Subversion Repositories FlightCtrl

Rev

Rev 1991 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1991 Rev 2015
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
18
// + eindeutig als Ursprung verlinkt und genannt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
/************************************************************************/
52
/************************************************************************/
53
/* Flight Attitude                                                      */
53
/* Flight Attitude                                                      */
54
/************************************************************************/
54
/************************************************************************/
55
 
55
 
56
#include <stdlib.h>
56
#include <stdlib.h>
57
#include <avr/io.h>
57
#include <avr/io.h>
58
 
58
 
59
#include "attitude.h"
59
#include "attitude.h"
60
#include "dongfangMath.h"
60
#include "dongfangMath.h"
61
 
61
 
62
// For scope debugging only!
62
// For scope debugging only!
63
#include "rc.h"
63
#include "rc.h"
64
 
64
 
65
// where our main data flow comes from.
65
// where our main data flow comes from.
66
#include "analog.h"
66
#include "analog.h"
67
 
67
 
68
#include "configuration.h"
68
#include "configuration.h"
69
#include "output.h"
69
#include "output.h"
70
 
70
 
71
// Some calculations are performed depending on some stick related things.
71
// Some calculations are performed depending on some stick related things.
72
#include "controlMixer.h"
72
#include "controlMixer.h"
73
 
73
 
74
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
74
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
75
 
75
 
76
/*
76
/*
77
 * Gyro readings, as read from the analog module. It would have been nice to flow
77
 * Gyro readings, as read from the analog module. It would have been nice to flow
78
 * them around between the different calculations as a struct or array (doing
78
 * them around between the different calculations as a struct or array (doing
79
 * things functionally without side effects) but this is shorter and probably
79
 * things functionally without side effects) but this is shorter and probably
80
 * faster too.
80
 * faster too.
81
 * The variables are overwritten at each attitude calculation invocation - the values
81
 * The variables are overwritten at each attitude calculation invocation - the values
82
 * are not preserved or reused.
82
 * are not preserved or reused.
83
 */
83
 */
84
int16_t rate_ATT[2], yawRate;
84
int16_t rate_ATT[2], yawRate;
85
 
85
 
86
// With different (less) filtering
86
// With different (less) filtering
87
int16_t rate_PID[2];
87
int16_t rate_PID[2];
88
int16_t differential[2];
88
int16_t differential[2];
89
 
89
 
90
/*
90
/*
91
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
91
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
92
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
92
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
93
 * coordinate system. If axis copling is disabled, the gyro readings will be
93
 * coordinate system. If axis copling is disabled, the gyro readings will be
94
 * copied into these directly.
94
 * copied into these directly.
95
 * These are global for the same pragmatic reason as with the gyro readings.
95
 * These are global for the same pragmatic reason as with the gyro readings.
96
 * The variables are overwritten at each attitude calculation invocation - the values
96
 * The variables are overwritten at each attitude calculation invocation - the values
97
 * are not preserved or reused.
97
 * are not preserved or reused.
98
 */
98
 */
99
int16_t ACRate[2], ACYawRate;
99
int16_t ACRate[2], ACYawRate;
100
 
100
 
101
/*
101
/*
102
 * Gyro integrals. These are the rotation angles of the airframe compared to the
102
 * Gyro integrals. These are the rotation angles of the airframe compared to the
103
 * horizontal plane, yaw relative to yaw at start.
103
 * horizontal plane, yaw relative to yaw at start.
104
 */
104
 */
105
int32_t angle[2], yawAngleDiff;
105
int32_t angle[2], yawAngleDiff;
106
 
106
 
107
int readingHeight = 0;
107
int readingHeight = 0;
108
 
108
 
109
// Yaw angle and compass stuff.
109
// Yaw angle and compass stuff.
110
 
110
 
111
// This is updated/written from MM3. Negative angle indicates invalid data.
111
// This is updated/written from MM3. Negative angle indicates invalid data.
112
int16_t compassHeading = -1;
112
int16_t compassHeading = -1;
113
 
113
 
114
// This is NOT updated from MM3. Negative angle indicates invalid data.
114
// This is NOT updated from MM3. Negative angle indicates invalid data.
115
int16_t compassCourse = -1;
115
int16_t compassCourse = -1;
116
 
