Subversion Repositories FlightCtrl

Rev

Rev 2109 | Rev 2115 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2109 Rev 2110
1
#include <stdlib.h>
1
#include <stdlib.h>
2
#include <avr/io.h>
2
#include <avr/io.h>
3
#include <avr/interrupt.h>
3
#include <avr/interrupt.h>
4
 
4
 
5
#include "rc.h"
5
#include "rc.h"
6
#include "controlMixer.h"
6
#include "controlMixer.h"
7
#include "configuration.h"
7
#include "configuration.h"
8
#include "commands.h"
8
#include "commands.h"
9
#include "output.h"
9
#include "output.h"
10
 
10
 
11
// The channel array is 0-based!
11
// The channel array is 0-based!
12
volatile int16_t PPM_in[MAX_CHANNELS];
12
volatile int16_t PPM_in[MAX_CHANNELS];
13
volatile uint8_t RCQuality;
13
volatile uint8_t RCQuality;
14
 
14
 
15
uint8_t lastRCCommand = COMMAND_NONE;
15
uint8_t lastRCCommand = COMMAND_NONE;
16
uint8_t lastFlightMode = FLIGHT_MODE_NONE;
16
uint8_t lastFlightMode = FLIGHT_MODE_NONE;
-
 
17
 
17
 
18
#define TIME(s) ((int16_t)(((long)F_CPU/(long)8000)*(float)s))
18
/***************************************************************
19
/***************************************************************
19
 *  16bit timer 1 is used to decode the PPM-Signal            
20
 *  16bit timer 1 is used to decode the PPM-Signal            
20
 ***************************************************************/
21
 ***************************************************************/
21
void RC_Init(void) {
22
void RC_Init(void) {
22
  uint8_t sreg = SREG;
23
  uint8_t sreg = SREG;
23
 
24
 
24
  // disable all interrupts before reconfiguration
25
  // disable all interrupts before reconfiguration
25
  cli();
26
  cli();
26
 
27
 
27
  // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
28
  // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
28
  DDRD &= ~(1<<6);
29
  DDRD &= ~(1<<6);
29
  PORTD |= (1<<PORTD6);
30
  PORTD |= (1<<PORTD6);
30
 
31
 
31
  // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
32
  // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
32
  // set as output
33
  // set as output
33
  DDRD |= (1<<DDD5) | (1<<DDD4) | (1<<DDD3);
34
  DDRD |= (1<<DDD5) | (1<<DDD4) | (1<<DDD3);
34
  // low level
35
  // low level
35
  PORTD &= ~((1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3));
36
  PORTD &= ~((1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3));
36
 
37
 
37
  // PD3 can't be used if 2nd UART is activated
38
  // PD3 can't be used if 2nd UART is activated
38
  // because TXD1 is at that port
39
  // because TXD1 is at that port
39
  if (CPUType != ATMEGA644P) {
40
  if (CPUType != ATMEGA644P) {
40
    DDRD |= (1<<PORTD3);
41
    DDRD |= (1<<PORTD3);
41
    PORTD &= ~(1<<PORTD3);
42
    PORTD &= ~(1<<PORTD3);
42
  }
43
  }
43
 
44
 
44
  // Timer/Counter1 Control Register A, B, C
45
  // Timer/Counter1 Control Register A, B, C
45
 
46
 
46
  // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
47
  // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
47
  // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
48
  // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
48
  // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
49
  // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
49
  // Enable input capture noise cancler (bit: ICNC1=1)
50
  // Enable input capture noise cancler (bit: ICNC1=1)
50
  // Trigger on positive edge of the input capture pin (bit: ICES1=1),
51
  // Trigger on positive edge of the input capture pin (bit: ICES1=1),
51
  // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s
52
  // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s
52
  // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
53
  // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
53
  TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0) | (1 << WGM11) | (1 << WGM10));
54
  TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0) | (1 << WGM11) | (1 << WGM10));
54
  TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12));
55
  TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12));
55
  TCCR1B |= (1 << CS11) | (1 << ICES1) | (1 << ICNC1);
56
  TCCR1B |= (1 << CS11) | (1 << ICES1) | (1 << ICNC1);
56
  TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B));
57
  TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B));
57
 
