Subversion Repositories FlightCtrl

Rev

Rev 2055 | Rev 2071 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2055 Rev 2069
1
#include <avr/io.h>
1
#include <avr/io.h>
2
#include <avr/interrupt.h>
2
#include <avr/interrupt.h>
3
#include <avr/pgmspace.h>
3
#include <avr/pgmspace.h>
4
 
4
 
5
#include "analog.h"
5
#include "analog.h"
6
#include "attitude.h"
6
#include "attitude.h"
7
#include "sensors.h"
7
#include "sensors.h"
8
#include "printf_P.h"
8
#include "printf_P.h"
9
#include "mk3mag.h"
9
#include "mk3mag.h"
10
 
10
 
11
// for Delay functions
11
// for Delay functions
12
#include "timer0.h"
12
#include "timer0.h"
13
 
13
 
14
// For reading and writing acc. meter offsets.
14
// For reading and writing acc. meter offsets.
15
#include "eeprom.h"
15
#include "eeprom.h"
16
 
16
 
17
// For debugOut
17
// For debugOut
18
#include "output.h"
18
#include "output.h"
19
 
19
 
20
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
20
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
21
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
21
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
22
 
22
 
23
const char* recal = ", recalibration needed.";
23
const char* recal = ", recalibration needed.";
24
 
24
 
25
/*
25
/*
26
 * For each A/D conversion cycle, each analog channel is sampled a number of times
26
 * For each A/D conversion cycle, each analog channel is sampled a number of times
27
 * (see array channelsForStates), and the results for each channel are summed.
27
 * (see array channelsForStates), and the results for each channel are summed.
28
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
28
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
29
 * They are exported in the analog.h file - but please do not use them! The only
29
 * They are exported in the analog.h file - but please do not use them! The only
30
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
30
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
31
 * the offsets with the DAC.
31
 * the offsets with the DAC.
32
 */
32
 */
33
volatile uint16_t sensorInputs[8];
33
volatile uint16_t sensorInputs[8];
34
int16_t acc[3];
34
int16_t acc[3];
35
int16_t filteredAcc[3] = { 0,0,0 };
35
int16_t filteredAcc[3] = { 0,0,0 };
36
 
36
 
37
/*
37
/*
38
 * These 4 exported variables are zero-offset. The "PID" ones are used
38
 * These 4 exported variables are zero-offset. The "PID" ones are used
39
 * in the attitude control as rotation rates. The "ATT" ones are for
39
 * in the attitude control as rotation rates. The "ATT" ones are for
40
 * integration to angles.
40
 * integration to angles.
41
 */
41
 */
42
int16_t gyro_PID[2];
42
int16_t gyro_PID[2];
43
int16_t gyro_ATT[2];
43
int16_t gyro_ATT[2];
44
int16_t gyroD[2];
44
int16_t gyroD[2];
45
int16_t yawGyro;
45
int16_t yawGyro;
46
int16_t magneticHeading;
46
int16_t magneticHeading;
47
 
47
 
48
int32_t groundPressure;
48
int32_t groundPressure;
49
 
49
 
50
/*
50
/*
51
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
51
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
52
 * standing still. They are used for adjusting the gyro and acc. meter values
52
 * standing still. They are used for adjusting the gyro and acc. meter values
53
 * to be centered on zero.
53
 * to be centered on zero.
54
 */
54
 */
55
 
55
 
56
sensorOffset_t gyroOffset;
56
sensorOffset_t gyroOffset;
57
sensorOffset_t accOffset;
57
sensorOffset_t accOffset;
58
sensorOffset_t gyroAmplifierOffset;
58
sensorOffset_t gyroAmplifierOffset;
59
 
59
 
60
/*
60
/*
61
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
61
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
62
 * If a sensor is used in an orientation where one but not both of the axes has
62
 * If a sensor is used in an orientation where one but not both of the axes has
63
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
63
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
64
 * Transform:
64
 * Transform:
65
 * pitch <- pp*pitch + pr*roll
65
 * pitch <- pp*pitch + pr*roll
66
 * roll  <- rp*pitch + rr*roll
66
 * roll  <- rp*pitch + rr*roll
67
 * Not reversed, GYRO_QUADRANT:
67
 * Not reversed, GYRO_QUADRANT:
68
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
68
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
69
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
69
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
70
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
70
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
71
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
71
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
72
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
72
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
73
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
73
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
74
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
74
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
75
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
75
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
76
 * Reversed, GYRO_QUADRANT:
76
 * Reversed, GYRO_QUADRANT:
77
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
77
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
78
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
78
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
79
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
79
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
80
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
80
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
81
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
81
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
82
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
82
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
83
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
83
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
84
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
84
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
85
 */
85
 */
86
 