116
 
117
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
117
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
118
// Not necessary. Never read anywhere.
118
// Not necessary. Never read anywhere.
119
// int16_t compassOffCourse = 0;
119
// int16_t compassOffCourse = 0;
120
 
120
 
121
uint8_t updateCompassCourse = 0;
121
uint8_t updateCompassCourse = 0;
122
uint8_t compassCalState = 0;
122
uint8_t compassCalState = 0;
123
uint16_t ignoreCompassTimer = 500;
123
uint16_t ignoreCompassTimer = 500;
124
 
124
 
125
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
125
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
126
int16_t yawGyroDrift;
126
int16_t yawGyroDrift;
127
 
127
 
128
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
128
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
129
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
129
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
130
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
130
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
131
 
131
 
132
int16_t correctionSum[2] = { 0, 0 };
132
int16_t correctionSum[2] = { 0, 0 };
133
 
133
 
134
// For NaviCTRL use.
134
// For NaviCTRL use.
135
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
135
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
136
 
136
 
137
/*
137
/*
138
 * Experiment: Compensating for dynamic-induced gyro biasing.
138
 * Experiment: Compensating for dynamic-induced gyro biasing.
139
 */
139
 */
140
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
140
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
141
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
141
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
142
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
142
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
143
// int16_t dynamicCalCount;
143
// int16_t dynamicCalCount;
144
 
144
 
145
uint16_t accVector;
145
uint16_t accVector;
146
 
146
 
147
/************************************************************************
147
/************************************************************************
148
 * Set inclination angles from the acc. sensor data.                    
148
 * Set inclination angles from the acc. sensor data.                    
149
 * If acc. sensors are not used, set to zero.                          
149
 * If acc. sensors are not used, set to zero.                          
150
 * TODO: One could use inverse sine to calculate the angles more        
150
 * TODO: One could use inverse sine to calculate the angles more        
151
 * accurately, but since: 1) the angles are rather small at times when
151
 * accurately, but since: 1) the angles are rather small at times when
152
 * it makes sense to set the integrals (standing on ground, or flying at  
152
 * it makes sense to set the integrals (standing on ground, or flying at  
153
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
153
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
154
 * it is hardly worth the trouble.                                      
154
 * it is hardly worth the trouble.                                      
155
 ************************************************************************/
155
 ************************************************************************/
156
 
156
 
157
int32_t getAngleEstimateFromAcc(uint8_t axis) {
157
int32_t getAngleEstimateFromAcc(uint8_t axis) {
158
  //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L;
158
  //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L;
159
  return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];// + correctionTerm;
159
  return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];// + correctionTerm;
160
}
160
}
161
 
161
 
162
void setStaticAttitudeAngles(void) {
162
void setStaticAttitudeAngles(void) {
163
#ifdef ATTITUDE_USE_ACC_SENSORS
163
#ifdef ATTITUDE_USE_ACC_SENSORS
164
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
164
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
165
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
165
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
166
#else
166
#else
167
  angle[PITCH] = angle[ROLL] = 0;
167
  angle[PITCH] = angle[ROLL] = 0;
168
#endif
168
#endif
169
}
169
}
170
 
170
 
171
/************************************************************************
171
/************************************************************************
172
 * Neutral Readings                                                    
172
 * Neutral Readings                                                    
173
 ************************************************************************/
173
 ************************************************************************/
174
void attitude_setNeutral(void) {
174
void attitude_setNeutral(void) {
175
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
175
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
176
  dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
176
  dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
177
 
177
 
178
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
178
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
179
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
179
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
180
 
180
 
181
  // Calibrate hardware.
181
  // Calibrate hardware.
182
  analog_setNeutral();
182
  analog_setNeutral();
183
 
183
 
184
  // reset gyro integrals to acc guessing
184
  // reset gyro integrals to acc guessing
185
  setStaticAttitudeAngles();
185
  setStaticAttitudeAngles();
186
  yawAngleDiff = 0;
186
  yawAngleDiff = 0;
187
 
187
 
188
  // update compass course to current heading
188
  // update compass course to current heading
189
  compassCourse = compassHeading;
189
  compassCourse = compassHeading;
190
 