58
 
58
  // Timer/Counter1 Interrupt Mask Register
59
  // Timer/Counter1 Interrupt Mask Register
59
  // Enable Input Capture Interrupt (bit: ICIE1=1)
60
  // Enable Input Capture Interrupt (bit: ICIE1=1)
60
  // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
61
  // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
61
  // Enable Overflow Interrupt (bit: TOIE1=0)
62
  // Enable Overflow Interrupt (bit: TOIE1=0)
62
  TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1));
63
  TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1));
63
  TIMSK1 |= (1<<ICIE1);
64
  TIMSK1 |= (1<<ICIE1);
64
 
65
 
65
  RCQuality = 0;
66
  RCQuality = 0;
66
 
67
 
67
  SREG = sreg;
68
  SREG = sreg;
68
}
69
}
69
 
70
 
70
/********************************************************************/
71
/********************************************************************/
71
/*         Every time a positive edge is detected at PD6            */
72
/*         Every time a positive edge is detected at PD6            */
72
/********************************************************************/
73
/********************************************************************/
73
/*                               t-Frame
74
/*                               t-Frame
74
    <----------------------------------------------------------------------->
75
    <----------------------------------------------------------------------->
75
     ____   ______   _____   ________                ______    sync gap      ____
76
     ____   ______   _____   ________                ______    sync gap      ____
76
    |    | |      | |     | |        |              |      |                |
77
    |    | |      | |     | |        |              |      |                |
77
    |    | |      | |     | |        |              |      |                |
78
    |    | |      | |     | |        |              |      |                |
78
 ___|    |_|      |_|     |_|        |_.............|      |________________|
79
 ___|    |_|      |_|     |_|        |_.............|      |________________|
79
    <-----><-------><------><-----------            <------>                <---
80
    <-----><-------><------><-----------            <------>                <---
80
 t0       t1      t2       t4                     tn                     t0
81
 t0       t1      t2       t4                     tn                     t0
81
 
82
 
82
 The PPM-Frame length is 22.5 ms.
83
 The PPM-Frame length is 22.5 ms.
83
 Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse.
84
 Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse.
84
 The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms.
85
 The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms.
85
 The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms.
86
 The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms.
86
 The minimum duration of all channels at minimum value is  8 * 1 ms = 8 ms.
87
 The minimum duration of all channels at minimum value is  8 * 1 ms = 8 ms.
87
 The maximum duration of all channels at maximum value is  8 * 2 ms = 16 ms.
88
 The maximum duration of all channels at maximum value is  8 * 2 ms = 16 ms.
88
 The remaining time of (22.5 - 8 ms) ms = 14.5 ms  to (22.5 - 16 ms) ms = 6.5 ms is
89
 The remaining time of (22.5 - 8 ms) ms = 14.5 ms  to (22.5 - 16 ms) ms = 6.5 ms is
89
 the syncronization gap.
90
 the syncronization gap.
90
 */
91
 */
91
ISR(TIMER1_CAPT_vect) { // typical rate of 1 ms to 2 ms
92
ISR(TIMER1_CAPT_vect) { // typical rate of 1 ms to 2 ms
92
  int16_t signal, tmp;
93
  int16_t signal, tmp;
93
  static int16_t index;
94
  static int16_t index;
94
  static uint16_t oldICR1 = 0;
95
  static uint16_t oldICR1 = 0;
95
 
96
 
96
  // 16bit Input Capture Register ICR1 contains the timer value TCNT1
97
  // 16bit Input Capture Register ICR1 contains the timer value TCNT1
97
  // at the time the edge was detected
98
  // at the time the edge was detected
98
 
99
 
99
  // calculate the time delay to the previous event time which is stored in oldICR1
100
  // calculate the time delay to the previous event time which is stored in oldICR1
100
  // calculatiing the difference of the two uint16_t and converting the result to an int16_t
101
  // calculatiing the difference of the two uint16_t and converting the result to an int16_t
101
  // implicit handles a timer overflow 65535 -> 0 the right way.
102
  // implicit handles a timer overflow 65535 -> 0 the right way.
102
  signal = (uint16_t) ICR1 - oldICR1;
103
  signal = (uint16_t) ICR1 - oldICR1;
103
  oldICR1 = ICR1;
104
  oldICR1 = ICR1;
104
 