86
 
87
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
87
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
88
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
88
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
89
  // Pitch to Pitch part
89
  // Pitch to Pitch part
90
  int8_t xx = reverse ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
90
  int8_t xx = reverse ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
91
  // Roll to Pitch part
91
  // Roll to Pitch part
92
  int8_t xy = rotationTab[(quadrant+2)%8];
92
  int8_t xy = rotationTab[(quadrant+2)%8];
93
  // Pitch to Roll part
93
  // Pitch to Roll part
94
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
94
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
95
  // Roll to Roll part
95
  // Roll to Roll part
96
  int8_t yy = rotationTab[quadrant];
96
  int8_t yy = rotationTab[quadrant];
97
 
97
 
98
  int16_t xIn = result[0];
98
  int16_t xIn = result[0];
99
  result[0] = xx*xIn + xy*result[1];
99
  result[0] = xx*xIn + xy*result[1];
100
  result[1] = yx*xIn + yy*result[1];
100
  result[1] = yx*xIn + yy*result[1];
101
 
101
 
102
  if (quadrant & 1) {
102
  if (quadrant & 1) {
103
        // A rotation was used above, where the factors were too large by sqrt(2).
103
        // A rotation was used above, where the factors were too large by sqrt(2).
104
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
104
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
105
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
105
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
106
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
106
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
107
        result[0] = (result[0]*11) >> 4;
107
        result[0] = (result[0]*11) >> 4;
108
        result[1] = (result[1]*11) >> 4;
108
        result[1] = (result[1]*11) >> 4;
109
  }
109
  }
110
}
110
}
111
 
111
 
112
/*
112
/*
113
 * Air pressure
113
 * Air pressure
114
 */
114
 */
115
volatile uint8_t rangewidth = 105;
115
volatile uint8_t rangewidth = 105;
116
 
116
 
117
// Direct from sensor, irrespective of range.
117
// Direct from sensor, irrespective of range.
118
// volatile uint16_t rawAirPressure;
118
// volatile uint16_t rawAirPressure;
119
 
119
 
120
// Value of 2 samples, with range.
120
// Value of 2 samples, with range.
121
uint16_t simpleAirPressure;
121
uint16_t simpleAirPressure;
122
 
122
 
123
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
123
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
124
int32_t filteredAirPressure;
124
int32_t filteredAirPressure;
125
int32_t lastFilteredAirPressure;
125
int32_t lastFilteredAirPressure;
126
 
126
 
127
#define MAX_AIRPRESSURE_WINDOW_LENGTH 32
127
#define MAX_AIRPRESSURE_WINDOW_LENGTH 32
128
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
128
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
129
int32_t windowedAirPressure;
129
int32_t windowedAirPressure;
130
uint8_t windowPtr;
130
uint8_t windowPtr;
131
 
131
 
132
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
132
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
133
int32_t airPressureSum;
133
int32_t airPressureSum;
134
 
134
 
135
// The number of samples summed into airPressureSum so far.
135
// The number of samples summed into airPressureSum so far.
136
uint8_t pressureMeasurementCount;
136
uint8_t pressureMeasurementCount;
137
 
137
 
138
/*
138
/*
139
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
139
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
140
 * That is divided by 3 below, for a final 10.34 per volt.
140
 * That is divided by 3 below, for a final 10.34 per volt.
141
 * So the initial value of 100 is for 9.7 volts.
141
 * So the initial value of 100 is for 9.7 volts.
142
 */
142
 */
143
int16_t UBat = 100;
143
int16_t UBat = 100;
144
 
144
 
145
/*
145
/*
146
 * Control and status.
146
 * Control and status.
147
 */
147
 */
148
volatile uint16_t ADCycleCount = 0;
148
volatile uint16_t ADCycleCount = 0;
149
volatile uint8_t analogDataReady = 1;
149
volatile uint8_t analogDataReady = 1;
150
 
150
 
151
/*
151
/*
152
 * Experiment: Measuring vibration-induced sensor noise.
152
 * Experiment: Measuring vibration-induced sensor noise.
153
 */
153
 */
154
uint16_t gyroNoisePeak[3];
154
uint16_t gyroNoisePeak[3];
155
uint16_t accNoisePeak[3];
155
uint16_t accNoisePeak[3];
156
 
156
 
157
volatile uint8_t adState;
157
volatile uint8_t adState;
158
volatile uint8_t adChannel;
158
volatile uint8_t adChannel;
159
 
159
 
160
// ADC channels
160
// ADC channels
161
#define AD_GYRO_YAW       0
161
#define AD_GYRO_YAW       0
162
#define AD_GYRO_ROLL      1
162
#define AD_GYRO_ROLL      1
163
#define AD_GYRO_PITCH     2
163
#define AD_GYRO_PITCH     2
164
#define AD_AIRPRESSURE    3
164
#define AD_AIRPRESSURE    3
165
#define AD_UBAT           4
165
#define AD_UBAT           4
166
#define AD_ACC_Z          5
166
#define AD_ACC_Z          5
167
#define AD_ACC_ROLL       6
167
#define AD_ACC_ROLL       6
168
#define AD_ACC_PITCH      7
168
#define AD_ACC_PITCH      7
169
 
