Subversion Repositories Projects

Compare Revisions

Ignore whitespace Rev 729 → Rev 730

/Transportables_Koptertool/trunk/lcd.c
0,0 → 1,1158
/*****************************************************************************
* Copyright (C) 2009 Peter "woggle" Mack, mac@denich.net *
* - original LCD control by Thomas "thkais" Kaiser *
* - special number formating routines taken from C-OSD *
* from Claas Anders "CaScAdE" Rathje *
* - some extension, ellipse and circ_line by Peter "woggle" Mack *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
*****************************************************************************/
 
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
 
#include "font8x6.h"
#ifndef USE_MMT
#include "font8x8.h"
#endif
#include "main.h"
#include "lcd.h"
 
 
#define DISP_W 128
#define DISP_H 64
 
#define DISP_BUFFER ((DISP_H * DISP_W) / 8)
 
volatile uint8_t display_buffer[DISP_BUFFER]; // Display-Puffer, weil nicht zurückgelesen werden kann
volatile uint16_t display_buffer_pointer; // Pointer auf das aktuell übertragene Byte
volatile uint8_t display_buffer_counter; // Hilfszähler zur Selektierung der Page
volatile uint8_t display_page_counter; // aktuelle Page-Nummer
volatile uint8_t display_mode; // Modus für State-Machine
volatile uint8_t LCD_ORIENTATION;
 
// DOG: 128 x 64 with 6x8 Font => 21 x 8
// MAX7456: 30 x 16
 
uint8_t lcd_xpos;
uint8_t lcd_ypos;
 
 
void send_byte (uint8_t data)
{
clr_cs ();
SPDR = data;
while (!(SPSR & (1<<SPIF)));
//SPSR = SPSR;
set_cs ();
}
 
 
void lcd_cls (void)
{
uint16_t i, j;
// memset (display_buffer, 0, 1024);
for (i = 0; i < DISP_BUFFER; i++)
display_buffer[i] = 0x00;
for (i = 0; i < 8; i++)
{
clr_A0 ();
send_byte (0xB0 + i); //1011xxxx
send_byte (0x10); //00010000
// send_byte(0x04); //00000100 gedreht plus 4 Byte
// send_byte(0x00); //00000000
send_byte (LCD_ORIENTATION); //00000000
 
set_A0 ();
for (j = 0; j < 128; j++)
send_byte (0x00);
}
 
lcd_xpos = 0;
lcd_ypos = 0;
}
 
void wait_1ms (void)
{
_delay_ms (1.0);
}
 
void wait_ms (uint16_t time)
{
uint16_t i;
for (i = 0; i < time; i++)
wait_1ms ();
}
 
void LCD_Init (void)
{
lcd_xpos = 0;
lcd_ypos = 0;
 
DDRB = 0xFF;
 
// SPI max. speed
// the DOGM128 lcd controller can work at 20 MHz
SPCR = (1 << SPE) | (1 << MSTR) | (1 << CPHA) | (1 << CPOL);
SPSR = (1 << SPI2X);
set_cs ();
clr_reset ();
wait_ms (10);
set_reset ();
clr_cs ();
clr_A0 ();
send_byte (0x40);
 
if (LCD_ORIENTATION == 0)
{
send_byte (0xA1); // A1 normal A0 reverse(original)
send_byte (0xC0); // C0 normal C8 reverse(original)
}
else
{
send_byte (0xA0); // A1 normal A0 reverse(original)
send_byte (0xC8); // C0 normal C8 reverse(original)
}
send_byte (0xA6);
send_byte (0xA2);
send_byte (0x2F);
send_byte (0xF8);
send_byte (0x00);
send_byte (0x27);
send_byte (0x81);
send_byte (0x16);
send_byte (0xAC);
send_byte (0x00);
send_byte (0xAF);
 
lcd_cls ();
}
 
 
void set_adress (uint16_t adress, uint8_t data)
{
uint8_t page;
uint8_t column;
page = adress >> 7;
clr_A0 ();
send_byte (0xB0 + page);
// column = (adress & 0x7F) + 4; Wenn gedreht
// column = (adress & 0x7F);
column = (adress & 0x7F) + LCD_ORIENTATION;
 
send_byte (0x10 + (column >> 4));
send_byte (column & 0x0F);
set_A0 ();
send_byte (data);
}
 
 
void scroll (void)
{
uint16_t adress;
for (adress = 0; adress < 896; adress++)
{
display_buffer[adress] = display_buffer[adress + 128];
set_adress (adress, display_buffer[adress]);
}
for (adress = 896; adress < 1024; adress++)
{
display_buffer[adress] = 0;
set_adress (adress, 0);
}
}
 