190
 
191
  // Inititialize YawGyroIntegral value with current compass heading
191
  // Inititialize YawGyroIntegral value with current compass heading
192
  yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
192
  yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
193
 
193
 
194
  // Servo_On(); //enable servo output
194
  // Servo_On(); //enable servo output
195
}
195
}
196
 
196
 
197
/************************************************************************
197
/************************************************************************
198
 * Get sensor data from the analog module, and release the ADC          
198
 * Get sensor data from the analog module, and release the ADC          
199
 * TODO: Ultimately, the analog module could do this (instead of dumping
199
 * TODO: Ultimately, the analog module could do this (instead of dumping
200
 * the values into variables).
200
 * the values into variables).
201
 * The rate variable end up in a range of about [-1024, 1023].
201
 * The rate variable end up in a range of about [-1024, 1023].
202
 *************************************************************************/
202
 *************************************************************************/
203
void getAnalogData(void) {
203
void getAnalogData(void) {
204
  uint8_t axis;
204
  uint8_t axis;
205
 
205
 
206
  analog_update();
206
  analog_update();
207
 
207
 
208
  for (axis = PITCH; axis <= ROLL; axis++) {
208
  for (axis = PITCH; axis <= ROLL; axis++) {
209
    rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
209
    rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
210
    rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
210
    rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
211
    differential[axis] = gyroD[axis];
211
    differential[axis] = gyroD[axis];
212
    averageAcc[axis] += acc[axis];
212
    averageAcc[axis] += acc[axis];
213
  }
213
  }
214
 
214
 
215
  averageAccCount++;
215
  averageAccCount++;
216
  yawRate = yawGyro + driftCompYaw;
216
  yawRate = yawGyro + driftCompYaw;
217
 
-
 
218
  // We are done reading variables from the analog module.
-
 
219
  // Interrupt-driven sensor reading may restart.
-
 
220
  startAnalogConversionCycle();
-
 
221
}
217
}
222
 
218
 
223
/*
219
/*
224
 * This is the standard flight-style coordinate system transformation
220
 * This is the standard flight-style coordinate system transformation
225
 * (from airframe-local axes to a ground-based system). For some reason
221
 * (from airframe-local axes to a ground-based system). For some reason
226
 * the MK uses a left-hand coordinate system. The tranformation has been
222
 * the MK uses a left-hand coordinate system. The tranformation has been
227
 * changed accordingly.
223
 * changed accordingly.
228
 */
224
 */
229
void trigAxisCoupling(void) {
225
void trigAxisCoupling(void) {
230
  int16_t cospitch = int_cos(angle[PITCH]);
226
  int16_t cospitch = int_cos(angle[PITCH]);
231
  int16_t cosroll = int_cos(angle[ROLL]);
227
  int16_t cosroll = int_cos(angle[ROLL]);
232
  int16_t sinroll = int_sin(angle[ROLL]);
228
  int16_t sinroll = int_sin(angle[ROLL]);
233
 
229
 
234
  ACRate[PITCH] = (((int32_t)rate_ATT[PITCH] * cosroll - (int32_t)yawRate
230
  ACRate[PITCH] = (((int32_t)rate_ATT[PITCH] * cosroll - (int32_t)yawRate
235
      * sinroll) >> MATH_UNIT_FACTOR_LOG);
231
      * sinroll) >> MATH_UNIT_FACTOR_LOG);
236
 
232
 
237
  ACRate[ROLL] = rate_ATT[ROLL] + (((((int32_t)rate_ATT[PITCH] * sinroll
233
  ACRate[ROLL] = rate_ATT[ROLL] + (((((int32_t)rate_ATT[PITCH] * sinroll
238
      + (int32_t)yawRate * cosroll) >> MATH_UNIT_FACTOR_LOG) * int_tan(
234
      + (int32_t)yawRate * cosroll) >> MATH_UNIT_FACTOR_LOG) * int_tan(
239
      angle[PITCH])) >> MATH_UNIT_FACTOR_LOG);
235
      angle[PITCH])) >> MATH_UNIT_FACTOR_LOG);
240
 
