Subversion Repositories Projects

Compare Revisions

Ignore whitespace Rev 837 → Rev 838

/Servo-Controlled IR-Transmitter/Software/irmp.c
0,0 → 1,3323
/*---------------------------------------------------------------------------------------------------------------------------------------------------
* irmp.c - infrared multi-protocol decoder, supports several remote control protocols
*
* Copyright (c) 2009-2010 Frank Meyer - frank(at)fli4l.de
*
* $Id: irmp.c,v 1.84 2010/11/09 19:18:32 fm Exp $
*
* ATMEGA88 @ 8 MHz
*
* Typical manufacturers:
*
* SIRCS - Sony
* NEC - NEC, Yamaha, Canon, Tevion, Harman/Kardon, Hitachi, JVC, Pioneer, Toshiba, Xoro, Orion, and many other Japanese manufacturers
* SAMSUNG - Samsung
* SAMSUNG32 - Samsung
* MATSUSHITA - Matsushita
* KASEIKYO - Panasonic, Denon & other Japanese manufacturers (members of "Japan's Association for Electric Home Application")
* RECS80 - Philips, Nokia, Thomson, Nordmende, Telefunken, Saba
* RC5 - Philips and other European manufacturers
* DENON - Denon
* RC6 - Philips and other European manufacturers
* APPLE - Apple
* NUBERT - Nubert Subwoofer System
* B&O - Bang & Olufsen
* PANASONIC - Panasonic (older, yet not implemented)
* GRUNDIG - Grundig
* NOKIA - Nokia
* SIEMENS - Siemens, e.g. Gigaset M740AV
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* SIRCS
* -----
*
* frame: 1 start bit + 12-20 data bits + no stop bit
* data: 7 command bits + 5 address bits + 0 to 8 additional bits
*
* start bit: data "0": data "1": stop bit:
* -----------------_________ ------_____ ------------______
* 2400us 600us 600us 600us 1200us 600 us no stop bit
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* NEC + extended NEC
* -------------------------
*
* frame: 1 start bit + 32 data bits + 1 stop bit
* data NEC: 8 address bits + 8 inverted address bits + 8 command bits + 8 inverted command bits
* data extended NEC: 16 address bits + 8 command bits + 8 inverted command bits
*
* start bit: data "0": data "1": stop bit:
* -----------------_________ ------______ ------________________ ------______....
* 9000us 4500us 560us 560us 560us 1690 us 560us
*
*
* Repetition frame:
*
* -----------------_________------______ .... ~100ms Pause, then repeat
* 9000us 2250us 560us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* SAMSUNG
* -------
*
* frame: 1 start bit + 16 data(1) bits + 1 sync bit + additional 20 data(2) bits + 1 stop bit
* data(1): 16 address bits
* data(2): 4 ID bits + 8 command bits + 8 inverted command bits
*
* start bit: data "0": data "1": sync bit: stop bit:
* ----------______________ ------______ ------________________ ------______________ ------______....
* 4500us 4500us 550us 450us 550us 1450us 550us 4500us 550us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* SAMSUNG32
* ----------
*
* frame: 1 start bit + 32 data bits + 1 stop bit
* data: 16 address bits + 16 command bits
*
* start bit: data "0": data "1": stop bit:
* ----------______________ ------______ ------________________ ------______....
* 4500us 4500us 550us 450us 550us 1450us 550us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* MATSUSHITA
* ----------
*
* frame: 1 start bit + 24 data bits + 1 stop bit
* data: 6 custom bits + 6 command bits + 12 address bits
*
* start bit: data "0": data "1": stop bit:
* ----------_________ ------______ ------________________ ------______....
* 3488us 3488us 872us 872us 872us 2616us 872us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* KASEIKYO
* --------
*
* frame: 1 start bit + 48 data bits + 1 stop bit
* data: 16 manufacturer bits + 4 parity bits + 4 genre1 bits + 4 genre2 bits + 10 command bits + 2 id bits + 8 parity bits
*
* start bit: data "0": data "1": stop bit:
* ----------______ ------______ ------________________ ------______....
* 3380us 1690us 423us 423us 423us 1269us 423us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* RECS80
* ------
*
* frame: 2 start bits + 10 data bits + 1 stop bit
* data: 1 toggle bit + 3 address bits + 6 command bits
*
* start bit: data "0": data "1": stop bit:
* -----_____________________ -----____________ -----______________ ------_______....
* 158us 7432us 158us 4902us 158us 7432us 158us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* RECS80EXT
* ---------
*
* frame: 2 start bits + 11 data bits + 1 stop bit
* data: 1 toggle bit + 4 address bits + 6 command bits
*
* start bit: data "0": data "1": stop bit:
* -----_____________________ -----____________ -----______________ ------_______....
* 158us 3637us 158us 4902us 158us 7432us 158us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* RC5 + RC5X
* ----------
*
* RC5 frame: 2 start bits + 12 data bits + no stop bit
* RC5 data: 1 toggle bit + 5 address bits + 6 command bits
* RC5X frame: 1 start bit + 13 data bits + no stop bit
* RC5X data: 1 inverted command bit + 1 toggle bit + 5 address bits + 6 command bits
*
* start bit: data "0": data "1":
* ______----- ------______ ______------
* 889us 889us 889us 889us 889us 889us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* DENON
* -----
*
* frame: 0 start bits + 16 data bits + stop bit + 65ms pause + 16 inverted data bits + stop bit
* data: 5 address bits + 10 command bits
*
* data "0": data "1":
* ------________________ ------______________
* 275us 775us 275us 1900us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* RC6
* ---
*
* RC6 frame: 1 start bit + 1 bit "1" + 3 mode bits + 1 toggle bit + 16 data bits + 2666 µs pause
* RC6 data: 8 address bits + 8 command bits
*
* start bit toggle bit "0": toggle bit "1": data/mode "0": data/mode "1":
* ____________------- _______------- -------_______ _______------- -------_______
* 2666us 889us 889us 889us 889us 889us 444us 444us 444us 444us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* APPLE
* -----
*
* frame: 1 start bit + 32 data bits + 1 stop bit
* data: 16 address bits + 11100000 + 8 command bits
*
* start bit: data "0": data "1": stop bit:
* -----------------_________ ------______ ------________________ ------______....
* 9000us 4500us 560us 560us 560us 1690 us 560us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* NUBERT (subwoofer system)
* -------------------------
*
* frame: 1 start bit + 10 data bits + 1 stop bit
* data: 0 address bits + 10 command bits ?
*
* start bit: data "0": data "1": stop bit:
* ----------_____ ------______ ------________________ ------______....
* 1340us 340us 500us 1300us 1340us 340us 500us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* BANG_OLUFSEN
* ------------
*
* frame: 4 start bits + 16 data bits + 1 trailer bit + 1 stop bit
* data: 0 address bits + 16 command bits
*
* 1st start bit: 2nd start bit: 3rd start bit: 4th start bit:
* -----________ -----________ -----_____________ -----________
* 210us 3000us 210us 3000us 210us 15000us 210us 3000us
*
* data "0": data "1": data "repeat bit": trailer bit: stop bit:
* -----________ -----_____________ -----___________ -----_____________ -----____...
* 210us 3000us 210us 9000us 210us 6000us 210us 12000us 210us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* GRUNDIG
* -------
*
* packet: 1 start frame + 19,968ms pause + N info frames + 117,76ms pause + 1 stop frame
* frame: 1 pre bit + 1 start bit + 9 data bits + no stop bit
* pause between info frames: 117,76ms
*
* data of start frame: 9 x 1
* data of info frame: 9 command bits
* data of stop frame: 9 x 1
*
* pre bit: start bit data "0": data "1":
* ------____________ ------______ ______------ ------______
* 528us 2639us 528us 528us 528us 528us 528us 528us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* NOKIA:
* ------
*
* Timing similar to Grundig, but 16 data bits:
* frame: 1 pre bit + 1 start bit + 8 command bits + 8 address bits + no stop bit
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* SIEMENS:
* --------
*
* SIEMENS frame: 1 start bit + 22 data bits + no stop bit
* SIEMENS data: 13 address bits + 1 repeat bit + 7 data bits + 1 unknown bit
*
* start bit data "0": data "1":
* -------_______ _______------- -------_______
* 250us 250us 250us 250us 250us 250us
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* PANASONIC (older protocol, yet not implemented, see also MATSUSHITA, timing very similar)
* -----------------------------------------------------------------------------------------
*
* frame: 1 start bit + 22 data bits + 1 stop bit
* 22 data bits = 5 custom bits + 6 data bits + 5 inverted custom bits + 6 inverted data bits
*
* European version: T = 456us
* USA & Canada version: T = 422us
*
* start bit: data "0": data "1": stop bit:
* 8T 8T 2T 2T 2T 6T 2T
* -------------____________ ------_____ ------_____________ ------_______....
* 3648us 3648us 912us 912us 912us 2736us 912us (Europe)
* 3376us 3376us 844us 844us 844us 2532us 844us (US)
*
*---------------------------------------------------------------------------------------------------------------------------------------------------
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*---------------------------------------------------------------------------------------------------------------------------------------------------
*/
 
#if defined(__PCM__) || defined(__PCB__) || defined(__PCH__) // CCS PIC Compiler instead of AVR
#define PIC_CCS_COMPILER
#endif
 
#ifdef unix // test on linux/unix
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
 
#define ANALYZE
#define PROGMEM
#define memcpy_P memcpy
 
#else // not unix:
 
#ifdef WIN32
#include <stdio.h>
#include <string.h>
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
#define ANALYZE
#define PROGMEM
#define memcpy_P memcpy
 
#else
 
#ifndef CODEVISION
 
#ifdef PIC_CCS_COMPILER
 
#include <string.h>
typedef unsigned int8 uint8_t;
typedef unsigned int16 uint16_t;
#define PROGMEM
#define memcpy_P memcpy
 
#else // AVR:
 
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
 
#endif // PIC_CCS_COMPILER
#endif // CODEVISION
 
#endif // windows
#endif // unix
 
#ifndef IRMP_USE_AS_LIB
#include "irmpconfig.h"
#endif
#include "irmp.h"
 
#if IRMP_SUPPORT_GRUNDIG_PROTOCOL == 1 || IRMP_SUPPORT_NOKIA_PROTOCOL == 1
#define IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL 1
#else
#define IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL 0
#endif
 
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 || IRMP_SUPPORT_RC6_PROTOCOL == 1 || IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL == 1 || IRMP_SUPPORT_SIEMENS_PROTOCOL == 1
#define IRMP_SUPPORT_MANCHESTER 1
#else
#define IRMP_SUPPORT_MANCHESTER 0
#endif
 
#define IRMP_KEY_REPETITION_LEN (uint16_t)(F_INTERRUPTS * 150.0e-3 + 0.5) // autodetect key repetition within 150 msec
 
#define MIN_TOLERANCE_00 1.0 // -0%
#define MAX_TOLERANCE_00 1.0 // +0%
 
#define MIN_TOLERANCE_05 0.95 // -5%
#define MAX_TOLERANCE_05 1.05 // +5%
 
#define MIN_TOLERANCE_10 0.9 // -10%
#define MAX_TOLERANCE_10 1.1 // +10%
 
#define MIN_TOLERANCE_15 0.85 // -15%
#define MAX_TOLERANCE_15 1.15 // +15%
 
#define MIN_TOLERANCE_20 0.8 // -20%
#define MAX_TOLERANCE_20 1.2 // +20%
 
#define MIN_TOLERANCE_30 0.7 // -30%
#define MAX_TOLERANCE_30 1.3 // +30%
 
#define MIN_TOLERANCE_40 0.6 // -40%
#define MAX_TOLERANCE_40 1.4 // +40%
 
#define MIN_TOLERANCE_50 0.5 // -50%
#define MAX_TOLERANCE_50 1.5 // +50%
 
#define MIN_TOLERANCE_60 0.4 // -60%
#define MAX_TOLERANCE_60 1.6 // +60%
 
#define MIN_TOLERANCE_70 0.3 // -70%
#define MAX_TOLERANCE_70 1.7 // +70%
 
#define SIRCS_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIRCS_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define SIRCS_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIRCS_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define SIRCS_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIRCS_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define SIRCS_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIRCS_START_BIT_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) // only 5% to avoid conflict with RC6
#define SIRCS_1_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIRCS_1_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define SIRCS_1_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIRCS_1_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define SIRCS_0_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIRCS_0_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define SIRCS_0_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIRCS_0_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define SIRCS_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIRCS_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define SIRCS_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIRCS_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
 
#define NEC_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NEC_START_BIT_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define NEC_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NEC_START_BIT_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
#define NEC_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NEC_START_BIT_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define NEC_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NEC_START_BIT_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
#define NEC_REPEAT_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NEC_REPEAT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define NEC_REPEAT_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NEC_REPEAT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
#define NEC_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NEC_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define NEC_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NEC_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
#define NEC_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NEC_1_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define NEC_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NEC_1_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
#define NEC_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NEC_0_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define NEC_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NEC_0_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
// autodetect nec repetition frame within 50 msec:
// NEC seems to send the first repetition frame after 40ms, further repetition frames after 100 ms
#if 0
#define NEC_FRAME_REPEAT_PAUSE_LEN_MAX (uint16_t)(F_INTERRUPTS * NEC_FRAME_REPEAT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5)
#else
#define NEC_FRAME_REPEAT_PAUSE_LEN_MAX (uint16_t)(F_INTERRUPTS * 100.0e-3 * MAX_TOLERANCE_20 + 0.5)
#endif
 
#define SAMSUNG_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SAMSUNG_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define SAMSUNG_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SAMSUNG_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define SAMSUNG_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SAMSUNG_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define SAMSUNG_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SAMSUNG_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define SAMSUNG_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SAMSUNG_PULSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1)
#define SAMSUNG_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SAMSUNG_PULSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1)
#define SAMSUNG_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SAMSUNG_1_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1)
#define SAMSUNG_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SAMSUNG_1_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1)
#define SAMSUNG_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SAMSUNG_0_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1)
#define SAMSUNG_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SAMSUNG_0_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1)
 
#define MATSUSHITA_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * MATSUSHITA_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define MATSUSHITA_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * MATSUSHITA_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define MATSUSHITA_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * MATSUSHITA_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define MATSUSHITA_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * MATSUSHITA_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define MATSUSHITA_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * MATSUSHITA_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define MATSUSHITA_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * MATSUSHITA_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
#define MATSUSHITA_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * MATSUSHITA_1_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define MATSUSHITA_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * MATSUSHITA_1_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
#define MATSUSHITA_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * MATSUSHITA_0_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define MATSUSHITA_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * MATSUSHITA_0_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
 
#define KASEIKYO_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * KASEIKYO_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define KASEIKYO_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * KASEIKYO_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define KASEIKYO_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * KASEIKYO_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define KASEIKYO_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * KASEIKYO_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define KASEIKYO_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * KASEIKYO_PULSE_TIME * MIN_TOLERANCE_50 + 0.5) - 1)
#define KASEIKYO_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * KASEIKYO_PULSE_TIME * MAX_TOLERANCE_50 + 0.5) + 1)
#define KASEIKYO_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * KASEIKYO_1_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1)
#define KASEIKYO_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * KASEIKYO_1_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1)
#define KASEIKYO_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * KASEIKYO_0_PAUSE_TIME * MIN_TOLERANCE_50 + 0.5) - 1)
#define KASEIKYO_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * KASEIKYO_0_PAUSE_TIME * MAX_TOLERANCE_50 + 0.5) + 1)
 