 
//
// x,y = character-Pos. !
//
// mode: 0=Overwrite, 1 = OR, 2 = XOR, 3 = AND, 4 = Delete
void lcd_putc (uint8_t x, uint8_t y, uint8_t c, uint8_t mode)
{
uint8_t ch;
uint8_t i;
uint16_t adress;
 
switch (c)
{ // ISO 8859-1
case 0xc4: // Ä
c = 0x00;
break;
case 0xe4: // ä
c = 0x01;
break;
case 0xd6: // Ö
c = 0x02;
break;
case 0xf6: // ö
c = 0x03;
break;
case 0xdc: // Ü
c = 0x04;
break;
case 0xfc: // ü
c = 0x05;
break;
case 0xdf: // ß
//c = 0x06;
c = 0x1e; // ° (used by Jeti)
break;
}
 
c &= 0x7f;
adress = y * 128 + x * 6;
adress &= 0x3FF;
for (i = 0; i < 6; i++)
{
ch = pgm_read_byte (&font8x6[0][0] + i + c * 6);
 
switch (mode)
{
case 0:
display_buffer[adress+i] = ch;
break;
case 1:
display_buffer[adress+i] |= ch;
break;
case 2:
display_buffer[adress+i] ^= ch;
break;
case 3:
display_buffer[adress+i] &= ch;
break;
case 4:
display_buffer[adress+i] &= ~ch;
break;
}
set_adress (adress + i, display_buffer[adress + i]);
}
}
 
#ifndef USE_MMT
void lcd_putc_jeti (uint8_t x, uint8_t y, uint8_t c, uint8_t mode)
{
uint8_t ch;
uint8_t i;
uint16_t adress;
switch (c)
{
case 0x7e:
c = 0x1a; // ->
break;
case 0x7f:
c = 0x1b; // <-
break;
case 0xdf:
c = 0xf8; // °
break;
}
adress = y * 128 + x * 8;
adress &= 0x3FF;
for (i = 0; i < 8; i++)
{
ch = pgm_read_byte (&font8x8[0][0] + i + c * 8);
switch (mode)
{
case 0:
display_buffer[adress+i] = ch;
break;
case 1:
display_buffer[adress+i] |= ch;
break;
case 2:
display_buffer[adress+i] ^= ch;
break;
case 3:
display_buffer[adress+i] &= ch;
break;
case 4:
display_buffer[adress+i] &= ~ch;
break;
}
set_adress (adress + i, display_buffer[adress + i]);
}
}
#endif
 
void new_line (void)
{
lcd_ypos++;
if (lcd_ypos > 7)
{
scroll ();
lcd_ypos = 7;
}
}
 
 
#ifndef USE_MMT
void lcd_printpj (const char *text, uint8_t mode)
{
while (pgm_read_byte(text))
{
switch (pgm_read_byte(text))
{
case 0x0D:
lcd_xpos = 0;
break;
case 0x0A:
new_line();
break;
default:
lcd_putc_jeti (lcd_xpos, lcd_ypos, pgm_read_byte(text), mode);
lcd_xpos++;
if (lcd_xpos > 20)
{
lcd_xpos = 0;
new_line ();
}
break;
}
text++;
}
}
 
 
void lcd_printpj_at (uint8_t x, uint8_t y, const char *text, uint8_t mode)
{
lcd_xpos = x;
lcd_ypos = y;
lcd_printpj (text, mode);
}
#endif
 