169
 
170
/*
170
/*
171
 * Table of AD converter inputs for each state.
171
 * Table of AD converter inputs for each state.
172
 * The number of samples summed for each channel is equal to
172
 * The number of samples summed for each channel is equal to
173
 * the number of times the channel appears in the array.
173
 * the number of times the channel appears in the array.
174
 * The max. number of samples that can be taken in 2 ms is:
174
 * The max. number of samples that can be taken in 2 ms is:
175
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
175
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
176
 * loop needs a little time between reading AD values and
176
 * loop needs a little time between reading AD values and
177
 * re-enabling ADC, the real limit is (how much?) lower.
177
 * re-enabling ADC, the real limit is (how much?) lower.
178
 * The acc. sensor is sampled even if not used - or installed
178
 * The acc. sensor is sampled even if not used - or installed
179
 * at all. The cost is not significant.
179
 * at all. The cost is not significant.
180
 */
180
 */
181
 
181
 
182
const uint8_t channelsForStates[] PROGMEM = {
182
const uint8_t channelsForStates[] PROGMEM = {
183
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
183
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
184
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
184
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
185
 
185
 
186
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
186
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
187
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
187
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
188
 
188
 
189
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
189
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
190
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
190
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
191
  AD_AIRPRESSURE, // at 14, finish air pressure.
191
  AD_AIRPRESSURE, // at 14, finish air pressure.
192
 
192
 
193
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
193
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
194
  AD_GYRO_ROLL,   // at 16, finish roll gyro
194
  AD_GYRO_ROLL,   // at 16, finish roll gyro
195
  AD_UBAT         // at 17, measure battery.
195
  AD_UBAT         // at 17, measure battery.
196
};
196
};
197
 
197
 
198
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
198
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
199
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
199
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
200
 
200
 
201
void analog_init(void) {
201
void analog_init(void) {
202
        uint8_t sreg = SREG;
202
        uint8_t sreg = SREG;
203
        // disable all interrupts before reconfiguration
203
        // disable all interrupts before reconfiguration
204
        cli();
204
        cli();
205
 
205
 
206
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
206
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
207
        DDRA = 0x00;
207
        DDRA = 0x00;
208
        PORTA = 0x00;
208
        PORTA = 0x00;
209
        // Digital Input Disable Register 0
209
        // Digital Input Disable Register 0
210
        // Disable digital input buffer for analog adc_channel pins
210
        // Disable digital input buffer for analog adc_channel pins
211
        DIDR0 = 0xFF;
211
        DIDR0 = 0xFF;
212
        // external reference, adjust data to the right
212
        // external reference, adjust data to the right
213
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
213
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
214
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
214
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
215
        ADMUX = (ADMUX & 0xE0);
215
        ADMUX = (ADMUX & 0xE0);
216
        //Set ADC Control and Status Register A
216
        //Set ADC Control and Status Register A
217
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
217
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
218
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
218
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
219
        //Set ADC Control and Status Register B
219
        //Set ADC Control and Status Register B
220
        //Trigger Source to Free Running Mode
220
        //Trigger Source to Free Running Mode
221
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
221
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
222
 
222
 
223
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
223
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
224
          airPressureWindow[i] = 0;
224
          airPressureWindow[i] = 0;
225
        }
225
        }
226
    windowedAirPressure = 0;
226
    windowedAirPressure = 0;
227
 
227
 
228
        startAnalogConversionCycle();
228
        startAnalogConversionCycle();
229
 
229
 
230
        // restore global interrupt flags
230
        // restore global interrupt flags
231
        SREG = sreg;
231
        SREG = sreg;
232
}
232
}
233
 
233
 
234
uint16_t rawGyroValue(uint8_t axis) {
234
uint16_t rawGyroValue(uint8_t axis) {
235
        return sensorInputs[AD_GYRO_PITCH-axis];
235
        return sensorInputs[AD_GYRO_PITCH-axis];
236
}
236
}
237
 
237
 
238
uint16_t rawAccValue(uint8_t axis) {
238
uint16_t rawAccValue(uint8_t axis) {
239
        return sensorInputs[AD_ACC_PITCH-axis];
239
        return sensorInputs[AD_ACC_PITCH-axis];
240
}
240
}
241
 
241
 
242
void measureNoise(const int16_t sensor,
242
void measureNoise(const int16_t sensor,
243
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
243
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
244
        if (sensor > (int16_t) (*noiseMeasurement)) {
244
        if (sensor > (int16_t) (*noiseMeasurement)) {
245
                *noiseMeasurement = sensor;
245
                *noiseMeasurement = sensor;
246
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
246
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
247
                *noiseMeasurement = -sensor;
247
                *noiseMeasurement = -sensor;
248
        } else if (*noiseMeasurement > damping) {
248
        } else if (*noiseMeasurement > damping) {
249
                *noiseMeasurement -= damping;
249
                *noiseMeasurement -= damping;
250
        } else {
250
        } else {
251
                *noiseMeasurement = 0;
251
                *noiseMeasurement = 0;
252
        }
252
        }
253
}
253
}
254
 