#define RECS80_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80_START_BIT_PULSE_TIME * MIN_TOLERANCE_00 + 0.5) - 1)
#define RECS80_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define RECS80_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RECS80_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define RECS80_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RECS80_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define RECS80_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RECS80_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define RECS80_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RECS80_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
 
#define RC5_START_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC5_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RC5_START_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC5_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define RC5_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC5_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RC5_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC5_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
 
#define DENON_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * DENON_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define DENON_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * DENON_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define DENON_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * DENON_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define DENON_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * DENON_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define DENON_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * DENON_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define DENON_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * DENON_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
 
#define RC6_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC6_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RC6_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC6_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define RC6_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC6_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RC6_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC6_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define RC6_TOGGLE_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC6_TOGGLE_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RC6_TOGGLE_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC6_TOGGLE_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define RC6_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC6_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RC6_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC6_BIT_TIME * MAX_TOLERANCE_30 + 0.5) + 1) // pulses: 300 - 700
#define RC6_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC6_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) // pauses: 300 - 600
#define RC6_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC6_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
 
#define RECS80EXT_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80EXT_START_BIT_PULSE_TIME * MIN_TOLERANCE_00 + 0.5) - 1)
#define RECS80EXT_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80EXT_START_BIT_PULSE_TIME * MAX_TOLERANCE_00 + 0.5) + 1)
#define RECS80EXT_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80EXT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_05 + 0.5) - 1)
#define RECS80EXT_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80EXT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1)
#define RECS80EXT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80EXT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RECS80EXT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80EXT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define RECS80EXT_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80EXT_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RECS80EXT_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80EXT_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define RECS80EXT_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80EXT_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RECS80EXT_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80EXT_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
 
#define NUBERT_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NUBERT_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define NUBERT_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NUBERT_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define NUBERT_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NUBERT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define NUBERT_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NUBERT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define NUBERT_1_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NUBERT_1_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define NUBERT_1_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NUBERT_1_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define NUBERT_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NUBERT_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define NUBERT_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NUBERT_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define NUBERT_0_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NUBERT_0_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define NUBERT_0_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NUBERT_0_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define NUBERT_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NUBERT_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define NUBERT_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NUBERT_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
 
#define BANG_OLUFSEN_START_BIT1_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT1_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_START_BIT1_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT1_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define BANG_OLUFSEN_START_BIT2_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT2_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_START_BIT2_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT2_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT2_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT2_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define BANG_OLUFSEN_START_BIT3_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT3_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_START_BIT3_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT3_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT3_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MAX ((PAUSE_LEN)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT3_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) // value must be below IRMP_TIMEOUT
#define BANG_OLUFSEN_START_BIT4_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT4_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_START_BIT4_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT4_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT4_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT4_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define BANG_OLUFSEN_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define BANG_OLUFSEN_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define BANG_OLUFSEN_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define BANG_OLUFSEN_R_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_R_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_R_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_R_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define BANG_OLUFSEN_TRAILER_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_TRAILER_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define BANG_OLUFSEN_TRAILER_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_TRAILER_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
 
#define GRUNDIG_OR_NOKIA_START_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * GRUNDIG_OR_NOKIA_BIT_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define GRUNDIG_OR_NOKIA_START_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * GRUNDIG_OR_NOKIA_BIT_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define GRUNDIG_OR_NOKIA_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * GRUNDIG_OR_NOKIA_BIT_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define GRUNDIG_OR_NOKIA_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * GRUNDIG_OR_NOKIA_BIT_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * GRUNDIG_OR_NOKIA_PRE_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) + 1)
#define GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * GRUNDIG_OR_NOKIA_PRE_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
 
#define SIEMENS_START_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIEMENS_BIT_TIME * 1 + 0.5) - 1)
#define SIEMENS_START_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIEMENS_BIT_TIME * 1 + 0.5) + 1)
#define SIEMENS_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIEMENS_BIT_TIME * 1 + 0.5) - 1)
#define SIEMENS_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIEMENS_BIT_TIME * 1 + 0.5) + 1)
 
#define FDC_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * FDC_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define FDC_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * FDC_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define FDC_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * FDC_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define FDC_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * FDC_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define FDC_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * FDC_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define FDC_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * FDC_PULSE_TIME * MAX_TOLERANCE_50 + 0.5) + 1)
#define FDC_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * FDC_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define FDC_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * FDC_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#if 0
#define FDC_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * FDC_0_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) // could be negative: 255
#else
#define FDC_0_PAUSE_LEN_MIN (1) // simply use 1
#endif
#define FDC_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * FDC_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
 
#define RCCAR_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RCCAR_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RCCAR_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RCCAR_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define RCCAR_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RCCAR_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1)
#define RCCAR_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RCCAR_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1)
#define RCCAR_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RCCAR_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define RCCAR_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RCCAR_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define RCCAR_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RCCAR_1_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1)
#define RCCAR_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RCCAR_1_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1)
#define RCCAR_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RCCAR_0_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1)
#define RCCAR_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RCCAR_0_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1)
 
#define JVC_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * JVC_START_BIT_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define JVC_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * JVC_START_BIT_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
#define JVC_REPEAT_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * (JVC_FRAME_REPEAT_PAUSE_TIME - IRMP_TIMEOUT_TIME) * MIN_TOLERANCE_40 + 0.5) - 1) // HACK!
#define JVC_REPEAT_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * (JVC_FRAME_REPEAT_PAUSE_TIME - IRMP_TIMEOUT_TIME) * MAX_TOLERANCE_70 + 0.5) - 1) // HACK!
#define JVC_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * JVC_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define JVC_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * JVC_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
#define JVC_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * JVC_1_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define JVC_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * JVC_1_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
#define JVC_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * JVC_0_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1)
#define JVC_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * JVC_0_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1)
// autodetect JVC repetition frame within 50 msec:
#define JVC_FRAME_REPEAT_PAUSE_LEN_MAX (uint16_t)(F_INTERRUPTS * JVC_FRAME_REPEAT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5)
 
#define NIKON_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NIKON_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define NIKON_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NIKON_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define NIKON_START_BIT_PAUSE_LEN_MIN ((uint16_t)(F_INTERRUPTS * NIKON_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define NIKON_START_BIT_PAUSE_LEN_MAX ((uint16_t)(F_INTERRUPTS * NIKON_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define NIKON_REPEAT_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NIKON_REPEAT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define NIKON_REPEAT_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NIKON_REPEAT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define NIKON_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NIKON_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define NIKON_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NIKON_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define NIKON_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NIKON_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define NIKON_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NIKON_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define NIKON_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NIKON_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1)
#define NIKON_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NIKON_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1)
#define NIKON_FRAME_REPEAT_PAUSE_LEN_MAX (uint16_t)(F_INTERRUPTS * NIKON_FRAME_REPEAT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5)
 
#define AUTO_FRAME_REPETITION_LEN (uint16_t)(F_INTERRUPTS * AUTO_FRAME_REPETITION_TIME + 0.5) // use uint16_t!
 
#ifdef ANALYZE
#define ANALYZE_PUTCHAR(a) { if (! silent) { putchar (a); } }
#define ANALYZE_ONLY_NORMAL_PUTCHAR(a) { if (! silent && !verbose) { putchar (a); } }
#define ANALYZE_PRINTF(...) { if (verbose) { printf (__VA_ARGS__); } }
#define ANALYZE_NEWLINE() { if (verbose) { putchar ('\n'); } }
static int silent;
static int time_counter;
static int verbose;
#else
#define ANALYZE_PUTCHAR(a)
#define ANALYZE_ONLY_NORMAL_PUTCHAR(a)
#define ANALYZE_PRINTF(...)
#define ANALYZE_NEWLINE()
#endif
 
#if IRMP_LOGGING == 1
#define BAUD 9600L
#include <util/setbaud.h>
 
#ifdef UBRR0H
 
#define UART0_UBRRH UBRR0H
#define UART0_UBRRL UBRR0L
#define UART0_UCSRA UCSR0A
#define UART0_UCSRB UCSR0B
#define UART0_UCSRC UCSR0C
#define UART0_UDRE_BIT_VALUE (1<<UDRE0)
#define UART0_UCSZ1_BIT_VALUE (1<<UCSZ01)
#define UART0_UCSZ0_BIT_VALUE (1<<UCSZ00)
#ifdef URSEL0
#define UART0_URSEL_BIT_VALUE (1<<URSEL0)
#else
#define UART0_URSEL_BIT_VALUE (0)
#endif
#define UART0_TXEN_BIT_VALUE (1<<TXEN0)
#define UART0_UDR UDR0
#define UART0_U2X U2X0
 
#else
 
#define UART0_UBRRH UBRRH
#define UART0_UBRRL UBRRL
#define UART0_UCSRA UCSRA
#define UART0_UCSRB UCSRB
#define UART0_UCSRC UCSRC
#define UART0_UDRE_BIT_VALUE (1<<UDRE)
#define UART0_UCSZ1_BIT_VALUE (1<<UCSZ1)
#define UART0_UCSZ0_BIT_VALUE (1<<UCSZ0)
#ifdef URSEL
#define UART0_URSEL_BIT_VALUE (1<<URSEL)
#else
#define UART0_URSEL_BIT_VALUE (0)
#endif
#define UART0_TXEN_BIT_VALUE (1<<TXEN)
#define UART0_UDR UDR
#define UART0_U2X U2X
 
#endif
 
/*---------------------------------------------------------------------------------------------------------------------------------------------------
* Initialize UART
* @details Initializes UART
*---------------------------------------------------------------------------------------------------------------------------------------------------
*/
void
irmp_uart_init (void)
{
UART0_UBRRH = UBRRH_VALUE; // set baud rate
UART0_UBRRL = UBRRL_VALUE;
 
#if USE_2X
UART0_UCSRA |= (1<<UART0_U2X);
#else
UART0_UCSRA &= ~(1<<UART0_U2X);
#endif
 
UART0_UCSRC = UART0_UCSZ1_BIT_VALUE | UART0_UCSZ0_BIT_VALUE | UART0_URSEL_BIT_VALUE;
UART0_UCSRB |= UART0_TXEN_BIT_VALUE; // enable UART TX
}
 
/*---------------------------------------------------------------------------------------------------------------------------------------------------
* Send character
* @details Sends character
* @param ch character to be transmitted
*---------------------------------------------------------------------------------------------------------------------------------------------------
*/
void
irmp_uart_putc (unsigned char ch)
{
while (!(UART0_UCSRA & UART0_UDRE_BIT_VALUE))
{
;
}
 
UART0_UDR = ch;
}
 
/*---------------------------------------------------------------------------------------------------------------------------------------------------
* Log IR signal
*---------------------------------------------------------------------------------------------------------------------------------------------------
*/
 
#define STARTCYCLES 2 // min count of zeros before start of logging
#define ENDBITS 1000 // number of sequenced highbits to detect end
#define DATALEN 700 // log buffer size
 
static void
irmp_log (uint8_t val)
{
static uint8_t buf[DATALEN]; // logging buffer
static uint16_t buf_idx; // number of written bits
static uint8_t startcycles; // current number of start-zeros
static uint16_t cnt; // counts sequenced highbits - to detect end
 
if (! val && (startcycles < STARTCYCLES) && !buf_idx) // prevent that single random zeros init logging
{
startcycles++;
}
else
{
startcycles = 0;
 
if (! val || (val && buf_idx != 0)) // start or continue logging on "0", "1" cannot init logging
{
if (buf_idx < DATALEN * 8) // index in range?
{ // yes
if (val)
{
buf[(buf_idx / 8)] |= (1<<(buf_idx % 8)); // set bit
}
else
{
buf[(buf_idx / 8)] &= ~(1<<(buf_idx % 8)); // reset bit
}
 
buf_idx++;
}
 
if (val)
{ // if high received then look at log-stop condition
cnt++;
 
if (cnt > ENDBITS)
{ // if stop condition is true, output on uart
uint16_t i;
 
for (i = 0; i < STARTCYCLES; i++)
{
irmp_uart_putc ('0'); // the ignored starting zeros
}
 
for (i = 0; i < (buf_idx - ENDBITS + 20) / 8; i++) // transform bitset into uart chars
{
uint8_t d = buf[i];
uint8_t j;
 
for (j = 0; j < 8; j++)
{
irmp_uart_putc ((d & 1) + '0');
d >>= 1;
}
}
 
irmp_uart_putc ('\n');
buf_idx = 0;
}
}
else
{
cnt = 0;
}
}
}
}
 
#else
#define irmp_log(val)
#endif
 
typedef struct
{
uint8_t protocol; // ir protocol
uint8_t pulse_1_len_min; // minimum length of pulse with bit value 1
uint8_t pulse_1_len_max; // maximum length of pulse with bit value 1
uint8_t pause_1_len_min; // minimum length of pause with bit value 1
uint8_t pause_1_len_max; // maximum length of pause with bit value 1
uint8_t pulse_0_len_min; // minimum length of pulse with bit value 0
uint8_t pulse_0_len_max; // maximum length of pulse with bit value 0
uint8_t pause_0_len_min; // minimum length of pause with bit value 0
uint8_t pause_0_len_max; // maximum length of pause with bit value 0
uint8_t address_offset; // address offset
uint8_t address_end; // end of address
uint8_t command_offset; // command offset
uint8_t command_end; // end of command
uint8_t complete_len; // complete length of frame
uint8_t stop_bit; // flag: frame has stop bit
uint8_t lsb_first; // flag: LSB first
uint8_t flags; // some flags
} IRMP_PARAMETER;
 