void lcd_printpns (const char *text, uint8_t mode)
{
while (pgm_read_byte(text))
{
switch (pgm_read_byte(text))
{
case 0x0D:
lcd_xpos = 0;
break;
case 0x0A:
new_line();
break;
default:
lcd_putc (lcd_xpos, lcd_ypos, pgm_read_byte(text), mode);
lcd_xpos++;
if (lcd_xpos > 20)
{
lcd_xpos = 0;
// new_line ();
}
break;
}
text++;
}
}
 
 
void lcd_printpns_at (uint8_t x, uint8_t y, const char *text, uint8_t mode)
{
lcd_xpos = x;
lcd_ypos = y;
lcd_printpns (text, mode);
}
 
 
void lcd_printp (const char *text, uint8_t mode)
{
while (pgm_read_byte(text))
{
switch (pgm_read_byte(text))
{
case 0x0D:
lcd_xpos = 0;
break;
case 0x0A:
new_line();
break;
default:
lcd_putc (lcd_xpos, lcd_ypos, pgm_read_byte(text), mode);
lcd_xpos++;
if (lcd_xpos > 20)
{
lcd_xpos = 0;
new_line ();
}
break;
}
text++;
}
}
 
 
void lcd_printp_at (uint8_t x, uint8_t y, const char *text, uint8_t mode)
{
lcd_xpos = x;
lcd_ypos = y;
lcd_printp (text, mode);
}
 
 
void lcd_print (uint8_t *text, uint8_t mode)
{
while (*text)
{
switch (*text)
{
case 0x0D:
lcd_xpos = 0;
break;
case 0x0A:
new_line();
break;
default:
lcd_putc (lcd_xpos, lcd_ypos, *text, mode);
lcd_xpos++;
if (lcd_xpos > 20)
{
lcd_xpos = 0;
new_line ();
}
break;
}
text++;
}
}
 
void lcd_print_at (uint8_t x, uint8_t y, uint8_t *text, uint8_t mode)
{
lcd_xpos = x;
lcd_ypos = y;
lcd_print (text, mode);
}
 
 
void print_display (uint8_t *text)
{
while (*text)
{
lcd_putc (lcd_xpos, lcd_ypos, *text, 0);
lcd_xpos++;
if (lcd_xpos >= 20)
{
lcd_xpos = 0;
new_line ();
}
text++;
}
}
 
void print_display_at (uint8_t x, uint8_t y, uint8_t *text)
{
lcd_xpos = x;
lcd_ypos = y;
print_display (text);
}
 
 
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Plot (set one Pixel)
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// mode:
// 0=Clear, 1=Set, 2=XOR
void lcd_plot (uint8_t xpos, uint8_t ypos, uint8_t mode)
{
uint16_t adress;
uint8_t mask;
if ((xpos < DISP_W) && (ypos < DISP_H))
{
adress = (ypos / 8) * DISP_W + xpos; // adress = 0/8 * 128 + 0 = 0
mask = 1 << (ypos & 0x07); // mask = 1<<0 = 1
adress &= DISP_BUFFER - 1;
switch (mode)
{
case 0:
display_buffer[adress] &= ~mask;
break;
case 1:
display_buffer[adress] |= mask;
break;
case 2:
display_buffer[adress] ^= mask;
break;
}
set_adress (adress, display_buffer[adress]);
}
}
 
 
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Line (draws a line from x1,y1 to x2,y2
// + Based on Bresenham line-Algorithm
// + found in the internet, modified by thkais 2007
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
void lcd_line (unsigned char x1, unsigned char y1, unsigned char x2, unsigned char y2, uint8_t mode)
{
int x, y, count, xs, ys, xm, ym;
 
x = (int) x1;
y = (int) y1;
xs = (int) x2 - (int) x1;
ys = (int) y2 - (int) y1;
if (xs < 0)
xm = -1;
else
if (xs > 0)
xm = 1;
else
xm = 0;
if (ys < 0)
ym = -1;
else
if (ys > 0)
ym = 1;
else
ym = 0;
if (xs < 0)
xs = -xs;
 
if (ys < 0)
ys = -ys;
 