254
 
255
/*
255
/*
256
 * Min.: 0
256
 * Min.: 0
257
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
257
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
258
 */
258
 */
259
uint16_t getSimplePressure(int advalue) {
259
uint16_t getSimplePressure(int advalue) {
260
        uint16_t result = (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
260
        uint16_t result = (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
261
        result += (acc[Z] * (staticParams.airpressureAccZCorrection-128)) >> 10;
261
        result += (acc[Z] * (staticParams.airpressureAccZCorrection-128)) >> 10;
262
        return result;
262
        return result;
263
}
263
}
264
 
264
 
265
void startAnalogConversionCycle(void) {
265
void startAnalogConversionCycle(void) {
266
  analogDataReady = 0;
266
  analogDataReady = 0;
267
 
267
 
268
  // Stop the sampling. Cycle is over.
268
  // Stop the sampling. Cycle is over.
269
  for (uint8_t i = 0; i < 8; i++) {
269
  for (uint8_t i = 0; i < 8; i++) {
270
    sensorInputs[i] = 0;
270
    sensorInputs[i] = 0;
271
  }
271
  }
272
  adState = 0;
272
  adState = 0;
273
  adChannel = AD_GYRO_PITCH;
273
  adChannel = AD_GYRO_PITCH;
274
  ADMUX = (ADMUX & 0xE0) | adChannel;
274
  ADMUX = (ADMUX & 0xE0) | adChannel;
275
  startADC();
275
  startADC();
276
}
276
}
277
 
277
 
278
/*****************************************************
278
/*****************************************************
279
 * Interrupt Service Routine for ADC
279
 * Interrupt Service Routine for ADC
280
 * Runs at 312.5 kHz or 3.2 �s. When all states are
280
 * Runs at 312.5 kHz or 3.2 �s. When all states are
281
 * processed further conversions are stopped.
281
 * processed further conversions are stopped.
282
 *****************************************************/
282
 *****************************************************/
283
ISR(ADC_vect) {
283
ISR(ADC_vect) {
284
  sensorInputs[adChannel] += ADC;
284
  sensorInputs[adChannel] += ADC;
285
  // set up for next state.
285
  // set up for next state.
286
  adState++;
286
  adState++;
287
  if (adState < sizeof(channelsForStates)) {
287
  if (adState < sizeof(channelsForStates)) {
288
    adChannel = pgm_read_byte(&channelsForStates[adState]);
288
    adChannel = pgm_read_byte(&channelsForStates[adState]);
289
    // set adc muxer to next adChannel
289
    // set adc muxer to next adChannel
290
    ADMUX = (ADMUX & 0xE0) | adChannel;
290
    ADMUX = (ADMUX & 0xE0) | adChannel;
291
    // after full cycle stop further interrupts
291
    // after full cycle stop further interrupts
292
    startADC();
292
    startADC();
293
  } else {
293
  } else {
294
    ADCycleCount++;
294
    ADCycleCount++;
295
    analogDataReady = 1;
295
    analogDataReady = 1;
296
    // do not restart ADC converter. 
296
    // do not restart ADC converter. 
297
  }
297
  }
298
}
298
}
299
 
299
 
300
// Experimental gyro shake takeoff detect!
300
// Experimental gyro shake takeoff detect!
301
uint16_t gyroActivity = 0;
301
uint16_t gyroActivity = 0;
302
void measureGyroActivityAndUpdateGyro(uint8_t axis, int16_t newValue) {
302
void measureGyroActivityAndUpdateGyro(uint8_t axis, int16_t newValue) {
303
  int16_t tmp = gyro_ATT[axis];
303
  int16_t tmp = gyro_ATT[axis];
304
  gyro_ATT[axis] = newValue;
304
  gyro_ATT[axis] = newValue;
305
 
305
 
306
  tmp -= newValue;
306
  tmp -= newValue;
307
  tmp = (tmp*tmp) >> 4;
307
  tmp = (tmp*tmp) >> 4;
308
 
308
 
309
  if (gyroActivity + (uint16_t)tmp < 0x8000)
309
  if (gyroActivity + (uint16_t)tmp < 0x8000)
310
    gyroActivity += tmp;
310
    gyroActivity += tmp;
311
}
311
}
312
 