#if IRMP_SUPPORT_SIRCS_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER sircs_param =
{
IRMP_SIRCS_PROTOCOL, // protocol: ir protocol
SIRCS_1_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
SIRCS_1_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
SIRCS_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
SIRCS_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
SIRCS_0_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
SIRCS_0_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
SIRCS_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
SIRCS_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
SIRCS_ADDRESS_OFFSET, // address_offset: address offset
SIRCS_ADDRESS_OFFSET + SIRCS_ADDRESS_LEN, // address_end: end of address
SIRCS_COMMAND_OFFSET, // command_offset: command offset
SIRCS_COMMAND_OFFSET + SIRCS_COMMAND_LEN, // command_end: end of command
SIRCS_COMPLETE_DATA_LEN, // complete_len: complete length of frame
SIRCS_STOP_BIT, // stop_bit: flag: frame has stop bit
SIRCS_LSB, // lsb_first: flag: LSB first
SIRCS_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_NEC_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER nec_param =
{
IRMP_NEC_PROTOCOL, // protocol: ir protocol
NEC_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
NEC_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
NEC_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
NEC_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
NEC_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
NEC_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
NEC_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
NEC_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
NEC_ADDRESS_OFFSET, // address_offset: address offset
NEC_ADDRESS_OFFSET + NEC_ADDRESS_LEN, // address_end: end of address
NEC_COMMAND_OFFSET, // command_offset: command offset
NEC_COMMAND_OFFSET + NEC_COMMAND_LEN, // command_end: end of command
NEC_COMPLETE_DATA_LEN, // complete_len: complete length of frame
NEC_STOP_BIT, // stop_bit: flag: frame has stop bit
NEC_LSB, // lsb_first: flag: LSB first
NEC_FLAGS // flags: some flags
};
 
static PROGMEM IRMP_PARAMETER nec_rep_param =
{
IRMP_NEC_PROTOCOL, // protocol: ir protocol
NEC_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
NEC_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
NEC_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
NEC_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
NEC_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
NEC_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
NEC_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
NEC_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
0, // address_offset: address offset
0, // address_end: end of address
0, // command_offset: command offset
0, // command_end: end of command
0, // complete_len: complete length of frame
NEC_STOP_BIT, // stop_bit: flag: frame has stop bit
NEC_LSB, // lsb_first: flag: LSB first
NEC_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER samsung_param =
{
IRMP_SAMSUNG_PROTOCOL, // protocol: ir protocol
SAMSUNG_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
SAMSUNG_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
SAMSUNG_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
SAMSUNG_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
SAMSUNG_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
SAMSUNG_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
SAMSUNG_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
SAMSUNG_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
SAMSUNG_ADDRESS_OFFSET, // address_offset: address offset
SAMSUNG_ADDRESS_OFFSET + SAMSUNG_ADDRESS_LEN, // address_end: end of address
SAMSUNG_COMMAND_OFFSET, // command_offset: command offset
SAMSUNG_COMMAND_OFFSET + SAMSUNG_COMMAND_LEN, // command_end: end of command
SAMSUNG_COMPLETE_DATA_LEN, // complete_len: complete length of frame
SAMSUNG_STOP_BIT, // stop_bit: flag: frame has stop bit
SAMSUNG_LSB, // lsb_first: flag: LSB first
SAMSUNG_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_MATSUSHITA_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER matsushita_param =
{
IRMP_MATSUSHITA_PROTOCOL, // protocol: ir protocol
MATSUSHITA_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
MATSUSHITA_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
MATSUSHITA_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
MATSUSHITA_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
MATSUSHITA_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
MATSUSHITA_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
MATSUSHITA_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
MATSUSHITA_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
MATSUSHITA_ADDRESS_OFFSET, // address_offset: address offset
MATSUSHITA_ADDRESS_OFFSET + MATSUSHITA_ADDRESS_LEN, // address_end: end of address
MATSUSHITA_COMMAND_OFFSET, // command_offset: command offset
MATSUSHITA_COMMAND_OFFSET + MATSUSHITA_COMMAND_LEN, // command_end: end of command
MATSUSHITA_COMPLETE_DATA_LEN, // complete_len: complete length of frame
MATSUSHITA_STOP_BIT, // stop_bit: flag: frame has stop bit
MATSUSHITA_LSB, // lsb_first: flag: LSB first
MATSUSHITA_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER kaseikyo_param =
{
IRMP_KASEIKYO_PROTOCOL, // protocol: ir protocol
KASEIKYO_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
KASEIKYO_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
KASEIKYO_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
KASEIKYO_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
KASEIKYO_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
KASEIKYO_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
KASEIKYO_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
KASEIKYO_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
KASEIKYO_ADDRESS_OFFSET, // address_offset: address offset
KASEIKYO_ADDRESS_OFFSET + KASEIKYO_ADDRESS_LEN, // address_end: end of address
KASEIKYO_COMMAND_OFFSET, // command_offset: command offset
KASEIKYO_COMMAND_OFFSET + KASEIKYO_COMMAND_LEN, // command_end: end of command
KASEIKYO_COMPLETE_DATA_LEN, // complete_len: complete length of frame
KASEIKYO_STOP_BIT, // stop_bit: flag: frame has stop bit
KASEIKYO_LSB, // lsb_first: flag: LSB first
KASEIKYO_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_RECS80_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER recs80_param =
{
IRMP_RECS80_PROTOCOL, // protocol: ir protocol
RECS80_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
RECS80_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
RECS80_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
RECS80_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
RECS80_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
RECS80_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
RECS80_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
RECS80_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
RECS80_ADDRESS_OFFSET, // address_offset: address offset
RECS80_ADDRESS_OFFSET + RECS80_ADDRESS_LEN, // address_end: end of address
RECS80_COMMAND_OFFSET, // command_offset: command offset
RECS80_COMMAND_OFFSET + RECS80_COMMAND_LEN, // command_end: end of command
RECS80_COMPLETE_DATA_LEN, // complete_len: complete length of frame
RECS80_STOP_BIT, // stop_bit: flag: frame has stop bit
RECS80_LSB, // lsb_first: flag: LSB first
RECS80_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_RC5_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER rc5_param =
{
IRMP_RC5_PROTOCOL, // protocol: ir protocol
RC5_BIT_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
RC5_BIT_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
RC5_BIT_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
RC5_BIT_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
1, // tricky: use this as stop bit length // pulse_0_len_min: minimum length of pulse with bit value 0
1, // pulse_0_len_max: maximum length of pulse with bit value 0
1, // pause_0_len_min: minimum length of pause with bit value 0
1, // pause_0_len_max: maximum length of pause with bit value 0
RC5_ADDRESS_OFFSET, // address_offset: address offset
RC5_ADDRESS_OFFSET + RC5_ADDRESS_LEN, // address_end: end of address
RC5_COMMAND_OFFSET, // command_offset: command offset
RC5_COMMAND_OFFSET + RC5_COMMAND_LEN, // command_end: end of command
RC5_COMPLETE_DATA_LEN, // complete_len: complete length of frame
RC5_STOP_BIT, // stop_bit: flag: frame has stop bit
RC5_LSB, // lsb_first: flag: LSB first
RC5_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_DENON_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER denon_param =
{
IRMP_DENON_PROTOCOL, // protocol: ir protocol
DENON_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
DENON_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
DENON_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
DENON_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
DENON_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
DENON_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
DENON_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
DENON_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
DENON_ADDRESS_OFFSET, // address_offset: address offset
DENON_ADDRESS_OFFSET + DENON_ADDRESS_LEN, // address_end: end of address
DENON_COMMAND_OFFSET, // command_offset: command offset
DENON_COMMAND_OFFSET + DENON_COMMAND_LEN, // command_end: end of command
DENON_COMPLETE_DATA_LEN, // complete_len: complete length of frame
DENON_STOP_BIT, // stop_bit: flag: frame has stop bit
DENON_LSB, // lsb_first: flag: LSB first
DENON_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_RC6_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER rc6_param =
{
IRMP_RC6_PROTOCOL, // protocol: ir protocol
RC6_BIT_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
RC6_BIT_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
RC6_BIT_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
RC6_BIT_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
1, // tricky: use this as stop bit length // pulse_0_len_min: minimum length of pulse with bit value 0
1, // pulse_0_len_max: maximum length of pulse with bit value 0
1, // pause_0_len_min: minimum length of pause with bit value 0
1, // pause_0_len_max: maximum length of pause with bit value 0
RC6_ADDRESS_OFFSET, // address_offset: address offset
RC6_ADDRESS_OFFSET + RC6_ADDRESS_LEN, // address_end: end of address
RC6_COMMAND_OFFSET, // command_offset: command offset
RC6_COMMAND_OFFSET + RC6_COMMAND_LEN, // command_end: end of command
RC6_COMPLETE_DATA_LEN_SHORT, // complete_len: complete length of frame
RC6_STOP_BIT, // stop_bit: flag: frame has stop bit
RC6_LSB, // lsb_first: flag: LSB first
RC6_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_RECS80EXT_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER recs80ext_param =
{
IRMP_RECS80EXT_PROTOCOL, // protocol: ir protocol
RECS80EXT_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
RECS80EXT_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
RECS80EXT_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
RECS80EXT_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
RECS80EXT_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
RECS80EXT_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
RECS80EXT_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
RECS80EXT_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
RECS80EXT_ADDRESS_OFFSET, // address_offset: address offset
RECS80EXT_ADDRESS_OFFSET + RECS80EXT_ADDRESS_LEN, // address_end: end of address
RECS80EXT_COMMAND_OFFSET, // command_offset: command offset
RECS80EXT_COMMAND_OFFSET + RECS80EXT_COMMAND_LEN, // command_end: end of command
RECS80EXT_COMPLETE_DATA_LEN, // complete_len: complete length of frame
RECS80EXT_STOP_BIT, // stop_bit: flag: frame has stop bit
RECS80EXT_LSB, // lsb_first: flag: LSB first
RECS80EXT_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_NUBERT_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER nubert_param =
{
IRMP_NUBERT_PROTOCOL, // protocol: ir protocol
NUBERT_1_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
NUBERT_1_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
NUBERT_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
NUBERT_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
NUBERT_0_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
NUBERT_0_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
NUBERT_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
NUBERT_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
NUBERT_ADDRESS_OFFSET, // address_offset: address offset
NUBERT_ADDRESS_OFFSET + NUBERT_ADDRESS_LEN, // address_end: end of address
NUBERT_COMMAND_OFFSET, // command_offset: command offset
NUBERT_COMMAND_OFFSET + NUBERT_COMMAND_LEN, // command_end: end of command
NUBERT_COMPLETE_DATA_LEN, // complete_len: complete length of frame
NUBERT_STOP_BIT, // stop_bit: flag: frame has stop bit
NUBERT_LSB, // lsb_first: flag: LSB first
NUBERT_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER bang_olufsen_param =
{
IRMP_BANG_OLUFSEN_PROTOCOL, // protocol: ir protocol
BANG_OLUFSEN_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
BANG_OLUFSEN_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
BANG_OLUFSEN_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
BANG_OLUFSEN_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
BANG_OLUFSEN_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
BANG_OLUFSEN_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
BANG_OLUFSEN_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
BANG_OLUFSEN_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
BANG_OLUFSEN_ADDRESS_OFFSET, // address_offset: address offset
BANG_OLUFSEN_ADDRESS_OFFSET + BANG_OLUFSEN_ADDRESS_LEN, // address_end: end of address
BANG_OLUFSEN_COMMAND_OFFSET, // command_offset: command offset
BANG_OLUFSEN_COMMAND_OFFSET + BANG_OLUFSEN_COMMAND_LEN, // command_end: end of command
BANG_OLUFSEN_COMPLETE_DATA_LEN, // complete_len: complete length of frame
BANG_OLUFSEN_STOP_BIT, // stop_bit: flag: frame has stop bit
BANG_OLUFSEN_LSB, // lsb_first: flag: LSB first
BANG_OLUFSEN_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER grundig_param =
{
IRMP_GRUNDIG_PROTOCOL, // protocol: ir protocol
GRUNDIG_OR_NOKIA_BIT_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
GRUNDIG_OR_NOKIA_BIT_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
GRUNDIG_OR_NOKIA_BIT_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
GRUNDIG_OR_NOKIA_BIT_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
1, // tricky: use this as stop bit length // pulse_0_len_min: minimum length of pulse with bit value 0
1, // pulse_0_len_max: maximum length of pulse with bit value 0
1, // pause_0_len_min: minimum length of pause with bit value 0
1, // pause_0_len_max: maximum length of pause with bit value 0
GRUNDIG_ADDRESS_OFFSET, // address_offset: address offset
GRUNDIG_ADDRESS_OFFSET + GRUNDIG_ADDRESS_LEN, // address_end: end of address
GRUNDIG_COMMAND_OFFSET, // command_offset: command offset
GRUNDIG_COMMAND_OFFSET + GRUNDIG_COMMAND_LEN + 1, // command_end: end of command (USE 1 bit MORE to STORE NOKIA DATA!)
NOKIA_COMPLETE_DATA_LEN, // complete_len: complete length of frame, here: NOKIA instead of GRUNDIG!
GRUNDIG_OR_NOKIA_STOP_BIT, // stop_bit: flag: frame has stop bit
GRUNDIG_OR_NOKIA_LSB, // lsb_first: flag: LSB first
GRUNDIG_OR_NOKIA_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_SIEMENS_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER siemens_param =
{
IRMP_SIEMENS_PROTOCOL, // protocol: ir protocol
SIEMENS_BIT_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
SIEMENS_BIT_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
SIEMENS_BIT_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
SIEMENS_BIT_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
1, // tricky: use this as stop bit length // pulse_0_len_min: minimum length of pulse with bit value 0
1, // pulse_0_len_max: maximum length of pulse with bit value 0
1, // pause_0_len_min: minimum length of pause with bit value 0
1, // pause_0_len_max: maximum length of pause with bit value 0
SIEMENS_ADDRESS_OFFSET, // address_offset: address offset
SIEMENS_ADDRESS_OFFSET + SIEMENS_ADDRESS_LEN, // address_end: end of address
SIEMENS_COMMAND_OFFSET, // command_offset: command offset
SIEMENS_COMMAND_OFFSET + SIEMENS_COMMAND_LEN, // command_end: end of command
SIEMENS_COMPLETE_DATA_LEN, // complete_len: complete length of frame
SIEMENS_STOP_BIT, // stop_bit: flag: frame has stop bit
SIEMENS_LSB, // lsb_first: flag: LSB first
SIEMENS_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_FDC_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER fdc_param =
{
IRMP_FDC_PROTOCOL, // protocol: ir protocol
FDC_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
FDC_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
FDC_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
FDC_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
FDC_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
FDC_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
FDC_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
FDC_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
FDC_ADDRESS_OFFSET, // address_offset: address offset
FDC_ADDRESS_OFFSET + FDC_ADDRESS_LEN, // address_end: end of address
FDC_COMMAND_OFFSET, // command_offset: command offset
FDC_COMMAND_OFFSET + FDC_COMMAND_LEN, // command_end: end of command
FDC_COMPLETE_DATA_LEN, // complete_len: complete length of frame
FDC_STOP_BIT, // stop_bit: flag: frame has stop bit
FDC_LSB, // lsb_first: flag: LSB first
FDC_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_RCCAR_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER rccar_param =
{
IRMP_RCCAR_PROTOCOL, // protocol: ir protocol
RCCAR_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
RCCAR_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
RCCAR_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
RCCAR_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
RCCAR_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
RCCAR_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
RCCAR_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
RCCAR_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
RCCAR_ADDRESS_OFFSET, // address_offset: address offset
RCCAR_ADDRESS_OFFSET + RCCAR_ADDRESS_LEN, // address_end: end of address
RCCAR_COMMAND_OFFSET, // command_offset: command offset
RCCAR_COMMAND_OFFSET + RCCAR_COMMAND_LEN, // command_end: end of command
RCCAR_COMPLETE_DATA_LEN, // complete_len: complete length of frame
RCCAR_STOP_BIT, // stop_bit: flag: frame has stop bit
RCCAR_LSB, // lsb_first: flag: LSB first
RCCAR_FLAGS // flags: some flags
};
 
#endif
 
#if IRMP_SUPPORT_NIKON_PROTOCOL == 1
 
static PROGMEM IRMP_PARAMETER nikon_param =
{
IRMP_NIKON_PROTOCOL, // protocol: ir protocol
NIKON_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1
NIKON_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1
NIKON_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1
NIKON_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1
NIKON_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0
NIKON_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0
NIKON_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0
NIKON_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0
NIKON_ADDRESS_OFFSET, // address_offset: address offset
NIKON_ADDRESS_OFFSET + NIKON_ADDRESS_LEN, // address_end: end of address
NIKON_COMMAND_OFFSET, // command_offset: command offset
NIKON_COMMAND_OFFSET + NIKON_COMMAND_LEN, // command_end: end of command
NIKON_COMPLETE_DATA_LEN, // complete_len: complete length of frame
NIKON_STOP_BIT, // stop_bit: flag: frame has stop bit
NIKON_LSB, // lsb_first: flag: LSB first
NIKON_FLAGS // flags: some flags
};
 