lcd_plot ((unsigned char) x, (unsigned char) y, mode);
 
if (xs > ys) // Flat Line <45 degrees
{
count = -(xs / 2);
while (x != x2)
{
count = count + ys;
x = x + xm;
if (count > 0)
{
y = y + ym;
count = count - xs;
}
lcd_plot ((unsigned char) x, (unsigned char) y, mode);
}
}
else // Line >=45 degrees
{
count =- (ys / 2);
while (y != y2)
{
count = count + xs;
y = y + ym;
if (count > 0)
{
x = x + xm;
count = count - ys;
}
lcd_plot ((unsigned char) x, (unsigned char) y, mode);
}
}
}
 
 
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Filled rectangle
// + x1, y1 = upper left corner
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
void lcd_frect (uint8_t x1, uint8_t y1, uint8_t widthx, uint8_t widthy, uint8_t mode)
{
uint16_t x2, y2;
uint16_t i;
 
if (x1 >= DISP_W)
x1 = DISP_W - 1;
 
if (y1 >= DISP_H)
y1 = DISP_H - 1;
 
x2 = x1 + widthx;
y2 = y1 + widthy;
if (x2 > DISP_W)
x2 = DISP_W;
 
if (y2 > DISP_H)
y2 = DISP_H;
for (i = y1; i <= y2; i++)
{
lcd_line (x1, i, x2, i, mode);
}
}
 
 
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + outline of rectangle
// + x1, y1 = upper left corner
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
void lcd_rect (uint8_t x1, uint8_t y1, uint8_t widthx, uint8_t widthy, uint8_t mode)
{
uint16_t x2, y2;
 
if (x1 >= DISP_W)
x1 = DISP_W - 1;
if (y1 >= DISP_H)
y1 = DISP_H - 1;
x2 = x1 + widthx;
y2 = y1 + widthy;
if (x2 > DISP_W)
x2 = DISP_W;
if (y2 > DISP_H)
y2 = DISP_H;
 
lcd_line (x1, y1, x2, y1, mode);
lcd_line (x2, y1, x2, y2, mode);
lcd_line (x2, y2, x1, y2, mode);
lcd_line (x1, y2, x1, y1, mode);
}
 
 
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + outline of a circle
// + Based on Bresenham-algorithm found in wikipedia
// + modified by thkais (2007)
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
void lcd_circle (int16_t x0, int16_t y0, int16_t radius, uint8_t mode)
{
int16_t f = 1 - radius;
int16_t ddF_x = 0;
int16_t ddF_y = -2 * radius;
int16_t x = 0;
int16_t y = radius;
 
lcd_plot (x0, y0 + radius, mode);
lcd_plot (x0, y0 - radius, mode);
lcd_plot (x0 + radius, y0, mode);
lcd_plot (x0 - radius, y0, mode);
 
while (x < y)
{
if (f >= 0)
{
y --;
ddF_y += 2;
f += ddF_y;
}
x ++;
ddF_x += 2;
f += ddF_x + 1;
 
lcd_plot (x0 + x, y0 + y, mode);
lcd_plot (x0 - x, y0 + y, mode);
lcd_plot (x0 + x, y0 - y, mode);
lcd_plot (x0 - x, y0 - y, mode);
lcd_plot (x0 + y, y0 + x, mode);
lcd_plot (x0 - y, y0 + x, mode);
lcd_plot (x0 + y, y0 - x, mode);
lcd_plot (x0 - y, y0 - x, mode);
}
}
 
 
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + filled Circle
// + modified circle-algorithm thkais (2007)
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
void lcd_fcircle (int16_t x0, int16_t y0, int16_t radius)
{
int16_t f = 1 - radius;
int16_t ddF_x = 0;
int16_t ddF_y = -2 * radius;
int16_t x = 0;
int16_t y = radius;
lcd_line (x0, y0 + radius, x0, y0 - radius, 1);
lcd_line (x0 + radius, y0, x0 - radius, y0, 1);
while (x < y)
{
if (f >= 0)
{
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x + 1;
lcd_line (x0 + x, y0 + y, x0 - x, y0 + y, 1);
lcd_line (x0 + x, y0 - y, x0 - x, y0 - y, 1);
lcd_line (x0 + y, y0 + x, x0 - y, y0 + x, 1);
lcd_line (x0 + y, y0 - x, x0 - y, y0 - x, 1);
}
}
 