312
 
313
#define GADAMPING 10
313
#define GADAMPING 10
314
void dampenGyroActivity(void) {
314
void dampenGyroActivity(void) {
315
  uint32_t tmp = gyroActivity;
315
  uint32_t tmp = gyroActivity;
316
  tmp *= ((1<<GADAMPING)-1);
316
  tmp *= ((1<<GADAMPING)-1);
317
  tmp >>= GADAMPING;
317
  tmp >>= GADAMPING;
318
  gyroActivity = tmp;
318
  gyroActivity = tmp;
319
}
319
}
320
 
320
 
321
void analog_updateGyros(void) {
321
void analog_updateGyros(void) {
322
  // for various filters...
322
  // for various filters...
323
  int16_t tempOffsetGyro[2], tempGyro;
323
  int16_t tempOffsetGyro[2], tempGyro;
324
 
324
 
325
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
325
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
326
  for (uint8_t axis=0; axis<2; axis++) {
326
  for (uint8_t axis=0; axis<2; axis++) {
327
    tempGyro = rawGyroValue(axis);
327
    tempGyro = rawGyroValue(axis);
328
    /*
328
    /*
329
     * Process the gyro data for the PID controller.
329
     * Process the gyro data for the PID controller.
330
     */
330
     */
331
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
331
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
332
    //    gyro with a wider range, and helps counter saturation at full control.
332
    //    gyro with a wider range, and helps counter saturation at full control.
333
   
333
   
334
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
334
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
335
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
335
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
336
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
336
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
337
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
337
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
338
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
338
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
339
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
339
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
340
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
340
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
341
      }
341
      }
342
    }
342
    }
343
 
343
 
344
    // 2) Apply sign and offset, scale before filtering.
344
    // 2) Apply sign and offset, scale before filtering.
345
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
345
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
346
  }
346
  }
347
 
347
 
348
  // 2.1: Transform axes.
348
  // 2.1: Transform axes.
349
  rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
349
  rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
350
 
350
 
351
  for (uint8_t axis=0; axis<2; axis++) {
351
  for (uint8_t axis=0; axis<2; axis++) {
352
        // 3) Filter.
352
        // 3) Filter.
353
    tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / staticParams.gyroPIDFilterConstant;
353
    tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / staticParams.gyroPIDFilterConstant;
354
 
354
 
355
    // 4) Measure noise.
355
    // 4) Measure noise.
356
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
356
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
357
 
357
 
358
    // 5) Differential measurement.
358
    // 5) Differential measurement.
359
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
359
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
360
 
360
 
361
    // 6) Done.
361
    // 6) Done.
362
    gyro_PID[axis] = tempOffsetGyro[axis];
362
    gyro_PID[axis] = tempOffsetGyro[axis];
363
 
363
 
364
    // Prepare tempOffsetGyro for next calculation below...
364
    // Prepare tempOffsetGyro for next calculation below...
365
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
365
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
366
  }
366
  }
367
 
367
 
368
  /*
368
  /*
369
   * Now process the data for attitude angles.
369
   * Now process the data for attitude angles.
370
   */
370
   */
371
   rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
371
   rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
372
 
372
 
373
   measureGyroActivityAndUpdateGyro(0, tempOffsetGyro[PITCH]);
373
   measureGyroActivityAndUpdateGyro(0, tempOffsetGyro[PITCH]);
374
   measureGyroActivityAndUpdateGyro(1, tempOffsetGyro[ROLL]);
374
   measureGyroActivityAndUpdateGyro(1, tempOffsetGyro[ROLL]);
375
   dampenGyroActivity();
375
   dampenGyroActivity();
376
 
376
 
377
  // Yaw gyro.
377
  // Yaw gyro.
378
  if (staticParams.imuReversedFlags & IMU_REVERSE_GYRO_YAW)
378
  if (staticParams.imuReversedFlags & IMU_REVERSE_GYRO_YAW)
379
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
379
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
380
  else
380
  else
381
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
381
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
382
}
382
}
383
 
383
 
384
void analog_updateAccelerometers(void) {
384
void analog_updateAccelerometers(void) {
385
  // Pitch and roll axis accelerations.
385
  // Pitch and roll axis accelerations.
386
  for (uint8_t axis=0; axis<2; axis++) {
386
  for (uint8_t axis=0; axis<2; axis++) {
387
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
387
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
388
  }
388
  }
389
 
389
 
390
  rotate(acc, staticParams.accQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_ACC_XY);
390
  rotate(acc, staticParams.accQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_ACC_XY);
391
  for(uint8_t axis=0; axis<3; axis++) {
391
  for(uint8_t axis=0; axis<3; axis++) {
392
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
392
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
393
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
393
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
394
  }
394
  }
395
 
395
 
396
  // Z acc.
396
  // Z acc.
397
  if (staticParams.imuReversedFlags & 8)
397
  if (staticParams.imuReversedFlags & 8)
398
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
398
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
399
  else
399
  else
400
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
400
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
-
 