#endif
 
static uint8_t irmp_bit; // current bit position
static IRMP_PARAMETER irmp_param;
 
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1)
static IRMP_PARAMETER irmp_param2;
#endif
 
static volatile uint8_t irmp_ir_detected;
static volatile uint8_t irmp_protocol;
static volatile uint16_t irmp_address;
static volatile uint16_t irmp_command;
static volatile uint16_t irmp_id; // only used for SAMSUNG protocol
static volatile uint8_t irmp_flags;
 
#ifdef ANALYZE
static uint8_t IRMP_PIN;
#endif
 
/*---------------------------------------------------------------------------------------------------------------------------------------------------
* Initialize IRMP decoder
* @details Configures IRMP input pin
*---------------------------------------------------------------------------------------------------------------------------------------------------
*/
#ifndef ANALYZE
void
irmp_init (void)
{
#ifndef PIC_CCS_COMPILER
IRMP_PORT &= ~(1<<IRMP_BIT); // deactivate pullup
IRMP_DDR &= ~(1<<IRMP_BIT); // set pin to input
#endif // PIC_CCS_COMPILER
 
#if IRMP_LOGGING == 1
irmp_uart_init ();
#endif
}
#endif
/*---------------------------------------------------------------------------------------------------------------------------------------------------
* Get IRMP data
* @details gets decoded IRMP data
* @param pointer in order to store IRMP data
* @return TRUE: successful, FALSE: failed
*---------------------------------------------------------------------------------------------------------------------------------------------------
*/
uint8_t
irmp_get_data (IRMP_DATA * irmp_data_p)
{
uint8_t rtc = FALSE;
 
if (irmp_ir_detected)
{
switch (irmp_protocol)
{
#if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1
case IRMP_SAMSUNG_PROTOCOL:
if ((irmp_command >> 8) == (~irmp_command & 0x00FF))
{
irmp_command &= 0xff;
irmp_command |= irmp_id << 8;
rtc = TRUE;
}
break;
#endif
#if IRMP_SUPPORT_NEC_PROTOCOL == 1
case IRMP_NEC_PROTOCOL:
if ((irmp_command >> 8) == (~irmp_command & 0x00FF))
{
irmp_command &= 0xff;
rtc = TRUE;
}
else if (irmp_address == 0x87EE)
{
ANALYZE_PRINTF ("Switching to APPLE protocol\n");
irmp_protocol = IRMP_APPLE_PROTOCOL;
irmp_address = (irmp_command & 0xFF00) >> 8;
irmp_command &= 0x00FF;
rtc = TRUE;
}
break;
#endif
#if IRMP_SUPPORT_SIEMENS_PROTOCOL == 1
case IRMP_SIEMENS_PROTOCOL:
if (((irmp_command >> 1) & 0x0001) == (~irmp_command & 0x0001))
{
irmp_command >>= 1;
rtc = TRUE;
}
break;
#endif
#if IRMP_SUPPORT_RCCAR_PROTOCOL == 1
case IRMP_RCCAR_PROTOCOL:
// frame in irmp_data:
// Bit 12 11 10 9 8 7 6 5 4 3 2 1 0
// V D7 D6 D5 D4 D3 D2 D1 D0 A1 A0 C1 C0 // 10 9 8 7 6 5 4 3 2 1 0
irmp_address = (irmp_command & 0x000C) >> 2; // addr: 0 0 0 0 0 0 0 0 0 A1 A0
irmp_command = ((irmp_command & 0x1000) >> 2) | // V-Bit: V 0 0 0 0 0 0 0 0 0 0
((irmp_command & 0x0003) << 8) | // C-Bits: 0 C1 C0 0 0 0 0 0 0 0 0
((irmp_command & 0x0FF0) >> 4); // D-Bits: D7 D6 D5 D4 D3 D2 D1 D0
rtc = TRUE; // Summe: V C1 C0 D7 D6 D5 D4 D3 D2 D1 D0
break;
#endif
default:
rtc = TRUE;
}
 
if (rtc)
{
irmp_data_p->protocol = irmp_protocol;
irmp_data_p->address = irmp_address;
irmp_data_p->command = irmp_command;
irmp_data_p->flags = irmp_flags;
irmp_command = 0;
irmp_address = 0;
irmp_flags = 0;
}
 
irmp_ir_detected = FALSE;
}
 
return rtc;
}
 
// these statics must not be volatile, because they are only used by irmp_store_bit(), which is called by irmp_ISR()
static uint16_t irmp_tmp_address; // ir address
static uint16_t irmp_tmp_command; // ir command
 
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1)
static uint16_t irmp_tmp_address2; // ir address
static uint16_t irmp_tmp_command2; // ir command
#endif
 
#if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1
static uint16_t irmp_tmp_id; // ir id (only SAMSUNG)
#endif
#if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1
static uint8_t xor_check[6]; // check kaseikyo "parity" bits
#endif
 
static uint8_t irmp_bit; // current bit position
 
/*---------------------------------------------------------------------------------------------------------------------------------------------------
* store bit
* @details store bit in temp address or temp command
* @param value to store: 0 or 1
*---------------------------------------------------------------------------------------------------------------------------------------------------
*/
// verhindert, dass irmp_store_bit() inline compiliert wird:
// static void irmp_store_bit (uint8_t) __attribute__ ((noinline));
 
static void
irmp_store_bit (uint8_t value)
{
 
if (irmp_bit >= irmp_param.address_offset && irmp_bit < irmp_param.address_end)
{
if (irmp_param.lsb_first)
{
irmp_tmp_address |= (((uint16_t) (value)) << (irmp_bit - irmp_param.address_offset)); // CV wants cast
}
else
{
irmp_tmp_address <<= 1;
irmp_tmp_address |= value;
}
}
else if (irmp_bit >= irmp_param.command_offset && irmp_bit < irmp_param.command_end)
{
if (irmp_param.lsb_first)
{
irmp_tmp_command |= (((uint16_t) (value)) << (irmp_bit - irmp_param.command_offset)); // CV wants cast
}
else
{
irmp_tmp_command <<= 1;
irmp_tmp_command |= value;
}
}
 
#if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1
else if (irmp_param.protocol == IRMP_SAMSUNG_PROTOCOL && irmp_bit >= SAMSUNG_ID_OFFSET && irmp_bit < SAMSUNG_ID_OFFSET + SAMSUNG_ID_LEN)
{
irmp_tmp_id |= (((uint16_t) (value)) << (irmp_bit - SAMSUNG_ID_OFFSET)); // store with LSB first
}
#endif
 
#if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1
else if (irmp_param.protocol == IRMP_KASEIKYO_PROTOCOL && irmp_bit >= 20 && irmp_bit < 24)
{
irmp_tmp_command |= (((uint16_t) (value)) << (irmp_bit - 8)); // store 4 system bits in upper nibble with LSB first
}
 
if (irmp_param.protocol == IRMP_KASEIKYO_PROTOCOL && irmp_bit < KASEIKYO_COMPLETE_DATA_LEN)
{
if (value)
{
xor_check[irmp_bit / 8] |= 1 << (irmp_bit % 8);
}
else
{
xor_check[irmp_bit / 8] &= ~(1 << (irmp_bit % 8));
}
}
 
#endif
 
irmp_bit++;
}
 
/*---------------------------------------------------------------------------------------------------------------------------------------------------
* store bit
* @details store bit in temp address or temp command
* @param value to store: 0 or 1
*---------------------------------------------------------------------------------------------------------------------------------------------------
*/
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1)
static void
irmp_store_bit2 (uint8_t value)
{
uint8_t irmp_bit2;
 
if (irmp_param.protocol)
{
irmp_bit2 = irmp_bit - 2;
}
else
{
irmp_bit2 = irmp_bit - 1;
}
 
if (irmp_bit2 >= irmp_param2.address_offset && irmp_bit2 < irmp_param2.address_end)
{
irmp_tmp_address2 |= (((uint16_t) (value)) << (irmp_bit2 - irmp_param2.address_offset)); // CV wants cast
}
else if (irmp_bit2 >= irmp_param2.command_offset && irmp_bit2 < irmp_param2.command_end)
{
irmp_tmp_command2 |= (((uint16_t) (value)) << (irmp_bit2 - irmp_param2.command_offset)); // CV wants cast
}
}
#endif // IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1)
 
/*---------------------------------------------------------------------------------------------------------------------------------------------------
* ISR routine
* @details ISR routine, called 10000 times per second
*---------------------------------------------------------------------------------------------------------------------------------------------------
*/
uint8_t
irmp_ISR (void)
{
static uint8_t irmp_start_bit_detected; // flag: start bit detected
static uint8_t wait_for_space; // flag: wait for data bit space
static uint8_t wait_for_start_space; // flag: wait for start bit space
static uint8_t irmp_pulse_time; // count bit time for pulse
static PAUSE_LEN irmp_pause_time; // count bit time for pause
static uint16_t last_irmp_address = 0xFFFF; // save last irmp address to recognize key repetition
static uint16_t last_irmp_command = 0xFFFF; // save last irmp command to recognize key repetition
static uint16_t repetition_len; // SIRCS repeats frame 2-5 times with 45 ms pause
static uint8_t repetition_frame_number;
#if IRMP_SUPPORT_DENON_PROTOCOL == 1
static uint16_t last_irmp_denon_command; // save last irmp command to recognize DENON frame repetition
#endif
#if IRMP_SUPPORT_RC5_PROTOCOL == 1
static uint8_t rc5_cmd_bit6; // bit 6 of RC5 command is the inverted 2nd start bit
#endif
#if IRMP_SUPPORT_MANCHESTER == 1
static PAUSE_LEN last_pause; // last pause value
#endif
#if IRMP_SUPPORT_MANCHESTER == 1 || IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1
static uint8_t last_value; // last bit value
#endif
uint8_t irmp_input; // input value
 
#ifdef ANALYZE
time_counter++;
#endif
 
irmp_input = input(IRMP_PIN);
 
irmp_log(irmp_input); // log ir signal, if IRMP_LOGGING defined
 
if (! irmp_ir_detected) // ir code already detected?
{ // no...
if (! irmp_start_bit_detected) // start bit detected?
{ // no...
if (! irmp_input) // receiving burst?
{ // yes...
#ifdef ANALYZE
if (! irmp_pulse_time)
{
ANALYZE_PRINTF("%8d [starting pulse]\n", time_counter);
}
#endif
irmp_pulse_time++; // increment counter
}
else
{ // no...
if (irmp_pulse_time) // it's dark....
{ // set flags for counting the time of darkness...
irmp_start_bit_detected = 1;
wait_for_start_space = 1;
wait_for_space = 0;
irmp_tmp_command = 0;
irmp_tmp_address = 0;
 
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1)
irmp_tmp_command2 = 0;
irmp_tmp_address2 = 0;
#endif
 
irmp_bit = 0xff;
irmp_pause_time = 1; // 1st pause: set to 1, not to 0!
#if IRMP_SUPPORT_RC5_PROTOCOL == 1
rc5_cmd_bit6 = 0; // fm 2010-03-07: bugfix: reset it after incomplete RC5 frame!
#endif
}
else
{
if (repetition_len < 0xFFFF) // avoid overflow of counter
{
repetition_len++;
}
}
}
}
else
{
if (wait_for_start_space) // we have received start bit...
{ // ...and are counting the time of darkness
if (irmp_input) // still dark?
{ // yes
irmp_pause_time++; // increment counter
 
#if IRMP_SUPPORT_NIKON_PROTOCOL == 1
if (((irmp_pulse_time < NIKON_START_BIT_PULSE_LEN_MIN || irmp_pulse_time > NIKON_START_BIT_PULSE_LEN_MAX) && irmp_pause_time > IRMP_TIMEOUT_LEN) ||
irmp_pause_time > IRMP_TIMEOUT_NIKON_LEN)
#else
if (irmp_pause_time > IRMP_TIMEOUT_LEN) // timeout?
#endif
{ // yes...
#if IRMP_SUPPORT_JVC_PROTOCOL == 1
if (irmp_protocol == IRMP_JVC_PROTOCOL) // don't show eror if JVC protocol, irmp_pulse_time has been set below!
{
;
}
else
#endif // IRMP_SUPPORT_JVC_PROTOCOL == 1
{
ANALYZE_PRINTF ("%8d error 1: pause after start bit pulse %d too long: %d\n", time_counter, irmp_pulse_time, irmp_pause_time);
ANALYZE_ONLY_NORMAL_PUTCHAR ('\n');
}
irmp_start_bit_detected = 0; // reset flags, let's wait for another start bit
irmp_pulse_time = 0;
irmp_pause_time = 0;
}
}
else
{ // receiving first data pulse!
IRMP_PARAMETER * irmp_param_p = (IRMP_PARAMETER *) 0;
 
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1)
irmp_param2.protocol = 0;
#endif
 
ANALYZE_PRINTF ("%8d [start-bit: pulse = %2d, pause = %2d]\n", time_counter, irmp_pulse_time, irmp_pause_time);
 
#if IRMP_SUPPORT_SIRCS_PROTOCOL == 1
if (irmp_pulse_time >= SIRCS_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= SIRCS_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= SIRCS_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= SIRCS_START_BIT_PAUSE_LEN_MAX)
{ // it's SIRCS
ANALYZE_PRINTF ("protocol = SIRCS, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
SIRCS_START_BIT_PULSE_LEN_MIN, SIRCS_START_BIT_PULSE_LEN_MAX,
SIRCS_START_BIT_PAUSE_LEN_MIN, SIRCS_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) (IRMP_PARAMETER *) &sircs_param;
}
else
#endif // IRMP_SUPPORT_SIRCS_PROTOCOL == 1
 
#if IRMP_SUPPORT_JVC_PROTOCOL == 1
if (irmp_protocol == IRMP_JVC_PROTOCOL && // last protocol was JVC, awaiting repeat frame
irmp_pulse_time >= JVC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= JVC_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= JVC_REPEAT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= JVC_REPEAT_START_BIT_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF ("protocol = NEC or JVC repeat frame, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
JVC_START_BIT_PULSE_LEN_MIN, JVC_START_BIT_PULSE_LEN_MAX,
JVC_REPEAT_START_BIT_PAUSE_LEN_MIN, JVC_REPEAT_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &nec_param; // tricky: use nec parameters
}
else
#endif // IRMP_SUPPORT_JVC_PROTOCOL == 1
 
#if IRMP_SUPPORT_NEC_PROTOCOL == 1
if (irmp_pulse_time >= NEC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NEC_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= NEC_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NEC_START_BIT_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF ("protocol = NEC, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX,
NEC_START_BIT_PAUSE_LEN_MIN, NEC_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &nec_param;
}
else if (irmp_pulse_time >= NEC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NEC_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= NEC_REPEAT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NEC_REPEAT_START_BIT_PAUSE_LEN_MAX)
{ // it's NEC
ANALYZE_PRINTF ("protocol = NEC (repetition frame), start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX,
NEC_REPEAT_START_BIT_PAUSE_LEN_MIN, NEC_REPEAT_START_BIT_PAUSE_LEN_MAX);
 
irmp_param_p = (IRMP_PARAMETER *) &nec_rep_param;
}
else
#endif // IRMP_SUPPORT_NEC_PROTOCOL == 1
 