//*****************************************************************************
//
void lcd_circ_line (uint8_t x, uint8_t y, uint8_t r, uint16_t deg, uint8_t mode)
{
uint8_t xc, yc;
double deg_rad;
 
deg_rad = (deg * M_PI) / 180.0;
 
yc = y - (uint8_t) round (cos (deg_rad) * (double) r);
xc = x + (uint8_t) round (sin (deg_rad) * (double) r);
lcd_line (x, y, xc, yc, mode);
}
 
//*****************************************************************************
//
void lcd_ellipse_line (uint8_t x, uint8_t y, uint8_t rx, uint8_t ry, uint16_t deg, uint8_t mode)
{
uint8_t xc, yc;
double deg_rad;
deg_rad = (deg * M_PI) / 180.0;
yc = y - (uint8_t) round (cos (deg_rad) * (double) ry);
xc = x + (uint8_t) round (sin (deg_rad) * (double) rx);
lcd_line (x, y, xc, yc, mode);
}
 
//*****************************************************************************
//
void lcd_ellipse (int16_t x0, int16_t y0, int16_t rx, int16_t ry, uint8_t mode)
{
const int16_t rx2 = rx * rx;
const int16_t ry2 = ry * ry;
int16_t F = round (ry2 - rx2 * ry + 0.25 * rx2);
int16_t ddF_x = 0;
int16_t ddF_y = 2 * rx2 * ry;
int16_t x = 0;
int16_t y = ry;
lcd_plot (x0, y0 + ry, mode);
lcd_plot (x0, y0 - ry, mode);
lcd_plot (x0 + rx, y0, mode);
lcd_plot (x0 - rx, y0, mode);
// while ( 2*ry2*x < 2*rx2*y ) { we can use ddF_x and ddF_y
while (ddF_x < ddF_y)
{
if(F >= 0)
{
y -= 1; // south
ddF_y -= 2 * rx2;
F -= ddF_y;
}
x += 1; // east
ddF_x += 2 * ry2;
F += ddF_x + ry2;
lcd_plot (x0 + x, y0 + y, mode);
lcd_plot (x0 + x, y0 - y, mode);
lcd_plot (x0 - x, y0 + y, mode);
lcd_plot (x0 - x, y0 - y, mode);
}
F = round (ry2 * (x + 0.5) * (x + 0.5) + rx2 * (y - 1) * (y - 1) - rx2 * ry2);
while(y > 0)
{
if(F <= 0)
{
x += 1; // east
ddF_x += 2 * ry2;
F += ddF_x;
}
y -=1; // south
ddF_y -= 2 * rx2;
F += rx2 - ddF_y;
lcd_plot (x0 + x, y0 + y, mode);
lcd_plot (x0 + x, y0 - y, mode);
lcd_plot (x0 - x, y0 + y, mode);
lcd_plot (x0 - x, y0 - y, mode);
}
}
 
//*****************************************************************************
//
void lcd_ecircle (int16_t x0, int16_t y0, int16_t radius, uint8_t mode)
{
lcd_ellipse (x0, y0, radius + 3, radius, mode);
}
 
//*****************************************************************************
//
void lcd_ecirc_line (uint8_t x, uint8_t y, uint8_t r, uint16_t deg, uint8_t mode)
{
lcd_ellipse_line(x, y, r + 3, r, deg, mode);
}
 