401
 
-
 
402
  debugOut.analog[29] = acc[Z];
401
}
403
}
402
 
404
 
403
void analog_updateAirPressure(void) {
405
void analog_updateAirPressure(void) {
404
  static uint16_t pressureAutorangingWait = 25;
406
  static uint16_t pressureAutorangingWait = 25;
405
  uint16_t rawAirPressure;
407
  uint16_t rawAirPressure;
406
  int16_t newrange;
408
  int16_t newrange;
407
  // air pressure
409
  // air pressure
408
  if (pressureAutorangingWait) {
410
  if (pressureAutorangingWait) {
409
    //A range switch was done recently. Wait for steadying.
411
    //A range switch was done recently. Wait for steadying.
410
    pressureAutorangingWait--;
412
    pressureAutorangingWait--;
411
  } else {
413
  } else {
412
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
414
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
413
    if (rawAirPressure < MIN_RAWPRESSURE) {
415
    if (rawAirPressure < MIN_RAWPRESSURE) {
414
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
416
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
415
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
417
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
416
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
418
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
417
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
419
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
418
        OCR0A = newrange;
420
        OCR0A = newrange;
419
      } else {
421
      } else {
420
        if (OCR0A) {
422
        if (OCR0A) {
421
          OCR0A--;
423
          OCR0A--;
422
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
424
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
423
        }
425
        }
424
      }
426
      }
425
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
427
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
426
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
428
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
427
      // If near the end, make a limited increase
429
      // If near the end, make a limited increase
428
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
430
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
429
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
431
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
430
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
432
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
431
        OCR0A = newrange;
433
        OCR0A = newrange;
432
      } else {
434
      } else {
433
        if (OCR0A < 254) {
435
        if (OCR0A < 254) {
434
          OCR0A++;
436
          OCR0A++;
435
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
437
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
436
        }
438
        }
437
      }
439
      }
438
    }
440
    }
439
   
441
   
440
    // Even if the sample is off-range, use it.
442
    // Even if the sample is off-range, use it.
441
    simpleAirPressure = getSimplePressure(rawAirPressure);
443
    simpleAirPressure = getSimplePressure(rawAirPressure);
442
    debugOut.analog[6] = rawAirPressure;
444
    debugOut.analog[6] = rawAirPressure;
443
    debugOut.analog[7] = simpleAirPressure;
445
    debugOut.analog[7] = simpleAirPressure;
444
   
446
   
445
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
447
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
446
      // Danger: pressure near lower end of range. If the measurement saturates, the
448
      // Danger: pressure near lower end of range. If the measurement saturates, the
447
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
449
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
448
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
450
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
449
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
451
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
450
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
452
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
451
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
453
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
452
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
454
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
453
      // Danger: pressure near upper end of range. If the measurement saturates, the
455
      // Danger: pressure near upper end of range. If the measurement saturates, the
454
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
456
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
455
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
457
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
456
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
458
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
457
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
459
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
458
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
460
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
459
    } else {
461
    } else {
460
      // normal case.
462
      // normal case.
461
      // If AIRPRESSURE_OVERSAMPLING is an odd number we only want to add half the double sample.
463
      // If AIRPRESSURE_OVERSAMPLING is an odd number we only want to add half the double sample.
462
      // The 2 cases above (end of range) are ignored for this.
464
      // The 2 cases above (end of range) are ignored for this.
463
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
465
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
464
          airPressureSum += simpleAirPressure;
466
          airPressureSum += simpleAirPressure;
465
    }
467
    }
466
   
468
   
467
    // 2 samples were added.
469
    // 2 samples were added.
468
    pressureMeasurementCount += 2;
470
    pressureMeasurementCount += 2;
469
    // Assumption here: AIRPRESSURE_OVERSAMPLING is even (well we all know it's 14 haha...)
471
    // Assumption here: AIRPRESSURE_OVERSAMPLING is even (well we all know it's 14 haha...)
470
    if (pressureMeasurementCount == AIRPRESSURE_OVERSAMPLING) {
472
    if (pressureMeasurementCount == AIRPRESSURE_OVERSAMPLING) {
471
 
473
 
472
      // The best oversampling count is 14.5. We add a quarter of the double ADC value to get the final half.
474
      // The best oversampling count is 14.5. We add a quarter of the double ADC value to get the final half.
473
      airPressureSum += simpleAirPressure >> 2;
475
      airPressureSum += simpleAirPressure >> 2;
474
 
476
 
475
      lastFilteredAirPressure = filteredAirPressure;
477
      lastFilteredAirPressure = filteredAirPressure;
476
 