236
 
241
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
237
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
242
 
238
 
243
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
239
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
244
}
240
}
245
 
241
 
246
// 480 usec with axis coupling - almost no time without.
242
// 480 usec with axis coupling - almost no time without.
247
void integrate(void) {
243
void integrate(void) {
248
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
244
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
249
  uint8_t axis;
245
  uint8_t axis;
250
 
246
 
251
  if (staticParams.bitConfig & CFG_AXIS_COUPLING_ACTIVE) {
247
  if (staticParams.bitConfig & CFG_AXIS_COUPLING_ACTIVE) {
252
    trigAxisCoupling();
248
    trigAxisCoupling();
253
  } else {
249
  } else {
254
    ACRate[PITCH] = rate_ATT[PITCH];
250
    ACRate[PITCH] = rate_ATT[PITCH];
255
    ACRate[ROLL] = rate_ATT[ROLL];
251
    ACRate[ROLL] = rate_ATT[ROLL];
256
    ACYawRate = yawRate;
252
    ACYawRate = yawRate;
257
  }
253
  }
258
 
254
 
259
  /*
255
  /*
260
   * Yaw
256
   * Yaw
261
   * Calculate yaw gyro integral (~ to rotation angle)
257
   * Calculate yaw gyro integral (~ to rotation angle)
262
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
258
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
263
   */
259
   */
264
  yawGyroHeading += ACYawRate;
260
  yawGyroHeading += ACYawRate;
265
  yawAngleDiff += yawRate;
261
  yawAngleDiff += yawRate;
266
 
262
 
267
  if (yawGyroHeading >= YAWOVER360) {
263
  if (yawGyroHeading >= YAWOVER360) {
268
    yawGyroHeading -= YAWOVER360; // 360 deg. wrap
264
    yawGyroHeading -= YAWOVER360; // 360 deg. wrap
269
  } else if (yawGyroHeading < 0) {
265
  } else if (yawGyroHeading < 0) {
270
    yawGyroHeading += YAWOVER360;
266
    yawGyroHeading += YAWOVER360;
271
  }
267
  }
272
 
268
 
273
  /*
269
  /*
274
   * Pitch axis integration and range boundary wrap.
270
   * Pitch axis integration and range boundary wrap.
275
   */
271
   */
276
  for (axis = PITCH; axis <= ROLL; axis++) {
272
  for (axis = PITCH; axis <= ROLL; axis++) {
277
    angle[axis] += ACRate[axis];
273
    angle[axis] += ACRate[axis];
278
    if (angle[axis] > PITCHROLLOVER180) {
274
    if (angle[axis] > PITCHROLLOVER180) {
279
      angle[axis] -= PITCHROLLOVER360;
275
      angle[axis] -= PITCHROLLOVER360;
280
    } else if (angle[axis] <= -PITCHROLLOVER180) {
276
    } else if (angle[axis] <= -PITCHROLLOVER180) {
281
      angle[axis] += PITCHROLLOVER360;
277
      angle[axis] += PITCHROLLOVER360;
282
    }
278
    }
283
  }
279
  }
284
}
280
}
285
 
281
 
286
/************************************************************************
282
/************************************************************************
287
 * A kind of 0'th order integral correction, that corrects the integrals
283
 * A kind of 0'th order integral correction, that corrects the integrals
288
 * directly. This is the "gyroAccFactor" stuff in the original code.
284
 * directly. This is the "gyroAccFactor" stuff in the original code.
289
 * There is (there) also a drift compensation
285
 * There is (there) also a drift compensation
290
 * - it corrects the differential of the integral = the gyro offsets.
286
 * - it corrects the differential of the integral = the gyro offsets.
291
 * That should only be necessary with drifty gyros like ENC-03.
287
 * That should only be necessary with drifty gyros like ENC-03.
292
 ************************************************************************/
288
 ************************************************************************/
293
void correctIntegralsByAcc0thOrder(void) {
289
void correctIntegralsByAcc0thOrder(void) {
294
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
290
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
295
  // are less than ....., or reintroduce Kalman.
291
  // are less than ....., or reintroduce Kalman.
296
  // Well actually the Z axis acc. check is not so silly.
292
  // Well actually the Z axis acc. check is not so silly.
297
  uint8_t axis;
293
  uint8_t axis;
298
  int32_t temp;
294
  int32_t temp;
299
 