//*****************************************************************************
//
void lcd_view_font (uint8_t page)
{
int x;
int y;
 
lcd_cls ();
lcd_printp (PSTR(" 0123456789ABCDEF\r\n"), 0);
// lcd_printpns_at (0, 7, PSTR(" \x16 \x17 Exit"), 0);
lcd_printpns_at (0, 7, PSTR(" \x1a \x1b Exit"), 0);
 
lcd_ypos = 2;
for (y = page * 4 ; y < (page * 4 + 4); y++)
{
if (y < 10)
{
lcd_putc (0, lcd_ypos, '0' + y, 0);
}
else
{
lcd_putc (0, lcd_ypos, 'A' + y - 10, 0);
}
lcd_xpos = 2;
for (x = 0; x < 16; x++)
{
lcd_putc (lcd_xpos, lcd_ypos, y * 16 + x, 0);
lcd_xpos++;
}
lcd_ypos++;
}
}
 
uint8_t hdigit (uint8_t d)
{
if (d < 10)
{
return '0' + d;
}
else
{
return 'A' + d - 10;
}
}
 
void lcd_print_hex_at (uint8_t x, uint8_t y, uint8_t h, uint8_t mode)
{
lcd_xpos = x;
lcd_ypos = y;
lcd_putc (lcd_xpos++, lcd_ypos, hdigit (h >> 4), mode);
lcd_putc (lcd_xpos, lcd_ypos, hdigit (h & 0x0f), mode);
}
 
void lcd_write_number_u (uint8_t number)
{
uint8_t num = 100;
uint8_t started = 0;
while (num > 0)
{
uint8_t b = number / num;
if (b > 0 || started || num == 1)
{
lcd_putc (lcd_xpos++, lcd_ypos, '0' + b, 0);
started = 1;
}
number -= b * num;
num /= 10;
}
}
 
void lcd_write_number_u_at (uint8_t x, uint8_t y, uint8_t number)
{
lcd_xpos = x;
lcd_ypos = y;
lcd_write_number_u (number);
}
 
 
/**
* Write only some digits of a unsigned <number> at <x>/<y> to MAX7456 display memory
* <num> represents the largest multiple of 10 that will still be displayable as
* the first digit, so num = 10 will be 0-99 and so on
* <pad> = 1 will cause blank spaced to be filled up with zeros e.g. 007 instead of 7
*/
void write_ndigit_number_u (uint8_t x, uint8_t y, uint16_t number, int16_t length, uint8_t pad)
{
char s[7];
 
utoa(number, s, 10 );
 
uint8_t len = strlen(s);
 
if (length < len)
{
for (uint8_t i = 0; i < length; i++)
{
lcd_putc (x++, y, '*', 0);
}
return;
}
 
for (uint8_t i = 0; i < length - len; i++)
{
if (pad)
{
lcd_putc (x++, y, '0', 0);
}
else
{
lcd_putc (x++, y, ' ', 0);
}
}
lcd_print_at(x, y, s, 0);
}
 
/**
* Write only some digits of a signed <number> at <x>/<y> to MAX7456 display memory
* <num> represents the largest multiple of 10 that will still be displayable as
* the first digit, so num = 10 will be 0-99 and so on
* <pad> = 1 will cause blank spaced to be filled up with zeros e.g. 007 instead of 7
*/
void write_ndigit_number_s (uint8_t x, uint8_t y, int16_t number, int16_t length, uint8_t pad)
{
char s[7];
itoa(number, s, 10 );
 
uint8_t len = strlen(s);
 
if (length < len)
{
for (uint8_t i = 0; i < length; i++)
{
lcd_putc (x++, y, '*', 0);
}
return;
}
 
for (uint8_t i = 0; i < length - len; i++)
{
if (pad)
{
lcd_putc (x++, y, '0', 0);
}
else
{
lcd_putc (x++, y, ' ', 0);
}
}
lcd_print_at(x, y, s, 0);
}
 
