp;
331
  temp = filteredAcc[2] >> 3;
327
  temp = filteredAcc[2] >> 3;
332
  accVector += temp * temp;
328
  accVector += temp * temp;
333
  //debugOut.analog[18] = accVector;
329
  //debugOut.analog[18] = accVector;
334
}
330
}
335
 
331
 
336
#ifdef USE_MK3MAG
332
#ifdef USE_MK3MAG
337
void attitude_resetHeadingToMagnetic(void) {
333
void attitude_resetHeadingToMagnetic(void) {
338
  if (commands_isCalibratingCompass())
334
  if (commands_isCalibratingCompass())
339
    return;
335
    return;
340
 
336
 
341
  // Compass is off, skip.
337
  // Compass is off, skip.
342
  if (!(staticParams.bitConfig & CFG_COMPASS_ENABLED))
338
  if (!(staticParams.bitConfig & CFG_COMPASS_ENABLED))
343
      return;
339
      return;
344
 
340
 
345
  // Compass is invalid, skip.
341
  // Compass is invalid, skip.
346
  if (magneticHeading < 0)
342
  if (magneticHeading < 0)
347
    return;
343
    return;
348
 
344
 
349
  heading = (int32_t) magneticHeading * GYRO_DEG_FACTOR_YAW;
345
  heading = (int32_t) magneticHeading * GYRO_DEG_FACTOR_YAW;
350
  //targetHeading = heading;
346
  //targetHeading = heading;
351
  headingError = 0;
347
  headingError = 0;
352
 
348
 
353
  debugOut.digital[0] ^= DEBUG_COMPASS;
349
  debugOut.digital[0] ^= DEBUG_COMPASS;
354
}
350
}
355
 
351
 
356
void correctHeadingToMagnetic(void) {
352
void correctHeadingToMagnetic(void) {
357
  int32_t error;
353
  int32_t error;
358
 
354
 
359
  if (commands_isCalibratingCompass()) {
355
  if (commands_isCalibratingCompass()) {
360
    debugOut.analog[29] = 1;
356
    //debugOut.analog[29] = 1;
361
    return;
357
    return;
362
  }
358
  }
363
 
359
 
364
  // Compass is off, skip.
360
  // Compass is off, skip.
365
  // Naaah this is assumed.
361
  // Naaah this is assumed.
366
  // if (!(staticParams.bitConfig & CFG_COMPASS_ACTIVE))
362
  // if (!(staticParams.bitConfig & CFG_COMPASS_ACTIVE))
367
  //     return;
363
  //     return;
368
 
364
 
369
  // Compass is invalid, skip.
365
  // Compass is invalid, skip.
370
  if (magneticHeading < 0) {
366
  if (magneticHeading < 0) {
371
    debugOut.analog[29] = 2;
367
    //debugOut.analog[29] = 2;
372
    return;
368
    return;
373
  }
369
  }
374
 
370
 
375
  // Spinning fast, skip
371
  // Spinning fast, skip
376
  if (abs(yawRate) > 128) {
372
  if (abs(yawRate) > 128) {
377
    debugOut.analog[29] = 3;
373
    //debugOut.analog[29] = 3;
378
    return;
374
    return;
379
  }
375
  }
380
 
376
 
381
  // Otherwise invalidated, skip
377
  // Otherwise invalidated, skip
382
  if (ignoreCompassTimer) {
378
  if (ignoreCompassTimer) {
383
    ignoreCompassTimer--;
379
    ignoreCompassTimer--;
384
    debugOut.analog[29] = 4;
380
    //debugOut.analog[29] = 4;
385
    return;
381
    return;
386
  }
382
  }
387
 
383
 
388
  // TODO: Find computational cost of this.
384
  // TODO: Find computational cost of this.
389
  error = ((int32_t)magneticHeading*GYRO_DEG_FACTOR_YAW - heading);
385
  error = ((int32_t)magneticHeading*GYRO_DEG_FACTOR_YAW - heading);
390
  if (error <= -YAWOVER180) error += YAWOVER360;
386
  if (error <= -YAWOVER180) error += YAWOVER360;
391
  else if (error > YAWOVER180) error -= YAWOVER360;
387
  else if (error > YAWOVER180) error -= YAWOVER360;
392
 
388
 
393
  // We only correct errors larger than the resolution of the compass, or else we would keep rounding the
389
  // We only correct errors larger than the resolution of the compass, or else we would keep rounding the
394
  // better resolution of the gyros to the worse resolution of the compass all the time.
390
  // better resolution of the gyros to the worse resolution of the compass all the time.
395
  // The correction should really only serve to compensate for gyro drift.
391
  // The correction should really only serve to compensate for gyro drift.
396
  if(abs(error) < GYRO_DEG_FACTOR_YAW) return;
392
  if(abs(error) < GYRO_DEG_FACTOR_YAW) return;
397
 
393
 
398
  int32_t correction = (error * staticParams.compassYawCorrection) >> 8;
394
  int32_t correction = (error * staticParams.compassYawCorrection) >> 8;
399
  debugOut.analog[30] = correction;
395
  //debugOut.analog[30] = correction;
400
 