478
 
477
 
479
 
478
      if (!staticParams.airpressureWindowLength) {
480
      if (!staticParams.airpressureWindowLength) {
479
          filteredAirPressure = (filteredAirPressure * (staticParams.airpressureFilterConstant - 1)
481
          filteredAirPressure = (filteredAirPressure * (staticParams.airpressureFilterConstant - 1)
480
                          + airPressureSum + staticParams.airpressureFilterConstant / 2) / staticParams.airpressureFilterConstant;
482
                          + airPressureSum + staticParams.airpressureFilterConstant / 2) / staticParams.airpressureFilterConstant;
481
      } else {
483
      } else {
482
          // use windowed.
484
          // use windowed.
483
          windowedAirPressure += simpleAirPressure;
485
          windowedAirPressure += simpleAirPressure;
484
          windowedAirPressure -= airPressureWindow[windowPtr];
486
          windowedAirPressure -= airPressureWindow[windowPtr];
485
          airPressureWindow[windowPtr] = simpleAirPressure;
487
          airPressureWindow[windowPtr] = simpleAirPressure;
486
          windowPtr = (windowPtr+1) % staticParams.airpressureWindowLength;
488
          windowPtr = (windowPtr+1) % staticParams.airpressureWindowLength;
487
          filteredAirPressure = windowedAirPressure / staticParams.airpressureWindowLength;
489
          filteredAirPressure = windowedAirPressure / staticParams.airpressureWindowLength;
488
      }
490
      }
489
 
491
 
490
      pressureMeasurementCount = airPressureSum = 0;
492
      pressureMeasurementCount = airPressureSum = 0;
491
    }
493
    }
492
  }
494
  }
493
}
495
}
494
 
496
 
495
void analog_updateBatteryVoltage(void) {
497
void analog_updateBatteryVoltage(void) {
496
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
498
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
497
  // This is divided by 3 --> 10.34 counts per volt.
499
  // This is divided by 3 --> 10.34 counts per volt.
498
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
500
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
499
}
501
}
500
 
502
 
501
void analog_update(void) {
503
void analog_update(void) {
502
  analog_updateGyros();
504
  analog_updateGyros();
503
  analog_updateAccelerometers();
505
  analog_updateAccelerometers();
504
  analog_updateAirPressure();
506
  analog_updateAirPressure();
505
  analog_updateBatteryVoltage();
507
  analog_updateBatteryVoltage();
506
#ifdef USE_MK3MAG
508
#ifdef USE_MK3MAG
507
  magneticHeading = volatileMagneticHeading;
509
  magneticHeading = volatileMagneticHeading;
508
#endif
510
#endif
509
}
511
}
510
 
512
 
511
void analog_setNeutral() {
513
void analog_setNeutral() {
512
  gyro_init();
514
  gyro_init();
513
 
515
 
514
  if (gyroOffset_readFromEEProm()) {
516
  if (gyroOffset_readFromEEProm()) {
515
    printf("gyro offsets invalid%s",recal);
517
    printf("gyro offsets invalid%s",recal);
516
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING_PITCHROLL;
518
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING_PITCHROLL;
517
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING_YAW;
519
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING_YAW;
518
  }
520
  }
519
 
521
 
520
  if (accOffset_readFromEEProm()) {
522
  if (accOffset_readFromEEProm()) {
521
    printf("acc. meter offsets invalid%s",recal);
523
    printf("acc. meter offsets invalid%s",recal);
522
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
524
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
523
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
525
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
524
  }
526
  }
525
 
527
 
526
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
528
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
527
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
529
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
528
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
530
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
529
 
531
 
530
  // Setting offset values has an influence in the analog.c ISR
532
  // Setting offset values has an influence in the analog.c ISR
531
  // Therefore run measurement for 100ms to achive stable readings
533
  // Therefore run measurement for 100ms to achive stable readings
532
  delay_ms_with_adc_measurement(100, 0);
534
  delay_ms_with_adc_measurement(100, 0);
533
 
535
 
534
  gyroActivity = 0;
536
  gyroActivity = 0;
535
}
537
}
536
 
538
 
537
void analog_calibrateGyros(void) {
539
void analog_calibrateGyros(void) {
538
#define GYRO_OFFSET_CYCLES 32
540
#define GYRO_OFFSET_CYCLES 32
539
  uint8_t i, axis;
541
  uint8_t i, axis;
540
  int32_t offsets[3] = { 0, 0, 0 };
542
  int32_t offsets[3] = { 0, 0, 0 };
541
  gyro_calibrate();
543
  gyro_calibrate();
542
 
544
 
543
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
545
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
544
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
546
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
545
    delay_ms_with_adc_measurement(10, 1);
547
    delay_ms_with_adc_measurement(10, 1);
546
    for (axis = PITCH; axis <= YAW; axis++) {
548
    for (axis = PITCH; axis <= YAW; axis++) {
547
      offsets[axis] += rawGyroValue(axis);
549
      offsets[axis] += rawGyroValue(axis);
548
    }
550
    }
549
  }
551
  }
550
 
552
 
551
  for (axis = PITCH; axis <= YAW; axis++) {
553
  for (axis = PITCH; axis <= YAW; axis++) {
552
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
554
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
553
 