295
 
300
  uint8_t ca = controlActivity >> 8;
296
  uint8_t ca = controlActivity >> 8;
301
  uint8_t highControlActivity = (ca > staticParams.maxControlActivity);
297
  uint8_t highControlActivity = (ca > staticParams.maxControlActivity);
302
 
298
 
303
        if (highControlActivity) {
299
        if (highControlActivity) {
304
      debugOut.digital[1] |= DEBUG_ACC0THORDER;
300
      debugOut.digital[1] |= DEBUG_ACC0THORDER;
305
        } else {
301
        } else {
306
          debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
302
          debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
307
        }
303
        }
308
 
304
 
309
  if (accVector <= dynamicParams.maxAccVector) {
305
  if (accVector <= dynamicParams.maxAccVector) {
310
    debugOut.digital[0] |= DEBUG_ACC0THORDER;
306
    debugOut.digital[0] |= DEBUG_ACC0THORDER;
311
 
307
 
312
    uint8_t permilleAcc = staticParams.zerothOrderCorrection;
308
    uint8_t permilleAcc = staticParams.zerothOrderCorrection;
313
    int32_t accDerived;
309
    int32_t accDerived;
314
 
310
 
315
    /*
311
    /*
316
    if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
312
    if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
317
      permilleAcc /= 2;
313
      permilleAcc /= 2;
318
      debugFullWeight = 0;
314
      debugFullWeight = 0;
319
    }
315
    }
320
 
316
 
321
    if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
317
    if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
322
      permilleAcc /= 2;
318
      permilleAcc /= 2;
323
      debugFullWeight = 0;
319
      debugFullWeight = 0;
324
    */
320
    */
325
 
321
 
326
    if (highControlActivity) { // reduce effect during stick control activity
322
    if (highControlActivity) { // reduce effect during stick control activity
327
      permilleAcc /= 4;
323
      permilleAcc /= 4;
328
      if (controlActivity > staticParams.maxControlActivity*2) { // reduce effect during stick control activity
324
      if (controlActivity > staticParams.maxControlActivity*2) { // reduce effect during stick control activity
329
        permilleAcc /= 4;
325
        permilleAcc /= 4;
330
      }
326
      }
331
    }
327
    }
332
 
328
 
333
    /*
329
    /*
334
     * Add to each sum: The amount by which the angle is changed just below.
330
     * Add to each sum: The amount by which the angle is changed just below.
335
     */
331
     */
336
    for (axis = PITCH; axis <= ROLL; axis++) {
332
    for (axis = PITCH; axis <= ROLL; axis++) {
337
      accDerived = getAngleEstimateFromAcc(axis);
333
      accDerived = getAngleEstimateFromAcc(axis);
338
      debugOut.analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
334
      debugOut.analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
339
 
335
 
340
      // 1000 * the correction amount that will be added to the gyro angle in next line.
336
      // 1000 * the correction amount that will be added to the gyro angle in next line.
341
      temp = angle[axis];
337
      temp = angle[axis];
342
      angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
338
      angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
343
          + (int32_t) permilleAcc * accDerived) / 1000L;
339
          + (int32_t) permilleAcc * accDerived) / 1000L;
344
      correctionSum[axis] += angle[axis] - temp;
340
      correctionSum[axis] += angle[axis] - temp;
345
    }
341
    }
346
  } else {
342
  } else {
347
    debugOut.analog[9] = 0;
343
    debugOut.analog[9] = 0;
348
    debugOut.analog[10] = 0;
344
    debugOut.analog[10] = 0;
349
    // experiment: Kill drift compensation updates when not flying smooth.
345
    // experiment: Kill drift compensation updates when not flying smooth.
350
    // correctionSum[PITCH] = correctionSum[ROLL] = 0;
346
    // correctionSum[PITCH] = correctionSum[ROLL] = 0;
351
    debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
347
    debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
352
  }
348
  }
353
}
349
}
354
 