105
 
105
  //sync gap? (3.5 ms < signal < 25.6 ms)
106
  //sync gap? (3.5 ms < signal < 25.6 ms)
106
  if (signal > 8750) {
107
  if (signal > TIME(3.5)) {
107
    index = 0;
108
    index = 0;
108
  } else { // within the PPM frame
109
  } else { // within the PPM frame
109
    if (index < MAX_CHANNELS) { // PPM24 supports 12 channels
110
    if (index < MAX_CHANNELS) { // PPM24 supports 12 channels
110
      // check for valid signal length (0.8 ms < signal < 2.2 ms)
111
      // check for valid signal length (0.8 ms < signal < 2.2 ms)
111
      if ((signal >= 2000) && (signal < 5500)) {
112
      if ((signal >= TIME(0.8)) && (signal < TIME(2.2))) {
112
        // shift signal to zero symmetric range  -154 to 159
113
        // shift signal to zero symmetric range  -154 to 159
113
        //signal -= 3750; // theoretical value
114
        //signal -= 3750; // theoretical value
114
        signal -= (3750+56); // best value with my Futaba in zero trim.
115
        signal -= (TIME(1.5) + RC_TRIM); // best value with my Futaba in zero trim.
115
        // check for stable signal
116
        // check for stable signal
116
        if (abs(signal - PPM_in[index]) < 50) {
117
        if (abs(signal - PPM_in[index]) < TIME(0.05)) {
117
          if (RCQuality < 200)
118
          if (RCQuality < 200)
118
            RCQuality += 10;
119
            RCQuality += 10;
119
          else
120
          else
120
            RCQuality = 200;
121
            RCQuality = 200;
121
        }
122
        }
122
        // If signal is the same as before +/- 1, just keep it there. Naah lets get rid of this slimy sticy stuff.
123
        // If signal is the same as before +/- 1, just keep it there. Naah lets get rid of this slimy sticy stuff.
123
        // if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) {
124
        // if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) {
124
          // In addition, if the signal is very close to 0, just set it to 0.
125
          // In addition, if the signal is very close to 0, just set it to 0.
125
        if (signal >= -1 && signal <= 1) {
126
        if (signal >= -1 && signal <= 1) {
126
          tmp = 0;
127
          tmp = 0;
127
        //} else {
128
        //} else {
128
        //  tmp = PPM_in[index];
129
        //  tmp = PPM_in[index];
129
        //  }
130
        //  }
130
        } else
131
        } else
131
          tmp = signal;
132
          tmp = signal;
132
        PPM_in[index] = tmp; // update channel value
133
        PPM_in[index] = tmp; // update channel value
133
      }
134
      }
134
      index++; // next channel
135
      index++; // next channel
135
      // demux sum signal for channels 5 to 7 to J3, J4, J5
136
      // demux sum signal for channels 5 to 7 to J3, J4, J5
136
      // TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
137
      // TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
137
      // channels are usually available at the receiver anyway.
138
      // channels are usually available at the receiver anyway.
138
      // if(index == 5) J3HIGH; else J3LOW;
139
      // if(index == 5) J3HIGH; else J3LOW;
139
      // if(index == 6) J4HIGH; else J4LOW;
140
      // if(index == 6) J4HIGH; else J4LOW;
140
      // if(CPUType != ATMEGA644P) // not used as TXD1
141
      // if(CPUType != ATMEGA644P) // not used as TXD1
141
      //  {
142
      //  {
142
      //    if(index == 7) J5HIGH; else J5LOW;
143
      //    if(index == 7) J5HIGH; else J5LOW;
143
      //  }
144
      //  }
144
    }
145
    }
145
  }
146
  }
146
}
147
}
147
 