#if IRMP_SUPPORT_NIKON_PROTOCOL == 1
if (irmp_pulse_time >= NIKON_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NIKON_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= NIKON_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NIKON_START_BIT_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF ("protocol = NIKON, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
NIKON_START_BIT_PULSE_LEN_MIN, NIKON_START_BIT_PULSE_LEN_MAX,
NIKON_START_BIT_PAUSE_LEN_MIN, NIKON_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &nikon_param;
}
else
#endif // IRMP_SUPPORT_NIKON_PROTOCOL == 1
 
#if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1
if (irmp_pulse_time >= SAMSUNG_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= SAMSUNG_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= SAMSUNG_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= SAMSUNG_START_BIT_PAUSE_LEN_MAX)
{ // it's SAMSUNG
ANALYZE_PRINTF ("protocol = SAMSUNG, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
SAMSUNG_START_BIT_PULSE_LEN_MIN, SAMSUNG_START_BIT_PULSE_LEN_MAX,
SAMSUNG_START_BIT_PAUSE_LEN_MIN, SAMSUNG_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &samsung_param;
}
else
#endif // IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1
 
#if IRMP_SUPPORT_MATSUSHITA_PROTOCOL == 1
if (irmp_pulse_time >= MATSUSHITA_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= MATSUSHITA_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= MATSUSHITA_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= MATSUSHITA_START_BIT_PAUSE_LEN_MAX)
{ // it's MATSUSHITA
ANALYZE_PRINTF ("protocol = MATSUSHITA, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
MATSUSHITA_START_BIT_PULSE_LEN_MIN, MATSUSHITA_START_BIT_PULSE_LEN_MAX,
MATSUSHITA_START_BIT_PAUSE_LEN_MIN, MATSUSHITA_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &matsushita_param;
}
else
#endif // IRMP_SUPPORT_MATSUSHITA_PROTOCOL == 1
 
#if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1
if (irmp_pulse_time >= KASEIKYO_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= KASEIKYO_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= KASEIKYO_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= KASEIKYO_START_BIT_PAUSE_LEN_MAX)
{ // it's KASEIKYO
ANALYZE_PRINTF ("protocol = KASEIKYO, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
KASEIKYO_START_BIT_PULSE_LEN_MIN, KASEIKYO_START_BIT_PULSE_LEN_MAX,
KASEIKYO_START_BIT_PAUSE_LEN_MIN, KASEIKYO_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &kaseikyo_param;
}
else
#endif // IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1
 
#if IRMP_SUPPORT_RECS80_PROTOCOL == 1
if (irmp_pulse_time >= RECS80_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RECS80_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= RECS80_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RECS80_START_BIT_PAUSE_LEN_MAX)
{ // it's RECS80
ANALYZE_PRINTF ("protocol = RECS80, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
RECS80_START_BIT_PULSE_LEN_MIN, RECS80_START_BIT_PULSE_LEN_MAX,
RECS80_START_BIT_PAUSE_LEN_MIN, RECS80_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &recs80_param;
}
else
#endif // IRMP_SUPPORT_RECS80_PROTOCOL == 1
 
#if IRMP_SUPPORT_RC5_PROTOCOL == 1
if (((irmp_pulse_time >= RC5_START_BIT_LEN_MIN && irmp_pulse_time <= RC5_START_BIT_LEN_MAX) ||
(irmp_pulse_time >= 2 * RC5_START_BIT_LEN_MIN && irmp_pulse_time <= 2 * RC5_START_BIT_LEN_MAX)) &&
((irmp_pause_time >= RC5_START_BIT_LEN_MIN && irmp_pause_time <= RC5_START_BIT_LEN_MAX) ||
(irmp_pause_time >= 2 * RC5_START_BIT_LEN_MIN && irmp_pause_time <= 2 * RC5_START_BIT_LEN_MAX)))
{ // it's RC5
#if IRMP_SUPPORT_FDC_PROTOCOL == 1
if (irmp_pulse_time >= FDC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= FDC_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= FDC_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= FDC_START_BIT_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF ("protocol = RC5 or FDC\n");
ANALYZE_PRINTF ("FDC start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
FDC_START_BIT_PULSE_LEN_MIN, FDC_START_BIT_PULSE_LEN_MAX,
FDC_START_BIT_PAUSE_LEN_MIN, FDC_START_BIT_PAUSE_LEN_MAX);
ANALYZE_PRINTF ("RC5 start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX,
RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX);
memcpy_P (&irmp_param2, &fdc_param, sizeof (IRMP_PARAMETER));
}
else
#endif // IRMP_SUPPORT_FDC_PROTOCOL == 1
#if IRMP_SUPPORT_RCCAR_PROTOCOL == 1
if (irmp_pulse_time >= RCCAR_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RCCAR_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= RCCAR_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_START_BIT_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF ("protocol = RC5 or RCCAR\n");
ANALYZE_PRINTF ("RCCAR start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
RCCAR_START_BIT_PULSE_LEN_MIN, RCCAR_START_BIT_PULSE_LEN_MAX,
RCCAR_START_BIT_PAUSE_LEN_MIN, RCCAR_START_BIT_PAUSE_LEN_MAX);
ANALYZE_PRINTF ("RC5 start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX,
RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX);
memcpy_P (&irmp_param2, &rccar_param, sizeof (IRMP_PARAMETER));
}
else
#endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1
{
ANALYZE_PRINTF ("protocol = RC5, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX,
RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX);
}
 
irmp_param_p = (IRMP_PARAMETER *) &rc5_param;
last_pause = irmp_pause_time;
 
if ((irmp_pulse_time > RC5_START_BIT_LEN_MAX && irmp_pulse_time <= 2 * RC5_START_BIT_LEN_MAX) ||
(irmp_pause_time > RC5_START_BIT_LEN_MAX && irmp_pause_time <= 2 * RC5_START_BIT_LEN_MAX))
{
last_value = 0;
rc5_cmd_bit6 = 1<<6;
}
else
{
last_value = 1;
}
}
else
#endif // IRMP_SUPPORT_RC5_PROTOCOL == 1
 
#if IRMP_SUPPORT_DENON_PROTOCOL == 1
if ( (irmp_pulse_time >= DENON_PULSE_LEN_MIN && irmp_pulse_time <= DENON_PULSE_LEN_MAX) &&
((irmp_pause_time >= DENON_1_PAUSE_LEN_MIN && irmp_pause_time <= DENON_1_PAUSE_LEN_MAX) ||
(irmp_pause_time >= DENON_0_PAUSE_LEN_MIN && irmp_pause_time <= DENON_0_PAUSE_LEN_MAX)))
{ // it's DENON
ANALYZE_PRINTF ("protocol = DENON, start bit timings: pulse: %3d - %3d, pause: %3d - %3d or %3d - %3d\n",
DENON_PULSE_LEN_MIN, DENON_PULSE_LEN_MAX,
DENON_1_PAUSE_LEN_MIN, DENON_1_PAUSE_LEN_MAX,
DENON_0_PAUSE_LEN_MIN, DENON_0_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &denon_param;
}
else
#endif // IRMP_SUPPORT_DENON_PROTOCOL == 1
 
#if IRMP_SUPPORT_RC6_PROTOCOL == 1
if (irmp_pulse_time >= RC6_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RC6_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= RC6_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RC6_START_BIT_PAUSE_LEN_MAX)
{ // it's RC6
ANALYZE_PRINTF ("protocol = RC6, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
RC6_START_BIT_PULSE_LEN_MIN, RC6_START_BIT_PULSE_LEN_MAX,
RC6_START_BIT_PAUSE_LEN_MIN, RC6_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &rc6_param;
last_pause = 0;
last_value = 1;
}
else
#endif // IRMP_SUPPORT_RC6_PROTOCOL == 1
 
#if IRMP_SUPPORT_RECS80EXT_PROTOCOL == 1
if (irmp_pulse_time >= RECS80EXT_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RECS80EXT_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= RECS80EXT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RECS80EXT_START_BIT_PAUSE_LEN_MAX)
{ // it's RECS80EXT
ANALYZE_PRINTF ("protocol = RECS80EXT, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
RECS80EXT_START_BIT_PULSE_LEN_MIN, RECS80EXT_START_BIT_PULSE_LEN_MAX,
RECS80EXT_START_BIT_PAUSE_LEN_MIN, RECS80EXT_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &recs80ext_param;
}
else
#endif // IRMP_SUPPORT_RECS80EXT_PROTOCOL == 1
 
#if IRMP_SUPPORT_NUBERT_PROTOCOL == 1
if (irmp_pulse_time >= NUBERT_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NUBERT_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= NUBERT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NUBERT_START_BIT_PAUSE_LEN_MAX)
{ // it's NUBERT
ANALYZE_PRINTF ("protocol = NUBERT, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
NUBERT_START_BIT_PULSE_LEN_MIN, NUBERT_START_BIT_PULSE_LEN_MAX,
NUBERT_START_BIT_PAUSE_LEN_MIN, NUBERT_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &nubert_param;
}
else
#endif // IRMP_SUPPORT_NUBERT_PROTOCOL == 1
 
#if IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1
if (irmp_pulse_time >= BANG_OLUFSEN_START_BIT1_PULSE_LEN_MIN && irmp_pulse_time <= BANG_OLUFSEN_START_BIT1_PULSE_LEN_MAX &&
irmp_pause_time >= BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MAX)
{ // it's BANG_OLUFSEN
ANALYZE_PRINTF ("protocol = BANG_OLUFSEN\n");
ANALYZE_PRINTF ("start bit 1 timings: pulse: %3d - %3d, pause: %3d - %3d\n",
BANG_OLUFSEN_START_BIT1_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT1_PULSE_LEN_MAX,
BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MAX);
ANALYZE_PRINTF ("start bit 2 timings: pulse: %3d - %3d, pause: %3d - %3d\n",
BANG_OLUFSEN_START_BIT2_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT2_PULSE_LEN_MAX,
BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MAX);
ANALYZE_PRINTF ("start bit 3 timings: pulse: %3d - %3d, pause: %3d - %3d\n",
BANG_OLUFSEN_START_BIT3_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT3_PULSE_LEN_MAX,
BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MAX);
ANALYZE_PRINTF ("start bit 4 timings: pulse: %3d - %3d, pause: %3d - %3d\n",
BANG_OLUFSEN_START_BIT4_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT4_PULSE_LEN_MAX,
BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &bang_olufsen_param;
last_value = 0;
}
else
#endif // IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1
 
#if IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL == 1
if (irmp_pulse_time >= GRUNDIG_OR_NOKIA_START_BIT_LEN_MIN && irmp_pulse_time <= GRUNDIG_OR_NOKIA_START_BIT_LEN_MAX &&
irmp_pause_time >= GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MIN && irmp_pause_time <= GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MAX)
{ // it's GRUNDIG
ANALYZE_PRINTF ("protocol = GRUNDIG, pre bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
GRUNDIG_OR_NOKIA_START_BIT_LEN_MIN, GRUNDIG_OR_NOKIA_START_BIT_LEN_MAX,
GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MIN, GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &grundig_param;
last_pause = irmp_pause_time;
last_value = 1;
}
else
#endif // IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL == 1
 
#if IRMP_SUPPORT_SIEMENS_PROTOCOL == 1
if (((irmp_pulse_time >= SIEMENS_START_BIT_LEN_MIN && irmp_pulse_time <= SIEMENS_START_BIT_LEN_MAX) ||
(irmp_pulse_time >= 2 * SIEMENS_START_BIT_LEN_MIN && irmp_pulse_time <= 2 * SIEMENS_START_BIT_LEN_MAX)) &&
((irmp_pause_time >= SIEMENS_START_BIT_LEN_MIN && irmp_pause_time <= SIEMENS_START_BIT_LEN_MAX) ||
(irmp_pause_time >= 2 * SIEMENS_START_BIT_LEN_MIN && irmp_pause_time <= 2 * SIEMENS_START_BIT_LEN_MAX)))
{ // it's SIEMENS
ANALYZE_PRINTF ("protocol = SIEMENS, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
SIEMENS_START_BIT_LEN_MIN, SIEMENS_START_BIT_LEN_MAX,
SIEMENS_START_BIT_LEN_MIN, SIEMENS_START_BIT_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &siemens_param;
last_pause = irmp_pause_time;
last_value = 1;
}
else
#endif // IRMP_SUPPORT_SIEMENS_PROTOCOL == 1
#if IRMP_SUPPORT_FDC_PROTOCOL == 1
if (irmp_pulse_time >= FDC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= FDC_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= FDC_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= FDC_START_BIT_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF ("protocol = FDC, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
FDC_START_BIT_PULSE_LEN_MIN, FDC_START_BIT_PULSE_LEN_MAX,
FDC_START_BIT_PAUSE_LEN_MIN, FDC_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &fdc_param;
}
else
#endif // IRMP_SUPPORT_FDC_PROTOCOL == 1
#if IRMP_SUPPORT_RCCAR_PROTOCOL == 1
if (irmp_pulse_time >= RCCAR_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RCCAR_START_BIT_PULSE_LEN_MAX &&
irmp_pause_time >= RCCAR_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_START_BIT_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF ("protocol = RCCAR, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n",
RCCAR_START_BIT_PULSE_LEN_MIN, RCCAR_START_BIT_PULSE_LEN_MAX,
RCCAR_START_BIT_PAUSE_LEN_MIN, RCCAR_START_BIT_PAUSE_LEN_MAX);
irmp_param_p = (IRMP_PARAMETER *) &rccar_param;
}
else
#endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1
{
ANALYZE_PRINTF ("protocol = UNKNOWN\n");
irmp_start_bit_detected = 0; // wait for another start bit...
}
 
if (irmp_start_bit_detected)
{
memcpy_P (&irmp_param, irmp_param_p, sizeof (IRMP_PARAMETER));
 
#ifdef ANALYZE
if (! (irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER))
{
ANALYZE_PRINTF ("pulse_1: %3d - %3d\n", irmp_param.pulse_1_len_min, irmp_param.pulse_1_len_max);
ANALYZE_PRINTF ("pause_1: %3d - %3d\n", irmp_param.pause_1_len_min, irmp_param.pause_1_len_max);
}
else
{
ANALYZE_PRINTF ("pulse: %3d - %3d or %3d - %3d\n", irmp_param.pulse_1_len_min, irmp_param.pulse_1_len_max,
irmp_param.pulse_1_len_max + 1, 2 * irmp_param.pulse_1_len_max);
ANALYZE_PRINTF ("pause: %3d - %3d or %3d - %3d\n", irmp_param.pause_1_len_min, irmp_param.pause_1_len_max,
irmp_param.pause_1_len_max + 1, 2 * irmp_param.pause_1_len_max);
}
 