396
 
401
  // The correction is added both to current heading (the direction in which the copter thinks it is pointing)
397
  // The correction is added both to current heading (the direction in which the copter thinks it is pointing)
402
  // and to the target heading (the direction to which it maneuvers to point). That means, this correction has
398
  // and to the target heading (the direction to which it maneuvers to point). That means, this correction has
403
  // no effect on control at all!!! It only has effect on the values of the two variables. However, these values
399
  // no effect on control at all!!! It only has effect on the values of the two variables. However, these values
404
  // could have effect on control elsewhere, like in compassControl.c .
400
  // could have effect on control elsewhere, like in compassControl.c .
405
  heading += correction;
401
  heading += correction;
406
  intervalWrap(&heading, YAWOVER360);
402
  intervalWrap(&heading, YAWOVER360);
407
 
403
 
408
  // If we want a transparent flight wrt. compass correction (meaning the copter does not change attitude all
404
  // If we want a transparent flight wrt. compass correction (meaning the copter does not change attitude all
409
  // when the compass corrects the heading - it only corrects numbers!) we want to add:
405
  // when the compass corrects the heading - it only corrects numbers!) we want to add:
410
  // This will however cause drift to remain uncorrected!
406
  // This will however cause drift to remain uncorrected!
411
  // headingError += correction;
407
  // headingError += correction;
412
  debugOut.analog[29] = 0;
408
  //debugOut.analog[29] = 0;
413
}
409
}
414
#endif
410
#endif
415
 
411
 
416
/************************************************************************
412
/************************************************************************
417
 * Main procedure.
413
 * Main procedure.
418
 ************************************************************************/
414
 ************************************************************************/
419
void calculateFlightAttitude(void) {
415
void calculateFlightAttitude(void) {
420
  getAnalogData();
416
  getAnalogData();
421
  calculateAccVector();
417
  calculateAccVector();
422
  integrate();
418
  integrate();
423
 
419
 
424
#ifdef ATTITUDE_USE_ACC_SENSORS
420
#ifdef ATTITUDE_USE_ACC_SENSORS
425
  correctIntegralsByAcc0thOrder();
421
  correctIntegralsByAcc0thOrder();
426
  driftCorrection();
422
  driftCorrection();
427
#endif
423
#endif
428
 
424
 
429
  // We are done reading variables from the analog module.
425
  // We are done reading variables from the analog module.
430
  // Interrupt-driven sensor reading may restart.
426
  // Interrupt-driven sensor reading may restart.
431
  startAnalogConversionCycle();
427
  startAnalogConversionCycle();
432
 
428
 
433
#ifdef USE_MK3MAG
429
#ifdef USE_MK3MAG
434
  if (staticParams.bitConfig & (CFG_COMPASS_ENABLED | CFG_GPS_ENABLED)) {
430
  if (staticParams.bitConfig & (CFG_COMPASS_ENABLED | CFG_GPS_ENABLED)) {
435
    correctHeadingToMagnetic();
431
    correctHeadingToMagnetic();
436
  }
432
  }
437
#endif
433
#endif
438
}
434
}
439
 
435
 
440
/*
436
/*
441
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
437
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
442
 * and to compensate them away. It brings about some improvement, but no miracles.
438
 * and to compensate them away. It brings about some improvement, but no miracles.
443
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
439
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
444
 * will measure the effect of vibration, to use for later compensation. So, one should keep
440
 * will measure the effect of vibration, to use for later compensation. So, one should keep
445
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
441
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
446
 * speed unfortunately... must find a better way)
442
 * speed unfortunately... must find a better way)
447
 */
443
 */
448
/*
444
/*
449
 void attitude_startDynamicCalibration(void) {
445
 void attitude_startDynamicCalibration(void) {
450
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
446
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
451
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
447
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
452
 }
448
 }
453
 
449
 
454
 void attitude_continueDynamicCalibration(void) {
450
 void attitude_continueDynamicCalibration(void) {
455
 // measure dynamic offset now...
451
 // measure dynamic offset now...
456
 dynamicCalPitch += hiResPitchGyro;
452
 dynamicCalPitch += hiResPitchGyro;
457
 dynamicCalRoll += hiResRollGyro;
453
 dynamicCalRoll += hiResRollGyro;
458
 dynamicCalYaw += rawYawGyroSum;
454
 dynamicCalYaw += rawYawGyroSum;
459
 dynamicCalCount++;
455
 dynamicCalCount++;
460
 
456
 
461
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
457
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
462
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
458
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
463
 // manual mode
459
 // manual mode
464
 driftCompPitch = dynamicParams.UserParam7 - 128;
460
 driftCompPitch = dynamicParams.UserParam7 - 128;
465
 driftCompRoll = dynamicParams.UserParam8 - 128;
461
 driftCompRoll = dynamicParams.UserParam8 - 128;
466
 } else {
462
 } else {
467
 // use the sampled value (does not seem to work so well....)
463
 // use the sampled value (does not seem to work so well....)
468
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
464
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
469
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
465
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
470
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
466
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
471
 }
467
 }
472
 
468
 
473
 // keep resetting these meanwhile, to avoid accumulating errors.
469
 // keep resetting these meanwhile, to avoid accumulating errors.
474
 setStaticAttitudeIntegrals();
470
 setStaticAttitudeIntegrals();
475
 yawAngle = 0;
471
 yawAngle = 0;
476
 }
472
 }
477
 */
473
 */
478
 
474