/**
* Write only some digits of a unsigned <number> at <x>/<y> to MAX7456 display memory
* as /10th of the value
* <num> represents the largest multiple of 10 that will still be displayable as
* the first digit, so num = 10 will be 0-99 and so on
* <pad> = 1 will cause blank spaced to be filled up with zeros e.g. 007 instead of 7
*/
void write_ndigit_number_u_10th (uint8_t x, uint8_t y, uint16_t number, int16_t length, uint8_t pad)
{
char s[7];
itoa(number, s, 10 );
 
uint8_t len = strlen(s);
 
if (length < len)
{
for (uint8_t i = 0; i < length; i++)
{
lcd_putc (x++, y, '*', 0);
}
return;
}
 
for (uint8_t i = 0; i < length - len; i++)
{
if (pad)
{
lcd_putc (x++, y, '0', 0);
}
else
{
lcd_putc (x++, y, ' ', 0);
}
}
 
char rest = s[len - 1];
 
s[len - 1] = 0;
 
if (len == 1)
{
lcd_putc (x-1, y, '0', 0);
}
else if (len == 2 && s[0] == '-')
{
lcd_putc (x-1, y, '-', 0);
lcd_putc (x, y, '0', 0);
}
else
{
lcd_print_at(x, y, s, 0);
}
x += len - 1;
lcd_putc (x++, y, '.', 0);
lcd_putc (x++, y, rest, 0);
}
 
void write_ndigit_number_u_100th (uint8_t x, uint8_t y, uint16_t number, int16_t length, uint8_t pad)
{
uint8_t num = 100;
while (num > 0)
{
uint8_t b = number / num;
 
if ((num / 10) == 1)
{
lcd_putc (x++, y, '.', 0);
}
lcd_putc (x++, y, '0' + b, 0);
number -= b * num;
num /= 10;
}
}
 
/**
* Write only some digits of a signed <number> at <x>/<y> to MAX7456 display memory
* as /10th of the value
* <num> represents the largest multiple of 10 that will still be displayable as
* the first digit, so num = 10 will be 0-99 and so on
* <pad> = 1 will cause blank spaced to be filled up with zeros e.g. 007 instead of 7
*/
void write_ndigit_number_s_10th (uint8_t x, uint8_t y, int16_t number, int16_t length, uint8_t pad)
{
char s[7];
 
itoa (number, s, 10 );
 
uint8_t len = strlen(s);
 
if (length < len)
{
for (uint8_t i = 0; i < length; i++)
{
lcd_putc (x++, y, '*', 0);
}
return;
}
 
for (uint8_t i = 0; i < length - len; i++)
{
if (pad)
{
lcd_putc (x++, y, '0', 0);
}
else
{
lcd_putc (x++, y, ' ', 0);
}
}
 
char rest = s[len - 1];
 
s[len - 1] = 0;
 
if (len == 1)
{
lcd_putc (x-1, y, '0', 0);
}
else if (len == 2 && s[0] == '-')
{
lcd_putc (x-1, y, '-', 0);
lcd_putc (x, y, '0', 0);
}
else
{
lcd_print_at(x, y, s, 0);
}
x += len - 1;
lcd_putc (x++, y, '.', 0);
lcd_putc (x++, y, rest, 0);
}
 
/**
* write <seconds> as human readable time at <x>/<y> to MAX7456 display mem
*/
void write_time (uint8_t x, uint8_t y, uint16_t seconds)
{
uint16_t min = seconds / 60;
seconds -= min * 60;
write_ndigit_number_u (x, y, min, 2, 0);
lcd_putc (x + 2, y, ':', 0);
write_ndigit_number_u (x + 3, y, seconds, 2, 1);
}
 
/**
* wirte a <position> at <x>/<y> assuming it is a gps position for long-/latitude
*/
void write_gps_pos (uint8_t x, uint8_t y, int32_t position)
{
if (position < 0)
{
position ^= ~0;
position++;
lcd_putc (x++, y, '-', 0);
}
else
{
lcd_putc (x++, y, ' ', 0);
}
write_ndigit_number_u (x, y, (uint16_t) (position / (int32_t) 10000000), 3, 1);
lcd_putc (x + 3, y, '.', 0);
position = position - ((position / (int32_t) 10000000) * (int32_t) 10000000);
write_ndigit_number_u (x + 4, y, (uint16_t) (position / (int32_t) 1000), 4, 1);
position = position - ((uint16_t) (position / (int32_t) 1000) * (int32_t) 1000);
write_ndigit_number_u (x + 8, y, (uint16_t) position, 3, 1);
lcd_putc (x + 11, y, 0x1e, 0); // degree symbol
}