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1)
if (irmp_param2.protocol)
{
ANALYZE_PRINTF ("pulse_0: %3d - %3d\n", irmp_param2.pulse_0_len_min, irmp_param2.pulse_0_len_max);
ANALYZE_PRINTF ("pause_0: %3d - %3d\n", irmp_param2.pause_0_len_min, irmp_param2.pause_0_len_max);
ANALYZE_PRINTF ("pulse_1: %3d - %3d\n", irmp_param2.pulse_1_len_min, irmp_param2.pulse_1_len_max);
ANALYZE_PRINTF ("pause_1: %3d - %3d\n", irmp_param2.pause_1_len_min, irmp_param2.pause_1_len_max);
}
#endif
 
 
#if IRMP_SUPPORT_RC6_PROTOCOL == 1
if (irmp_param.protocol == IRMP_RC6_PROTOCOL)
{
ANALYZE_PRINTF ("pulse_toggle: %3d - %3d\n", RC6_TOGGLE_BIT_LEN_MIN, RC6_TOGGLE_BIT_LEN_MAX);
}
#endif
 
if (! (irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER))
{
ANALYZE_PRINTF ("pulse_0: %3d - %3d\n", irmp_param.pulse_0_len_min, irmp_param.pulse_0_len_max);
ANALYZE_PRINTF ("pause_0: %3d - %3d\n", irmp_param.pause_0_len_min, irmp_param.pause_0_len_max);
}
 
#if IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1
if (irmp_param.protocol == IRMP_BANG_OLUFSEN_PROTOCOL)
{
ANALYZE_PRINTF ("pulse_r: %3d - %3d\n", irmp_param.pulse_0_len_min, irmp_param.pulse_0_len_max);
ANALYZE_PRINTF ("pause_r: %3d - %3d\n", BANG_OLUFSEN_R_PAUSE_LEN_MIN, BANG_OLUFSEN_R_PAUSE_LEN_MAX);
}
#endif
 
ANALYZE_PRINTF ("command_offset: %2d\n", irmp_param.command_offset);
ANALYZE_PRINTF ("command_len: %3d\n", irmp_param.command_end - irmp_param.command_offset);
ANALYZE_PRINTF ("complete_len: %3d\n", irmp_param.complete_len);
ANALYZE_PRINTF ("stop_bit: %3d\n", irmp_param.stop_bit);
#endif // ANALYZE
}
 
irmp_bit = 0;
 
#if IRMP_SUPPORT_MANCHESTER == 1
if ((irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER) && irmp_param.protocol != IRMP_RC6_PROTOCOL) // Manchester, but not RC6
{
if (irmp_pause_time > irmp_param.pulse_1_len_max && irmp_pause_time <= 2 * irmp_param.pulse_1_len_max)
{
ANALYZE_PRINTF ("%8d [bit %2d: pulse = %3d, pause = %3d] ", time_counter, irmp_bit, irmp_pulse_time, irmp_pause_time);
ANALYZE_PUTCHAR ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? '0' : '1');
ANALYZE_NEWLINE ();
irmp_store_bit ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 0 : 1);
}
else if (! last_value) // && irmp_pause_time >= irmp_param.pause_1_len_min && irmp_pause_time <= irmp_param.pause_1_len_max)
{
ANALYZE_PRINTF ("%8d [bit %2d: pulse = %3d, pause = %3d] ", time_counter, irmp_bit, irmp_pulse_time, irmp_pause_time);
 
ANALYZE_PUTCHAR ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? '1' : '0');
ANALYZE_NEWLINE ();
irmp_store_bit ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 1 : 0);
}
}
else
#endif // IRMP_SUPPORT_MANCHESTER == 1
 
#if IRMP_SUPPORT_DENON_PROTOCOL == 1
if (irmp_param.protocol == IRMP_DENON_PROTOCOL)
{
ANALYZE_PRINTF ("%8d [bit %2d: pulse = %3d, pause = %3d] ", time_counter, irmp_bit, irmp_pulse_time, irmp_pause_time);
 
if (irmp_pause_time >= DENON_1_PAUSE_LEN_MIN && irmp_pause_time <= DENON_1_PAUSE_LEN_MAX)
{ // pause timings correct for "1"?
ANALYZE_PUTCHAR ('1'); // yes, store 1
ANALYZE_NEWLINE ();
irmp_store_bit (1);
}
else // if (irmp_pause_time >= DENON_0_PAUSE_LEN_MIN && irmp_pause_time <= DENON_0_PAUSE_LEN_MAX)
{ // pause timings correct for "0"?
ANALYZE_PUTCHAR ('0'); // yes, store 0
ANALYZE_NEWLINE ();
irmp_store_bit (0);
}
}
else
#endif // IRMP_SUPPORT_DENON_PROTOCOL == 1
{
; // else do nothing
}
 
irmp_pulse_time = 1; // set counter to 1, not 0
irmp_pause_time = 0;
wait_for_start_space = 0;
}
}
else if (wait_for_space) // the data section....
{ // counting the time of darkness....
uint8_t got_light = FALSE;
 
if (irmp_input) // still dark?
{ // yes...
if (irmp_bit == irmp_param.complete_len && irmp_param.stop_bit == 1)
{
if (irmp_pulse_time >= irmp_param.pulse_0_len_min && irmp_pulse_time <= irmp_param.pulse_0_len_max)
{
#ifdef ANALYZE
if (! (irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER))
{
ANALYZE_PRINTF ("stop bit detected\n");
}
#endif
irmp_param.stop_bit = 0;
}
else
{
ANALYZE_PRINTF ("stop bit timing wrong\n");
 
irmp_start_bit_detected = 0; // wait for another start bit...
irmp_pulse_time = 0;
irmp_pause_time = 0;
}
}
else
{
irmp_pause_time++; // increment counter
 
#if IRMP_SUPPORT_SIRCS_PROTOCOL == 1
if (irmp_param.protocol == IRMP_SIRCS_PROTOCOL && // Sony has a variable number of bits:
irmp_pause_time > SIRCS_PAUSE_LEN_MAX && // minimum is 12
irmp_bit >= 12 - 1) // pause too long?
{ // yes, break and close this frame
irmp_param.complete_len = irmp_bit + 1; // set new complete length
got_light = TRUE; // this is a lie, but helps (generates stop bit)
irmp_param.command_end = irmp_param.command_offset + irmp_bit + 1; // correct command length
irmp_pause_time = SIRCS_PAUSE_LEN_MAX - 1; // correct pause length
}
else
#endif
#if IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL == 1
if (irmp_param.protocol == IRMP_GRUNDIG_PROTOCOL && !irmp_param.stop_bit)
{
if (irmp_pause_time > 2 * irmp_param.pause_1_len_max && irmp_bit >= GRUNDIG_COMPLETE_DATA_LEN - 2)
{ // special manchester decoder
irmp_param.complete_len = GRUNDIG_COMPLETE_DATA_LEN; // correct complete len
got_light = TRUE; // this is a lie, but generates a stop bit ;-)
irmp_param.stop_bit = TRUE; // set flag
}
else if (irmp_bit >= GRUNDIG_COMPLETE_DATA_LEN)
{
ANALYZE_PRINTF ("Switching to NOKIA protocol\n");
irmp_param.protocol = IRMP_NOKIA_PROTOCOL; // change protocol
irmp_param.address_offset = NOKIA_ADDRESS_OFFSET;
irmp_param.address_end = NOKIA_ADDRESS_OFFSET + NOKIA_ADDRESS_LEN;
irmp_param.command_offset = NOKIA_COMMAND_OFFSET;
irmp_param.command_end = NOKIA_COMMAND_OFFSET + NOKIA_COMMAND_LEN;
 
if (irmp_tmp_command & 0x300)
{
irmp_tmp_address = (irmp_tmp_command >> 8);
irmp_tmp_command &= 0xFF;
}
}
}
else
#endif
#if IRMP_SUPPORT_MANCHESTER == 1
if ((irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER) &&
irmp_pause_time > 2 * irmp_param.pause_1_len_max && irmp_bit >= irmp_param.complete_len - 2 && !irmp_param.stop_bit)
{ // special manchester decoder
got_light = TRUE; // this is a lie, but generates a stop bit ;-)
irmp_param.stop_bit = TRUE; // set flag
}
else
#endif // IRMP_SUPPORT_MANCHESTER == 1
if (irmp_pause_time > IRMP_TIMEOUT_LEN) // timeout?
{ // yes...
if (irmp_bit == irmp_param.complete_len - 1 && irmp_param.stop_bit == 0)
{
irmp_bit++;
}
#if IRMP_SUPPORT_JVC_PROTOCOL == 1
else if (irmp_param.protocol == IRMP_NEC_PROTOCOL && (irmp_bit == 16 || irmp_bit == 17)) // it was a JVC stop bit
{
ANALYZE_PRINTF ("Switching to JVC protocol\n");
irmp_param.stop_bit = TRUE; // set flag
irmp_param.protocol = IRMP_JVC_PROTOCOL; // switch protocol
irmp_param.complete_len = irmp_bit; // patch length: 16 or 17
irmp_tmp_command = (irmp_tmp_address >> 4); // set command: upper 12 bits are command bits
irmp_tmp_address = irmp_tmp_address & 0x000F; // lower 4 bits are address bits
irmp_start_bit_detected = 1; // tricky: don't wait for another start bit...
}
#endif // IRMP_SUPPORT_JVC_PROTOCOL == 1
else
{
ANALYZE_PRINTF ("error 2: pause %d after data bit %d too long\n", irmp_pause_time, irmp_bit);
ANALYZE_ONLY_NORMAL_PUTCHAR ('\n');
 
irmp_start_bit_detected = 0; // wait for another start bit...
irmp_pulse_time = 0;
irmp_pause_time = 0;
}
}
}
}
else
{ // got light now!
got_light = TRUE;
}
 
if (got_light)
{
ANALYZE_PRINTF ("%8d [bit %2d: pulse = %3d, pause = %3d] ", time_counter, irmp_bit, irmp_pulse_time, irmp_pause_time);
 
#if IRMP_SUPPORT_MANCHESTER == 1
if ((irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER)) // Manchester
{
if (irmp_pulse_time > irmp_param.pulse_1_len_max /* && irmp_pulse_time <= 2 * irmp_param.pulse_1_len_max */)
{
#if IRMP_SUPPORT_RC6_PROTOCOL == 1
if (irmp_param.protocol == IRMP_RC6_PROTOCOL && irmp_bit == 4 && irmp_pulse_time > RC6_TOGGLE_BIT_LEN_MIN) // RC6 toggle bit
{
ANALYZE_PUTCHAR ('T');
if (irmp_param.complete_len == RC6_COMPLETE_DATA_LEN_LONG) // RC6 mode 6A
{
irmp_store_bit (1);
last_value = 1;
}
else // RC6 mode 0
{
irmp_store_bit (0);
last_value = 0;
}
ANALYZE_NEWLINE ();
}
else
#endif // IRMP_SUPPORT_RC6_PROTOCOL == 1
{
ANALYZE_PUTCHAR ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? '0' : '1');
irmp_store_bit ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 0 : 1 );
 
#if IRMP_SUPPORT_RC6_PROTOCOL == 1
if (irmp_param.protocol == IRMP_RC6_PROTOCOL && irmp_bit == 4 && irmp_pulse_time > RC6_TOGGLE_BIT_LEN_MIN) // RC6 toggle bit
{
ANALYZE_PUTCHAR ('T');
irmp_store_bit (1);
 
if (irmp_pause_time > 2 * irmp_param.pause_1_len_max)
{
last_value = 0;
}
else
{
last_value = 1;
}
ANALYZE_NEWLINE ();
}
else
#endif // IRMP_SUPPORT_RC6_PROTOCOL == 1
{
ANALYZE_PUTCHAR ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? '1' : '0');
irmp_store_bit ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 1 : 0 );
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1)
if (! irmp_param2.protocol)
#endif
{
ANALYZE_NEWLINE ();
}
last_value = (irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 1 : 0;
}
}
}
else if (irmp_pulse_time >= irmp_param.pulse_1_len_min && irmp_pulse_time <= irmp_param.pulse_1_len_max)
{
uint8_t manchester_value;
 
if (last_pause > irmp_param.pause_1_len_max && last_pause <= 2 * irmp_param.pause_1_len_max)
{
manchester_value = last_value ? 0 : 1;
last_value = manchester_value;
}
else
{
manchester_value = last_value;
}
 
ANALYZE_PUTCHAR (manchester_value + '0');
 
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1)
if (! irmp_param2.protocol)
#endif
{
ANALYZE_NEWLINE ();
}
 
#if IRMP_SUPPORT_RC6_PROTOCOL == 1
if (irmp_param.protocol == IRMP_RC6_PROTOCOL && irmp_bit == 1 && manchester_value == 1) // RC6 mode != 0 ???
{
ANALYZE_PRINTF ("Switching to RC6A protocol\n");
irmp_param.complete_len = RC6_COMPLETE_DATA_LEN_LONG;
irmp_param.address_offset = 5;
irmp_param.address_end = irmp_param.address_offset + 15;
irmp_param.command_offset = irmp_param.address_end + 1; // skip 1 system bit, changes like a toggle bit
irmp_param.command_end = irmp_param.command_offset + 16 - 1;
irmp_tmp_address = 1; // addr 0 - 32767 --> 32768 - 65535
}
#endif // IRMP_SUPPORT_RC6_PROTOCOL == 1
 
irmp_store_bit (manchester_value);
}
else
{
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 && IRMP_SUPPORT_FDC_PROTOCOL == 1
if (irmp_param2.protocol == IRMP_FDC_PROTOCOL &&
irmp_pulse_time >= FDC_PULSE_LEN_MIN && irmp_pulse_time <= FDC_PULSE_LEN_MAX &&
((irmp_pause_time >= FDC_1_PAUSE_LEN_MIN && irmp_pause_time <= FDC_1_PAUSE_LEN_MAX) ||
(irmp_pause_time >= FDC_0_PAUSE_LEN_MIN && irmp_pause_time <= FDC_0_PAUSE_LEN_MAX)))
{
ANALYZE_PUTCHAR ('?');
irmp_param.protocol = 0; // switch to FDC, see below
}
else
#endif // IRMP_SUPPORT_FDC_PROTOCOL == 1
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 && IRMP_SUPPORT_RCCAR_PROTOCOL == 1
if (irmp_param2.protocol == IRMP_RCCAR_PROTOCOL &&
irmp_pulse_time >= RCCAR_PULSE_LEN_MIN && irmp_pulse_time <= RCCAR_PULSE_LEN_MAX &&
((irmp_pause_time >= RCCAR_1_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_1_PAUSE_LEN_MAX) ||
(irmp_pause_time >= RCCAR_0_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_0_PAUSE_LEN_MAX)))
{
ANALYZE_PUTCHAR ('?');
irmp_param.protocol = 0; // switch to RCCAR, see below
}
else
#endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1
{
ANALYZE_PUTCHAR ('?');
ANALYZE_NEWLINE ();
ANALYZE_PRINTF ("error 3 manchester: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time);
ANALYZE_ONLY_NORMAL_PUTCHAR ('\n');
irmp_start_bit_detected = 0; // reset flags and wait for next start bit
irmp_pause_time = 0;
}
}
 