350
 
355
/************************************************************************
351
/************************************************************************
356
 * This is an attempt to correct not the error in the angle integrals
352
 * This is an attempt to correct not the error in the angle integrals
357
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
353
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
358
 * cause of it: Gyro drift, vibration and rounding errors.
354
 * cause of it: Gyro drift, vibration and rounding errors.
359
 * All the corrections made in correctIntegralsByAcc0thOrder over
355
 * All the corrections made in correctIntegralsByAcc0thOrder over
360
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
356
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
361
 * then divided by DRIFTCORRECTION_TIME to get the approx.
357
 * then divided by DRIFTCORRECTION_TIME to get the approx.
362
 * correction that should have been applied to each iteration to fix
358
 * correction that should have been applied to each iteration to fix
363
 * the error. This is then added to the dynamic offsets.
359
 * the error. This is then added to the dynamic offsets.
364
 ************************************************************************/
360
 ************************************************************************/
365
// 2 times / sec. = 488/2
361
// 2 times / sec. = 488/2
366
#define DRIFTCORRECTION_TIME 256L
362
#define DRIFTCORRECTION_TIME 256L
367
void driftCorrection(void) {
363
void driftCorrection(void) {
368
  static int16_t timer = DRIFTCORRECTION_TIME;
364
  static int16_t timer = DRIFTCORRECTION_TIME;
369
  int16_t deltaCorrection;
365
  int16_t deltaCorrection;
370
  int16_t round;
366
  int16_t round;
371
  uint8_t axis;
367
  uint8_t axis;
372
 
368
 
373
  if (!--timer) {
369
  if (!--timer) {
374
    timer = DRIFTCORRECTION_TIME;
370
    timer = DRIFTCORRECTION_TIME;
375
    for (axis = PITCH; axis <= ROLL; axis++) {
371
    for (axis = PITCH; axis <= ROLL; axis++) {
376
      // Take the sum of corrections applied, add it to delta
372
      // Take the sum of corrections applied, add it to delta
377
      if (correctionSum[axis] >=0)
373
      if (correctionSum[axis] >=0)
378
        round = DRIFTCORRECTION_TIME / 2;
374
        round = DRIFTCORRECTION_TIME / 2;
379
      else
375
      else
380
        round = -DRIFTCORRECTION_TIME / 2;
376
        round = -DRIFTCORRECTION_TIME / 2;
381
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
377
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
382
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
378
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
383
      driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
379
      driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
384
      CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
380
      CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
385
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
381
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
386
      // DebugOut.Analog[16 + axis] = correctionSum[axis];
382
      // DebugOut.Analog[16 + axis] = correctionSum[axis];
387
      debugOut.analog[28 + axis] = driftComp[axis];
383
      debugOut.analog[28 + axis] = driftComp[axis];
388
 
384
 
389
      correctionSum[axis] = 0;
385
      correctionSum[axis] = 0;
390
    }
386
    }
391
  }
387
  }
392
}
388
}
393
 
389
 
394
void calculateAccVector(void) {
390
void calculateAccVector(void) {
395
        uint16_t temp;
391
        uint16_t temp;
396
        temp = filteredAcc[0]/4;
392
        temp = filteredAcc[0]/4;
397
        accVector = temp * temp;
393
        accVector = temp * temp;
398
        temp = filteredAcc[1]/4;
394
        temp = filteredAcc[1]/4;
399
        accVector += temp * temp;
395
        accVector += temp * temp;
400
        temp = filteredAcc[2]/4;
396
        temp = filteredAcc[2]/4;
401
        accVector += temp * temp;
397
        accVector += temp * temp;
402
        debugOut.analog[18] = accVector;
398
        debugOut.analog[18] = accVector;
403
    debugOut.analog[19] = dynamicParams.maxAccVector;
399
    debugOut.analog[19] = dynamicParams.maxAccVector;
404
}
400
}
405
 
401
 
406
/************************************************************************
402
/************************************************************************
407
 * Main procedure.
403
 * Main procedure.
408
 ************************************************************************/
404
 ************************************************************************/
409
void calculateFlightAttitude(void) {
405
void calculateFlightAttitude(void) {
410
  getAnalogData();
406
  getAnalogData();
411
  calculateAccVector();
407
  calculateAccVector();
412
  integrate();
408
  integrate();
413
 