148
 
148
#define RCChannel(dimension) PPM_in[channelMap.channels[dimension]]
149
#define RCChannel(dimension) PPM_in[channelMap.channels[dimension]]
149
#define COMMAND_CHANNEL_VERTICAL CH_THROTTLE
150
#define COMMAND_CHANNEL_VERTICAL CH_THROTTLE
150
#define COMMAND_CHANNEL_HORIZONTAL CH_YAW
151
#define COMMAND_CHANNEL_HORIZONTAL CH_YAW
151
 
-
 
152
#define RC_SCALING 2
-
 
153
 
152
 
154
uint8_t getControlModeSwitch(void) {
153
uint8_t getControlModeSwitch(void) {
155
        int16_t channel = RCChannel(CH_MODESWITCH);
154
        int16_t channel = RCChannel(CH_MODESWITCH);
156
        uint8_t flightMode = channel < -330 ? FLIGHT_MODE_MANUAL : (channel > 330 ? FLIGHT_MODE_ANGLES : FLIGHT_MODE_RATE);
155
        uint8_t flightMode = channel < -TIME(0.17) ? FLIGHT_MODE_MANUAL : (channel > TIME(0.17) ? FLIGHT_MODE_ANGLES : FLIGHT_MODE_RATE);
157
        return flightMode;
156
        return flightMode;
158
}
157
}
159
 
158
 
160
// Gyro calibration is performed as.... well mode switch with no throttle and no airspeed would be nice.
159
// Gyro calibration is performed as.... well mode switch with no throttle and no airspeed would be nice.
161
// Maybe simply: Very very low throttle.
160
// Maybe simply: Very very low throttle.
162
// Throttle xlow for COMMAND_TIMER: GYROCAL (once).
161
// Throttle xlow for COMMAND_TIMER: GYROCAL (once).
163
// mode switched: CHMOD
162
// mode switched: CHMOD
164
 
163
 
165
uint8_t RC_getCommand(void) {
164
uint8_t RC_getCommand(void) {
166
        uint8_t flightMode = getControlModeSwitch();
165
        uint8_t flightMode = getControlModeSwitch();
167
 
166
 
168
        if (lastFlightMode != flightMode) {
167
        if (lastFlightMode != flightMode) {
169
                lastFlightMode = flightMode;
168
                lastFlightMode = flightMode;
170
                lastRCCommand = COMMAND_CHMOD;
169
                lastRCCommand = COMMAND_CHMOD;
171
                return lastRCCommand;
170
                return lastRCCommand;
172
        }
171
        }
173
 
172
 
174
        int16_t channel = RCChannel(CH_THROTTLE);
173
        int16_t channel = RCChannel(CH_THROTTLE);
175
 
174
 
176
        if (channel <= -1400) {
175
        if (channel <= -TIME(0.55)) {
177
          lastRCCommand = COMMAND_GYROCAL;
176
          lastRCCommand = COMMAND_GYROCAL;
178
        } else {
177
        } else {
179
          lastRCCommand = COMMAND_NONE;
178
          lastRCCommand = COMMAND_NONE;
180
        }
179
        }
181
        return lastRCCommand;
180
        return lastRCCommand;
182
}
181
}
183
 
182
 
184
uint8_t RC_getArgument(void) {
183
uint8_t RC_getArgument(void) {
185
        return lastFlightMode;
184
        return lastFlightMode;
186
}
185
}
187
 
186
 
188
/*
187
/*
189
 * Get Pitch, Roll, Throttle, Yaw values
188
 * Get Pitch, Roll, Throttle, Yaw values
190
 */
189
 */
191
void RC_periodicTaskAndPRYT(int16_t* PRYT) {
190
void RC_periodicTaskAndPRYT(int16_t* PRYT) {
192
  if (RCQuality) {
191
  if (RCQuality) {
193
    RCQuality--;
192
    RCQuality--;
194
 
193
 
195
    debugOut.analog[20] = RCChannel(CH_ELEVATOR);
194
    debugOut.analog[20] = RCChannel(CH_ELEVATOR);
196
    debugOut.analog[21] = RCChannel(CH_AILERONS);
195
    debugOut.analog[21] = RCChannel(CH_AILERONS);
197
    debugOut.analog[22] = RCChannel(CH_RUDDER);
196
    debugOut.analog[22] = RCChannel(CH_RUDDER);
198
    debugOut.analog[23] = RCChannel(CH_THROTTLE);
197
    debugOut.analog[23] = RCChannel(CH_THROTTLE);
199
 