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 && IRMP_SUPPORT_FDC_PROTOCOL == 1
if (irmp_param2.protocol == IRMP_FDC_PROTOCOL && irmp_pulse_time >= FDC_PULSE_LEN_MIN && irmp_pulse_time <= FDC_PULSE_LEN_MAX)
{
if (irmp_pause_time >= FDC_1_PAUSE_LEN_MIN && irmp_pause_time <= FDC_1_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF (" 1 (FDC)\n");
irmp_store_bit2 (1);
}
else if (irmp_pause_time >= FDC_0_PAUSE_LEN_MIN && irmp_pause_time <= FDC_0_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF (" 0 (FDC)\n");
irmp_store_bit2 (0);
}
 
if (! irmp_param.protocol)
{
ANALYZE_PRINTF ("Switching to FDC protocol\n");
memcpy (&irmp_param, &irmp_param2, sizeof (IRMP_PARAMETER));
irmp_param2.protocol = 0;
irmp_tmp_address = irmp_tmp_address2;
irmp_tmp_command = irmp_tmp_command2;
}
}
#endif // IRMP_SUPPORT_FDC_PROTOCOL == 1
#if IRMP_SUPPORT_RC5_PROTOCOL == 1 && IRMP_SUPPORT_RCCAR_PROTOCOL == 1
if (irmp_param2.protocol == IRMP_RCCAR_PROTOCOL && irmp_pulse_time >= RCCAR_PULSE_LEN_MIN && irmp_pulse_time <= RCCAR_PULSE_LEN_MAX)
{
if (irmp_pause_time >= RCCAR_1_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_1_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF (" 1 (RCCAR)\n");
irmp_store_bit2 (1);
}
else if (irmp_pause_time >= RCCAR_0_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_0_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF (" 0 (RCCAR)\n");
irmp_store_bit2 (0);
}
 
if (! irmp_param.protocol)
{
ANALYZE_PRINTF ("Switching to RCCAR protocol\n");
memcpy (&irmp_param, &irmp_param2, sizeof (IRMP_PARAMETER));
irmp_param2.protocol = 0;
irmp_tmp_address = irmp_tmp_address2;
irmp_tmp_command = irmp_tmp_command2;
}
}
#endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1
 
last_pause = irmp_pause_time;
wait_for_space = 0;
}
else
#endif // IRMP_SUPPORT_MANCHESTER == 1
 
 
#if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1
if (irmp_param.protocol == IRMP_SAMSUNG_PROTOCOL && irmp_bit == 16) // Samsung: 16th bit
{
if (irmp_pulse_time >= SAMSUNG_PULSE_LEN_MIN && irmp_pulse_time <= SAMSUNG_PULSE_LEN_MAX &&
irmp_pause_time >= SAMSUNG_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= SAMSUNG_START_BIT_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF ("SYNC\n");
wait_for_space = 0;
irmp_tmp_id = 0;
irmp_bit++;
}
else if (irmp_pulse_time >= SAMSUNG_PULSE_LEN_MIN && irmp_pulse_time <= SAMSUNG_PULSE_LEN_MAX)
{
irmp_param.protocol = IRMP_SAMSUNG32_PROTOCOL;
irmp_param.command_offset = SAMSUNG32_COMMAND_OFFSET;
irmp_param.command_end = SAMSUNG32_COMMAND_OFFSET + SAMSUNG32_COMMAND_LEN;
irmp_param.complete_len = SAMSUNG32_COMPLETE_DATA_LEN;
 
if (irmp_pause_time >= SAMSUNG_1_PAUSE_LEN_MIN && irmp_pause_time <= SAMSUNG_1_PAUSE_LEN_MAX)
{
ANALYZE_PUTCHAR ('1');
ANALYZE_NEWLINE ();
irmp_store_bit (1);
wait_for_space = 0;
}
else
{
ANALYZE_PUTCHAR ('0');
ANALYZE_NEWLINE ();
irmp_store_bit (0);
wait_for_space = 0;
}
 
ANALYZE_PRINTF ("Switching to SAMSUNG32 protocol\n");
}
else
{ // timing incorrect!
ANALYZE_PRINTF ("error 3 Samsung: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time);
ANALYZE_ONLY_NORMAL_PUTCHAR ('\n');
irmp_start_bit_detected = 0; // reset flags and wait for next start bit
irmp_pause_time = 0;
}
}
else
#endif // IRMP_SUPPORT_SAMSUNG_PROTOCOL
 
#if IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1
if (irmp_param.protocol == IRMP_BANG_OLUFSEN_PROTOCOL)
{
if (irmp_pulse_time >= BANG_OLUFSEN_PULSE_LEN_MIN && irmp_pulse_time <= BANG_OLUFSEN_PULSE_LEN_MAX)
{
if (irmp_bit == 1) // Bang & Olufsen: 3rd bit
{
if (irmp_pause_time >= BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF ("3rd start bit\n");
wait_for_space = 0;
irmp_bit++;
}
else
{ // timing incorrect!
ANALYZE_PRINTF ("error 3a B&O: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time);
ANALYZE_ONLY_NORMAL_PUTCHAR ('\n');
irmp_start_bit_detected = 0; // reset flags and wait for next start bit
irmp_pause_time = 0;
}
}
else if (irmp_bit == 19) // Bang & Olufsen: trailer bit
{
if (irmp_pause_time >= BANG_OLUFSEN_TRAILER_BIT_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_TRAILER_BIT_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF ("trailer bit\n");
wait_for_space = 0;
irmp_bit++;
}
else
{ // timing incorrect!
ANALYZE_PRINTF ("error 3b B&O: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time);
ANALYZE_ONLY_NORMAL_PUTCHAR ('\n');
irmp_start_bit_detected = 0; // reset flags and wait for next start bit
irmp_pause_time = 0;
}
}
else
{
if (irmp_pause_time >= BANG_OLUFSEN_1_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_1_PAUSE_LEN_MAX)
{ // pulse & pause timings correct for "1"?
ANALYZE_PUTCHAR ('1');
ANALYZE_NEWLINE ();
irmp_store_bit (1);
last_value = 1;
wait_for_space = 0;
}
else if (irmp_pause_time >= BANG_OLUFSEN_0_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_0_PAUSE_LEN_MAX)
{ // pulse & pause timings correct for "0"?
ANALYZE_PUTCHAR ('0');
ANALYZE_NEWLINE ();
irmp_store_bit (0);
last_value = 0;
wait_for_space = 0;
}
else if (irmp_pause_time >= BANG_OLUFSEN_R_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_R_PAUSE_LEN_MAX)
{
ANALYZE_PUTCHAR (last_value + '0');
ANALYZE_NEWLINE ();
irmp_store_bit (last_value);
wait_for_space = 0;
}
else
{ // timing incorrect!
ANALYZE_PRINTF ("error 3c B&O: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time);
ANALYZE_ONLY_NORMAL_PUTCHAR ('\n');
irmp_start_bit_detected = 0; // reset flags and wait for next start bit
irmp_pause_time = 0;
}
}
}
else
{ // timing incorrect!
ANALYZE_PRINTF ("error 3d B&O: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time);
ANALYZE_ONLY_NORMAL_PUTCHAR ('\n');
irmp_start_bit_detected = 0; // reset flags and wait for next start bit
irmp_pause_time = 0;
}
}
else
#endif // IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL
 
if (irmp_pulse_time >= irmp_param.pulse_1_len_min && irmp_pulse_time <= irmp_param.pulse_1_len_max &&
irmp_pause_time >= irmp_param.pause_1_len_min && irmp_pause_time <= irmp_param.pause_1_len_max)
{ // pulse & pause timings correct for "1"?
ANALYZE_PUTCHAR ('1');
ANALYZE_NEWLINE ();
irmp_store_bit (1);
wait_for_space = 0;
}
else if (irmp_pulse_time >= irmp_param.pulse_0_len_min && irmp_pulse_time <= irmp_param.pulse_0_len_max &&
irmp_pause_time >= irmp_param.pause_0_len_min && irmp_pause_time <= irmp_param.pause_0_len_max)
{ // pulse & pause timings correct for "0"?
ANALYZE_PUTCHAR ('0');
ANALYZE_NEWLINE ();
irmp_store_bit (0);
wait_for_space = 0;
}
else
{ // timing incorrect!
ANALYZE_PRINTF ("error 3: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time);
ANALYZE_ONLY_NORMAL_PUTCHAR ('\n');
irmp_start_bit_detected = 0; // reset flags and wait for next start bit
irmp_pause_time = 0;
}
 
irmp_pulse_time = 1; // set counter to 1, not 0
}
}
else
{ // counting the pulse length ...
if (! irmp_input) // still light?
{ // yes...
irmp_pulse_time++; // increment counter
}
else
{ // now it's dark!
wait_for_space = 1; // let's count the time (see above)
irmp_pause_time = 1; // set pause counter to 1, not 0
}
}
 
if (irmp_start_bit_detected && irmp_bit == irmp_param.complete_len && irmp_param.stop_bit == 0) // enough bits received?
{
if (last_irmp_command == irmp_tmp_command && repetition_len < AUTO_FRAME_REPETITION_LEN)
{
repetition_frame_number++;
}
else
{
repetition_frame_number = 0;
}
 
#if IRMP_SUPPORT_SIRCS_PROTOCOL == 1
// if SIRCS protocol and the code will be repeated within 50 ms, we will ignore 2nd and 3rd repetition frame
if (irmp_param.protocol == IRMP_SIRCS_PROTOCOL && (repetition_frame_number == 1 || repetition_frame_number == 2))
{
ANALYZE_PRINTF ("code skipped: SIRCS auto repetition frame #%d, counter = %d, auto repetition len = %d\n",
repetition_frame_number + 1, repetition_len, AUTO_FRAME_REPETITION_LEN);
repetition_len = 0;
}
else
#endif
 
#if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1
// if KASEIKYO protocol and the code will be repeated within 50 ms, we will ignore 2nd repetition frame
if (irmp_param.protocol == IRMP_KASEIKYO_PROTOCOL && repetition_frame_number == 1)
{
ANALYZE_PRINTF ("code skipped: KASEIKYO auto repetition frame #%d, counter = %d, auto repetition len = %d\n",
repetition_frame_number + 1, repetition_len, AUTO_FRAME_REPETITION_LEN);
repetition_len = 0;
}
else
#endif
 
#if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1
// if SAMSUNG32 protocol and the code will be repeated within 50 ms, we will ignore every 2nd frame
if (irmp_param.protocol == IRMP_SAMSUNG32_PROTOCOL && (repetition_frame_number & 0x01))
{
ANALYZE_PRINTF ("code skipped: SAMSUNG32 auto repetition frame #%d, counter = %d, auto repetition len = %d\n",
repetition_frame_number + 1, repetition_len, AUTO_FRAME_REPETITION_LEN);
repetition_len = 0;
}
else
#endif
 
#if IRMP_SUPPORT_NUBERT_PROTOCOL == 1
// if NUBERT protocol and the code will be repeated within 50 ms, we will ignore every 2nd frame
if (irmp_param.protocol == IRMP_NUBERT_PROTOCOL && (repetition_frame_number & 0x01))
{
ANALYZE_PRINTF ("code skipped: NUBERT auto repetition frame #%d, counter = %d, auto repetition len = %d\n",
repetition_frame_number + 1, repetition_len, AUTO_FRAME_REPETITION_LEN);
repetition_len = 0;
}
else
#endif
 
{
ANALYZE_PRINTF ("%8d code detected, length = %d\n", time_counter, irmp_bit);
irmp_ir_detected = TRUE;
 
#if IRMP_SUPPORT_DENON_PROTOCOL == 1
if (irmp_param.protocol == IRMP_DENON_PROTOCOL)
{ // check for repetition frame
if ((~irmp_tmp_command & 0x3FF) == last_irmp_denon_command) // command bits must be inverted
{
irmp_tmp_command = last_irmp_denon_command; // use command received before!
 
irmp_protocol = irmp_param.protocol; // store protocol
irmp_address = irmp_tmp_address; // store address
irmp_command = irmp_tmp_command ; // store command
}
else
{
ANALYZE_PRINTF ("waiting for inverted command repetition\n");
irmp_ir_detected = FALSE;
last_irmp_denon_command = irmp_tmp_command;
}
}
else
#endif // IRMP_SUPPORT_DENON_PROTOCOL
 
#if IRMP_SUPPORT_GRUNDIG_PROTOCOL == 1
if (irmp_param.protocol == IRMP_GRUNDIG_PROTOCOL && irmp_tmp_command == 0x01ff)
{ // Grundig start frame?
ANALYZE_PRINTF ("Detected GRUNDIG start frame, ignoring it\n");
irmp_ir_detected = FALSE;
}
else
#endif // IRMP_SUPPORT_GRUNDIG_PROTOCOL
 
#if IRMP_SUPPORT_NOKIA_PROTOCOL == 1
if (irmp_param.protocol == IRMP_NOKIA_PROTOCOL && irmp_tmp_address == 0x00ff && irmp_tmp_command == 0x00fe)
{ // Nokia start frame?
ANALYZE_PRINTF ("Detected NOKIA start frame, ignoring it\n");
irmp_ir_detected = FALSE;
}
else
#endif // IRMP_SUPPORT_NOKIA_PROTOCOL
{
#if IRMP_SUPPORT_NEC_PROTOCOL == 1
if (irmp_param.protocol == IRMP_NEC_PROTOCOL && irmp_bit == 0) // repetition frame
{
if (repetition_len < NEC_FRAME_REPEAT_PAUSE_LEN_MAX)
{
ANALYZE_PRINTF ("Detected NEC repetition frame, repetition_len = %d\n", repetition_len);
irmp_tmp_address = last_irmp_address; // address is last address
irmp_tmp_command = last_irmp_command; // command is last command
irmp_flags |= IRMP_FLAG_REPETITION;
repetition_len = 0;
}
else
{
ANALYZE_PRINTF ("Detected NEC repetition frame, ignoring it: timeout occured, repetition_len = %d > %d\n",
repetition_len, NEC_FRAME_REPEAT_PAUSE_LEN_MAX);
irmp_ir_detected = FALSE;
}
}
#endif // IRMP_SUPPORT_NEC_PROTOCOL
 
#if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1
if (irmp_param.protocol == IRMP_KASEIKYO_PROTOCOL)
{
uint8_t xor;
// ANALYZE_PRINTF ("0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n",
// xor_check[0], xor_check[1], xor_check[2], xor_check[3], xor_check[4], xor_check[5]);
 
xor = (xor_check[0] & 0x0F) ^ ((xor_check[0] & 0xF0) >> 4) ^ (xor_check[1] & 0x0F) ^ ((xor_check[1] & 0xF0) >> 4);
 
if (xor != (xor_check[2] & 0x0F))
{
ANALYZE_PRINTF ("error 4: wrong XOR check for customer id: 0x%1x 0x%1x\n", xor, xor_check[2] & 0x0F);
irmp_ir_detected = FALSE;
}
 
xor = xor_check[2] ^ xor_check[3] ^ xor_check[4];
 
if (xor != xor_check[5])
{
ANALYZE_PRINTF ("error 4: wrong XOR check for data bits: 0x%02x 0x%02x\n", xor, xor_check[5]);
irmp_ir_detected = FALSE;
}
}
#endif // IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1
 
#if IRMP_SUPPORT_RC6_PROTOCOL == 1
if (irmp_param.protocol == IRMP_RC6_PROTOCOL && irmp_param.complete_len == RC6_COMPLETE_DATA_LEN_LONG) // RC6 mode = 6?
{
irmp_protocol = IRMP_RC6A_PROTOCOL;
}
else
#endif // IRMP_SUPPORT_RC6_PROTOCOL == 1
 
irmp_protocol = irmp_param.protocol;
 