409
 
414
#ifdef ATTITUDE_USE_ACC_SENSORS
410
#ifdef ATTITUDE_USE_ACC_SENSORS
415
  correctIntegralsByAcc0thOrder();
411
  correctIntegralsByAcc0thOrder();
416
  driftCorrection();
412
  driftCorrection();
417
#endif
413
#endif
-
 
414
 
-
 
415
  // We are done reading variables from the analog module.
-
 
416
  // Interrupt-driven sensor reading may restart.
-
 
417
  startAnalogConversionCycle();
418
}
418
}
419
 
419
 
420
void updateCompass(void) {
420
void updateCompass(void) {
421
  int16_t w, v, r, correction, error;
421
  int16_t w, v, r, correction, error;
422
 
422
 
423
  if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
423
  if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
424
    if (controlMixer_testCompassCalState()) {
424
    if (controlMixer_testCompassCalState()) {
425
      compassCalState++;
425
      compassCalState++;
426
      if (compassCalState < 5)
426
      if (compassCalState < 5)
427
        beepNumber(compassCalState);
427
        beepNumber(compassCalState);
428
      else
428
      else
429
        beep(1000);
429
        beep(1000);
430
    }
430
    }
431
  } else {
431
  } else {
432
    // get maximum attitude angle
432
    // get maximum attitude angle
433
    w = abs(angle[PITCH] / 512);
433
    w = abs(angle[PITCH] / 512);
434
    v = abs(angle[ROLL] / 512);
434
    v = abs(angle[ROLL] / 512);
435
    if (v > w)
435
    if (v > w)
436
      w = v;
436
      w = v;
437
    correction = w / 8 + 1;
437
    correction = w / 8 + 1;
438
    // calculate the deviation of the yaw gyro heading and the compass heading
438
    // calculate the deviation of the yaw gyro heading and the compass heading
439
    if (compassHeading < 0)
439
    if (compassHeading < 0)
440
      error = 0; // disable yaw drift compensation if compass heading is undefined
440
      error = 0; // disable yaw drift compensation if compass heading is undefined
441
    else if (abs(yawRate) > 128) { // spinning fast
441
    else if (abs(yawRate) > 128) { // spinning fast
442
      error = 0;
442
      error = 0;
443
    } else {
443
    } else {
444
      // compassHeading - yawGyroHeading, on a -180..179 deg interval.
444
      // compassHeading - yawGyroHeading, on a -180..179 deg interval.
445
      error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW))
445
      error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW))
446
          % 360) - 180;
446
          % 360) - 180;
447
    }
447
    }
448
    if (!ignoreCompassTimer && w < 25) {
448
    if (!ignoreCompassTimer && w < 25) {
449
      yawGyroDrift += error;
449
      yawGyroDrift += error;
450
      // Basically this gets set if we are in "fix" mode, and when starting.
450
      // Basically this gets set if we are in "fix" mode, and when starting.
451
      if (updateCompassCourse) {
451
      if (updateCompassCourse) {
452
        beep(200);
452
        beep(200);
453
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
453
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
454
        compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
454
        compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
455
        updateCompassCourse = 0;
455
        updateCompassCourse = 0;
456
      }
456
      }
457
    }
457
    }
458
    yawGyroHeading += (error * 8) / correction;
458
    yawGyroHeading += (error * 8) / correction;
459
 
459
 
460
    /*
460
    /*
461
     w = (w * dynamicParams.CompassYawEffect) / 32;
461
     w = (w * dynamicParams.CompassYawEffect) / 32;
462
     w = dynamicParams.CompassYawEffect - w;
462
     w = dynamicParams.CompassYawEffect - w;
463
     */
463
     */
464
    w = dynamicParams.compassYawEffect - (w * dynamicParams.compassYawEffect)
464
    w = dynamicParams.compassYawEffect - (w * dynamicParams.compassYawEffect)
465
        / 32;
465
        / 32;
466
 
466
 
467
    // As readable formula:
467
    // As readable formula:
468
    // w = dynamicParams.CompassYawEffect * (1-w/32);
468
    // w = dynamicParams.CompassYawEffect * (1-w/32);
469
 