555
 
554
    int16_t min = (512-200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
556
    int16_t min = (512-200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
555
    int16_t max = (512+200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
557
    int16_t max = (512+200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
556
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
558
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
557
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
559
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
558
  }
560
  }
559
 
561
 
560
  gyroOffset_writeToEEProm();  
562
  gyroOffset_writeToEEProm();  
561
  startAnalogConversionCycle();
563
  startAnalogConversionCycle();
562
}
564
}
563
 
565
 
564
/*
566
/*
565
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
567
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
566
 * Does not (!} update the local variables. This must be done with a
568
 * Does not (!} update the local variables. This must be done with a
567
 * call to analog_calibrate() - this always (?) is done by the caller
569
 * call to analog_calibrate() - this always (?) is done by the caller
568
 * anyway. There would be nothing wrong with updating the variables
570
 * anyway. There would be nothing wrong with updating the variables
569
 * directly from here, though.
571
 * directly from here, though.
570
 */
572
 */
571
void analog_calibrateAcc(void) {
573
void analog_calibrateAcc(void) {
572
#define ACC_OFFSET_CYCLES 32
574
#define ACC_OFFSET_CYCLES 32
573
  uint8_t i, axis;
575
  uint8_t i, axis;
574
  int32_t offsets[3] = { 0, 0, 0 };
576
  int32_t offsets[3] = { 0, 0, 0 };
575
 
577
 
576
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
578
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
577
    delay_ms_with_adc_measurement(10, 1);
579
    delay_ms_with_adc_measurement(10, 1);
578
    for (axis = PITCH; axis <= YAW; axis++) {
580
    for (axis = PITCH; axis <= YAW; axis++) {
579
      offsets[axis] += rawAccValue(axis);
581
      offsets[axis] += rawAccValue(axis);
580
    }
582
    }
581
  }
583
  }
582
 
584
 
583
  for (axis = PITCH; axis <= YAW; axis++) {
585
  for (axis = PITCH; axis <= YAW; axis++) {
584
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
586
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
585
    int16_t min,max;
587
    int16_t min,max;
586
    if (axis==Z) {
588
    if (axis==Z) {
587
        if (staticParams.imuReversedFlags & IMU_REVERSE_ACC_Z) {
589
        if (staticParams.imuReversedFlags & IMU_REVERSE_ACC_Z) {
588
        // TODO: This assumes a sensitivity of +/- 2g.
590
        // TODO: This assumes a sensitivity of +/- 2g.
589
                min = (256-200) * ACC_OVERSAMPLING_Z;
591
                min = (256-200) * ACC_OVERSAMPLING_Z;
590
                        max = (256+200) * ACC_OVERSAMPLING_Z;
592
                        max = (256+200) * ACC_OVERSAMPLING_Z;
591
        } else {
593
        } else {
592
        // TODO: This assumes a sensitivity of +/- 2g.
594
        // TODO: This assumes a sensitivity of +/- 2g.
593
                min = (768-200) * ACC_OVERSAMPLING_Z;
595
                min = (768-200) * ACC_OVERSAMPLING_Z;
594
                        max = (768+200) * ACC_OVERSAMPLING_Z;
596
                        max = (768+200) * ACC_OVERSAMPLING_Z;
595
        }
597
        }
596
    } else {
598
    } else {
597
        min = (512-200) * ACC_OVERSAMPLING_XY;
599
        min = (512-200) * ACC_OVERSAMPLING_XY;
598
        max = (512+200) * ACC_OVERSAMPLING_XY;
600
        max = (512+200) * ACC_OVERSAMPLING_XY;
599
    }
601
    }
600
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) {
602
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) {
601
      versionInfo.hardwareErrors[0] |= FC_ERROR0_ACC_X << axis;
603
      versionInfo.hardwareErrors[0] |= FC_ERROR0_ACC_X << axis;
602
    }
604
    }
603
  }
605
  }
604
 
606
 
605
  accOffset_writeToEEProm();
607
  accOffset_writeToEEProm();
606
  startAnalogConversionCycle();
608
  startAnalogConversionCycle();
607
}
609
}
608
 
610
 
609
void analog_setGround() {
611
void analog_setGround() {
610
  groundPressure = filteredAirPressure;
612
  groundPressure = filteredAirPressure;
611
}
613
}
612
 
614
 
613
int32_t analog_getHeight(void) {
615
int32_t analog_getHeight(void) {
614
  return groundPressure - filteredAirPressure;
616
  return groundPressure - filteredAirPressure;
615
}
617
}
616
 
618
 
617
int16_t analog_getDHeight(void) {
619
int16_t analog_getDHeight(void) {
618
  // dHeight = -dPressure, so here it is the old pressure minus the current, not opposite.
620
  // dHeight = -dPressure, so here it is the old pressure minus the current, not opposite.
619
  return lastFilteredAirPressure - filteredAirPressure;
621
  return lastFilteredAirPressure - filteredAirPressure;
620
}
622
}
621
 
623