198
 
200
    PRYT[CONTROL_ELEVATOR]   = RCChannel(CH_ELEVATOR) / RC_SCALING;
199
    PRYT[CONTROL_ELEVATOR]   = RCChannel(CH_ELEVATOR) / RC_SCALING;
201
    PRYT[CONTROL_AILERONS]   = RCChannel(CH_AILERONS) / RC_SCALING;
200
    PRYT[CONTROL_AILERONS]   = RCChannel(CH_AILERONS) / RC_SCALING;
202
    PRYT[CONTROL_RUDDER]     = RCChannel(CH_RUDDER)   / RC_SCALING;
201
    PRYT[CONTROL_RUDDER]     = RCChannel(CH_RUDDER)   / RC_SCALING;
203
    PRYT[CONTROL_THROTTLE]   = RCChannel(CH_THROTTLE) / RC_SCALING;
202
    PRYT[CONTROL_THROTTLE]   = RCChannel(CH_THROTTLE) / RC_SCALING;
204
  } // if RCQuality is no good, we just do nothing.
203
  } // if RCQuality is no good, we just do nothing.
205
}
204
}
206
 
205
 
207
/*
206
/*
208
 * Get other channel value
207
 * Get other channel value
209
 */
208
 */
210
int16_t RC_getVariable(uint8_t varNum) {
209
int16_t RC_getVariable(uint8_t varNum) {
211
  if (varNum < 4)
210
  if (varNum < 4)
212
    // 0th variable is 5th channel (1-based) etc.
211
    // 0th variable is 5th channel (1-based) etc.
213
    return (RCChannel(varNum + CH_POTS) >> 3) + POT_OFFSET;
212
    return (RCChannel(varNum + CH_POTS) >> 3) + VARIABLE_OFFSET;
214
  /*
213
  /*
215
   * Let's just say:
214
   * Let's just say:
216
   * The RC variable i is hardwired to channel i, i>=4
215
   * The RC variable i is hardwired to channel i, i>=4
217
   */
216
   */
218
  return (PPM_in[varNum] >> 3) + POT_OFFSET;
217
  return (PPM_in[varNum] >> 3) + VARIABLE_OFFSET;
219
}
218
}
220
 
219
 
221
uint8_t RC_getSignalQuality(void) {
220
uint8_t RC_getSignalQuality(void) {
222
  if (RCQuality >= 160)
221
  if (RCQuality >= 160)
223
    return SIGNAL_GOOD;
222
    return SIGNAL_GOOD;
224
  if (RCQuality >= 140)
223
  if (RCQuality >= 140)
225
    return SIGNAL_OK;
224
    return SIGNAL_OK;
226
  if (RCQuality >= 120)
225
  if (RCQuality >= 120)
227
    return SIGNAL_BAD;
226
    return SIGNAL_BAD;
228
  return SIGNAL_LOST;
227
  return SIGNAL_LOST;
229
}
228
}
230
 
229
 
231
/*
230
/*
232
 * To should fired only when the right stick is in the center position.
231
 * To should fired only when the right stick is in the center position.
233
 * This will cause the value of pitch and roll stick to be adjusted
232
 * This will cause the value of pitch and roll stick to be adjusted
234
 * to zero (not just to near zero, as per the assumption in rc.c
233
 * to zero (not just to near zero, as per the assumption in rc.c
235
 * about the rc signal. I had values about 50..70 with a Futaba
234
 * about the rc signal. I had values about 50..70 with a Futaba
236
 * R617 receiver.) This calibration is not strictly necessary, but
235
 * R617 receiver.) This calibration is not strictly necessary, but
237
 * for control logic that depends on the exact (non)center position
236
 * for control logic that depends on the exact (non)center position
238
 * of a stick, it may be useful.
237
 * of a stick, it may be useful.
239
 */
238
 */
240
void RC_calibrate(void) {
239
void RC_calibrate(void) {
241
  // Do nothing.
240
  // Do nothing.
242
}
241
}
243
 
242