469
 
470
    if (w >= 0) { // maxAttitudeAngle < 32
470
    if (w >= 0) { // maxAttitudeAngle < 32
471
      if (!ignoreCompassTimer) {
471
      if (!ignoreCompassTimer) {
472
        /*v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;*/
472
        /*v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;*/
473
        v = 64 + controlActivity / 100;
473
        v = 64 + controlActivity / 100;
474
        // yawGyroHeading - compassCourse on a -180..179 degree interval.
474
        // yawGyroHeading - compassCourse on a -180..179 degree interval.
475
        r
475
        r
476
            = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse)
476
            = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse)
477
                % 360) - 180;
477
                % 360) - 180;
478
        v = (r * w) / v; // align to compass course
478
        v = (r * w) / v; // align to compass course
479
        // limit yaw rate
479
        // limit yaw rate
480
        w = 3 * dynamicParams.compassYawEffect;
480
        w = 3 * dynamicParams.compassYawEffect;
481
        if (v > w)
481
        if (v > w)
482
          v = w;
482
          v = w;
483
        else if (v < -w)
483
        else if (v < -w)
484
          v = -w;
484
          v = -w;
485
        yawAngleDiff += v;
485
        yawAngleDiff += v;
486
      } else { // wait a while
486
      } else { // wait a while
487
        ignoreCompassTimer--;
487
        ignoreCompassTimer--;
488
      }
488
      }
489
    } else { // ignore compass at extreme attitudes for a while
489
    } else { // ignore compass at extreme attitudes for a while
490
      ignoreCompassTimer = 500;
490
      ignoreCompassTimer = 500;
491
    }
491
    }
492
  }
492
  }
493
}
493
}
494
 
494
 
495
/*
495
/*
496
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
496
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
497
 * and to compensate them away. It brings about some improvement, but no miracles.
497
 * and to compensate them away. It brings about some improvement, but no miracles.
498
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
498
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
499
 * will measure the effect of vibration, to use for later compensation. So, one should keep
499
 * will measure the effect of vibration, to use for later compensation. So, one should keep
500
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
500
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
501
 * speed unfortunately... must find a better way)
501
 * speed unfortunately... must find a better way)
502
 */
502
 */
503
/*
503
/*
504
 void attitude_startDynamicCalibration(void) {
504
 void attitude_startDynamicCalibration(void) {
505
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
505
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
506
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
506
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
507
 }
507
 }
508
 
508
 
509
 void attitude_continueDynamicCalibration(void) {
509
 void attitude_continueDynamicCalibration(void) {
510
 // measure dynamic offset now...
510
 // measure dynamic offset now...
511
 dynamicCalPitch += hiResPitchGyro;
511
 dynamicCalPitch += hiResPitchGyro;
512
 dynamicCalRoll += hiResRollGyro;
512
 dynamicCalRoll += hiResRollGyro;
513
 dynamicCalYaw += rawYawGyroSum;
513
 dynamicCalYaw += rawYawGyroSum;
514
 dynamicCalCount++;
514
 dynamicCalCount++;
515
 
515
 
516
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
516
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
517
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
517
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
518
 // manual mode
518
 // manual mode
519
 driftCompPitch = dynamicParams.UserParam7 - 128;
519
 driftCompPitch = dynamicParams.UserParam7 - 128;
520
 driftCompRoll = dynamicParams.UserParam8 - 128;
520
 driftCompRoll = dynamicParams.UserParam8 - 128;
521
 } else {
521
 } else {
522
 // use the sampled value (does not seem to work so well....)
522
 // use the sampled value (does not seem to work so well....)
523
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
523
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
524
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
524
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
525
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
525
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
526
 }
526
 }
527
 
527
 
528
 // keep resetting these meanwhile, to avoid accumulating errors.
528
 // keep resetting these meanwhile, to avoid accumulating errors.
529
 setStaticAttitudeIntegrals();
529
 setStaticAttitudeIntegrals();
530
 yawAngle = 0;
530
 yawAngle = 0;
531
 }
531
 }
532
 */
532
 */
533
 
533