#if IRMP_SUPPORT_FDC_PROTOCOL == 1
if (irmp_param.protocol == IRMP_FDC_PROTOCOL)
{
if (irmp_tmp_command & 0x000F) // released key?
{
irmp_tmp_command = (irmp_tmp_command >> 4) | 0x80; // yes, set bit 7
}
else
{
irmp_tmp_command >>= 4; // no, it's a pressed key
}
irmp_tmp_command |= (irmp_tmp_address << 2) & 0x0F00; // 000000CCCCAAAAAA -> 0000CCCC00000000
irmp_tmp_address &= 0x003F;
}
#endif
 
irmp_address = irmp_tmp_address; // store address
#if IRMP_SUPPORT_NEC_PROTOCOL == 1
last_irmp_address = irmp_tmp_address; // store as last address, too
#endif
 
#if IRMP_SUPPORT_RC5_PROTOCOL == 1
if (irmp_param.protocol == IRMP_RC5_PROTOCOL)
{
irmp_tmp_command |= rc5_cmd_bit6; // store bit 6
}
#endif
irmp_command = irmp_tmp_command; // store command
 
#if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1
irmp_id = irmp_tmp_id;
#endif
}
}
 
if (irmp_ir_detected)
{
if (last_irmp_command == irmp_command &&
last_irmp_address == irmp_address &&
repetition_len < IRMP_KEY_REPETITION_LEN)
{
irmp_flags |= IRMP_FLAG_REPETITION;
}
 
last_irmp_address = irmp_tmp_address; // store as last address, too
last_irmp_command = irmp_tmp_command; // store as last command, too
 
repetition_len = 0;
}
else
{
ANALYZE_ONLY_NORMAL_PUTCHAR ('\n');
}
 
irmp_start_bit_detected = 0; // and wait for next start bit
irmp_tmp_command = 0;
irmp_pulse_time = 0;
irmp_pause_time = 0;
 
#if IRMP_SUPPORT_JVC_PROTOCOL == 1
if (irmp_protocol == IRMP_JVC_PROTOCOL) // the stop bit of JVC frame is also start bit of next frame
{ // set pulse time here!
irmp_pulse_time = ((uint8_t)(F_INTERRUPTS * JVC_START_BIT_PULSE_TIME));
}
#endif // IRMP_SUPPORT_JVC_PROTOCOL == 1
}
}
}
return (irmp_ir_detected);
}
 
#ifdef ANALYZE
 
/*---------------------------------------------------------------------------------------------------------------------------------------------------
* main functions - for Unix/Linux + Windows only!
*
* AVR: see main.c!
*
* Compile it under linux with:
* cc irmp.c -o irmp
*
* usage: ./irmp [-v|-s|-a|-l|-p] < file
*
* options:
* -v verbose
* -s silent
* -a analyze
* -l list pulse/pauses
* -p print timings
*---------------------------------------------------------------------------------------------------------------------------------------------------
*/
 
static void
print_timings (void)
{
printf ("IRMP_TIMEOUT_LEN: %d [%d byte(s)]\n", IRMP_TIMEOUT_LEN, sizeof (PAUSE_LEN));
printf ("IRMP_KEY_REPETITION_LEN %d\n", IRMP_KEY_REPETITION_LEN);
puts ("");
printf ("PROTOCOL S S-PULSE S-PAUSE PULSE-0 PAUSE-0 PULSE-1 PAUSE-1\n");
printf ("====================================================================================\n");
printf ("SIRCS 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
SIRCS_START_BIT_PULSE_LEN_MIN, SIRCS_START_BIT_PULSE_LEN_MAX, SIRCS_START_BIT_PAUSE_LEN_MIN, SIRCS_START_BIT_PAUSE_LEN_MAX,
SIRCS_0_PULSE_LEN_MIN, SIRCS_0_PULSE_LEN_MAX, SIRCS_PAUSE_LEN_MIN, SIRCS_PAUSE_LEN_MAX,
SIRCS_1_PULSE_LEN_MIN, SIRCS_1_PULSE_LEN_MAX, SIRCS_PAUSE_LEN_MIN, SIRCS_PAUSE_LEN_MAX);
 
printf ("NEC 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX, NEC_START_BIT_PAUSE_LEN_MIN, NEC_START_BIT_PAUSE_LEN_MAX,
NEC_PULSE_LEN_MIN, NEC_PULSE_LEN_MAX, NEC_0_PAUSE_LEN_MIN, NEC_0_PAUSE_LEN_MAX,
NEC_PULSE_LEN_MIN, NEC_PULSE_LEN_MAX, NEC_1_PAUSE_LEN_MIN, NEC_1_PAUSE_LEN_MAX);
 
printf ("NEC (rep) 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX, NEC_REPEAT_START_BIT_PAUSE_LEN_MIN, NEC_REPEAT_START_BIT_PAUSE_LEN_MAX,
NEC_PULSE_LEN_MIN, NEC_PULSE_LEN_MAX, NEC_0_PAUSE_LEN_MIN, NEC_0_PAUSE_LEN_MAX,
NEC_PULSE_LEN_MIN, NEC_PULSE_LEN_MAX, NEC_1_PAUSE_LEN_MIN, NEC_1_PAUSE_LEN_MAX);
 
printf ("SAMSUNG 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
SAMSUNG_START_BIT_PULSE_LEN_MIN, SAMSUNG_START_BIT_PULSE_LEN_MAX, SAMSUNG_START_BIT_PAUSE_LEN_MIN, SAMSUNG_START_BIT_PAUSE_LEN_MAX,
SAMSUNG_PULSE_LEN_MIN, SAMSUNG_PULSE_LEN_MAX, SAMSUNG_0_PAUSE_LEN_MIN, SAMSUNG_0_PAUSE_LEN_MAX,
SAMSUNG_PULSE_LEN_MIN, SAMSUNG_PULSE_LEN_MAX, SAMSUNG_1_PAUSE_LEN_MIN, SAMSUNG_1_PAUSE_LEN_MAX);
 
printf ("MATSUSHITA 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
MATSUSHITA_START_BIT_PULSE_LEN_MIN, MATSUSHITA_START_BIT_PULSE_LEN_MAX, MATSUSHITA_START_BIT_PAUSE_LEN_MIN, MATSUSHITA_START_BIT_PAUSE_LEN_MAX,
MATSUSHITA_PULSE_LEN_MIN, MATSUSHITA_PULSE_LEN_MAX, MATSUSHITA_0_PAUSE_LEN_MIN, MATSUSHITA_0_PAUSE_LEN_MAX,
MATSUSHITA_PULSE_LEN_MIN, MATSUSHITA_PULSE_LEN_MAX, MATSUSHITA_1_PAUSE_LEN_MIN, MATSUSHITA_1_PAUSE_LEN_MAX);
 
printf ("KASEIKYO 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
KASEIKYO_START_BIT_PULSE_LEN_MIN, KASEIKYO_START_BIT_PULSE_LEN_MAX, KASEIKYO_START_BIT_PAUSE_LEN_MIN, KASEIKYO_START_BIT_PAUSE_LEN_MAX,
KASEIKYO_PULSE_LEN_MIN, KASEIKYO_PULSE_LEN_MAX, KASEIKYO_0_PAUSE_LEN_MIN, KASEIKYO_0_PAUSE_LEN_MAX,
KASEIKYO_PULSE_LEN_MIN, KASEIKYO_PULSE_LEN_MAX, KASEIKYO_1_PAUSE_LEN_MIN, KASEIKYO_1_PAUSE_LEN_MAX);
 
printf ("RECS80 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
RECS80_START_BIT_PULSE_LEN_MIN, RECS80_START_BIT_PULSE_LEN_MAX, RECS80_START_BIT_PAUSE_LEN_MIN, RECS80_START_BIT_PAUSE_LEN_MAX,
RECS80_PULSE_LEN_MIN, RECS80_PULSE_LEN_MAX, RECS80_0_PAUSE_LEN_MIN, RECS80_0_PAUSE_LEN_MAX,
RECS80_PULSE_LEN_MIN, RECS80_PULSE_LEN_MAX, RECS80_1_PAUSE_LEN_MIN, RECS80_1_PAUSE_LEN_MAX);
 
printf ("RC5 1 %3d - %3d %3d - %3d %3d - %3d\n",
RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX, RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX,
RC5_BIT_LEN_MIN, RC5_BIT_LEN_MAX);
 
printf ("DENON 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
DENON_PULSE_LEN_MIN, DENON_PULSE_LEN_MAX,
DENON_PULSE_LEN_MIN, DENON_PULSE_LEN_MAX, DENON_0_PAUSE_LEN_MIN, DENON_0_PAUSE_LEN_MAX,
DENON_PULSE_LEN_MIN, DENON_PULSE_LEN_MAX, DENON_1_PAUSE_LEN_MIN, DENON_1_PAUSE_LEN_MAX);
 
printf ("RC6 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
RC6_START_BIT_PULSE_LEN_MIN, RC6_START_BIT_PULSE_LEN_MAX, RC6_START_BIT_PAUSE_LEN_MIN, RC6_START_BIT_PAUSE_LEN_MAX,
RC6_BIT_PULSE_LEN_MIN, RC6_BIT_PULSE_LEN_MAX, RC6_BIT_PAUSE_LEN_MIN, RC6_BIT_PAUSE_LEN_MAX);
 
printf ("RECS80EXT 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
RECS80EXT_START_BIT_PULSE_LEN_MIN, RECS80EXT_START_BIT_PULSE_LEN_MAX, RECS80EXT_START_BIT_PAUSE_LEN_MIN, RECS80EXT_START_BIT_PAUSE_LEN_MAX,
RECS80EXT_PULSE_LEN_MIN, RECS80EXT_PULSE_LEN_MAX, RECS80EXT_0_PAUSE_LEN_MIN, RECS80EXT_0_PAUSE_LEN_MAX,
RECS80EXT_PULSE_LEN_MIN, RECS80EXT_PULSE_LEN_MAX, RECS80EXT_1_PAUSE_LEN_MIN, RECS80EXT_1_PAUSE_LEN_MAX);
 
printf ("NUBERT 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
NUBERT_START_BIT_PULSE_LEN_MIN, NUBERT_START_BIT_PULSE_LEN_MAX, NUBERT_START_BIT_PAUSE_LEN_MIN, NUBERT_START_BIT_PAUSE_LEN_MAX,
NUBERT_0_PULSE_LEN_MIN, NUBERT_0_PULSE_LEN_MAX, NUBERT_0_PAUSE_LEN_MIN, NUBERT_0_PAUSE_LEN_MAX,
NUBERT_1_PULSE_LEN_MIN, NUBERT_1_PULSE_LEN_MAX, NUBERT_1_PAUSE_LEN_MIN, NUBERT_1_PAUSE_LEN_MAX);
 
printf ("BANG_OLUFSEN 1 %3d - %3d %3d - %3d\n",
BANG_OLUFSEN_START_BIT1_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT1_PULSE_LEN_MAX,
BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MAX);
 
printf ("BANG_OLUFSEN 2 %3d - %3d %3d - %3d\n",
BANG_OLUFSEN_START_BIT2_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT2_PULSE_LEN_MAX,
BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MAX);
 
printf ("BANG_OLUFSEN 3 %3d - %3d %3d - %3d\n",
BANG_OLUFSEN_START_BIT3_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT3_PULSE_LEN_MAX,
BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MAX);
 
printf ("BANG_OLUFSEN 4 %3d - %3d %3d - %3d\n",
BANG_OLUFSEN_START_BIT4_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT4_PULSE_LEN_MAX,
BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MAX);
 
printf ("BANG_OLUFSEN - %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
BANG_OLUFSEN_PULSE_LEN_MIN, BANG_OLUFSEN_PULSE_LEN_MAX, BANG_OLUFSEN_0_PAUSE_LEN_MIN, BANG_OLUFSEN_0_PAUSE_LEN_MAX,
BANG_OLUFSEN_PULSE_LEN_MIN, BANG_OLUFSEN_PULSE_LEN_MAX, BANG_OLUFSEN_1_PAUSE_LEN_MIN, BANG_OLUFSEN_1_PAUSE_LEN_MAX);
 
printf ("GRUNDIG/NOKIA 1 %3d - %3d %3d - %3d %3d - %3d\n",
GRUNDIG_OR_NOKIA_START_BIT_LEN_MIN, GRUNDIG_OR_NOKIA_START_BIT_LEN_MAX, GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MIN, GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MAX,
GRUNDIG_OR_NOKIA_BIT_LEN_MIN, GRUNDIG_OR_NOKIA_BIT_LEN_MAX);
 
printf ("SIEMENS 1 %3d - %3d %3d - %3d %3d - %3d\n",
SIEMENS_START_BIT_LEN_MIN, SIEMENS_START_BIT_LEN_MAX, SIEMENS_START_BIT_LEN_MIN, SIEMENS_START_BIT_LEN_MAX,
SIEMENS_BIT_LEN_MIN, SIEMENS_BIT_LEN_MAX);
 
printf ("FDC 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
FDC_START_BIT_PULSE_LEN_MIN, FDC_START_BIT_PULSE_LEN_MAX, FDC_START_BIT_PAUSE_LEN_MIN, FDC_START_BIT_PAUSE_LEN_MAX,
FDC_PULSE_LEN_MIN, FDC_PULSE_LEN_MAX, FDC_0_PAUSE_LEN_MIN, FDC_0_PAUSE_LEN_MAX,
FDC_PULSE_LEN_MIN, FDC_PULSE_LEN_MAX, FDC_1_PAUSE_LEN_MIN, FDC_1_PAUSE_LEN_MAX);
 
printf ("RCCAR 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
RCCAR_START_BIT_PULSE_LEN_MIN, RCCAR_START_BIT_PULSE_LEN_MAX, RCCAR_START_BIT_PAUSE_LEN_MIN, RCCAR_START_BIT_PAUSE_LEN_MAX,
RCCAR_PULSE_LEN_MIN, RCCAR_PULSE_LEN_MAX, RCCAR_0_PAUSE_LEN_MIN, RCCAR_0_PAUSE_LEN_MAX,
RCCAR_PULSE_LEN_MIN, RCCAR_PULSE_LEN_MAX, RCCAR_1_PAUSE_LEN_MIN, RCCAR_1_PAUSE_LEN_MAX);
 
printf ("NIKON 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n",
NIKON_START_BIT_PULSE_LEN_MIN, NIKON_START_BIT_PULSE_LEN_MAX, NIKON_START_BIT_PAUSE_LEN_MIN, NIKON_START_BIT_PAUSE_LEN_MAX,
NIKON_PULSE_LEN_MIN, NIKON_PULSE_LEN_MAX, NIKON_0_PAUSE_LEN_MIN, NIKON_0_PAUSE_LEN_MAX,
NIKON_PULSE_LEN_MIN, NIKON_PULSE_LEN_MAX, NIKON_1_PAUSE_LEN_MIN, NIKON_1_PAUSE_LEN_MAX);
 
}
 
void
print_spectrum (char * text, int * buf, int is_pulse)
{
int i;
int j;
int min;
int max;
int max_value = 0;
int value;
int sum = 0;
int counter = 0;
double average = 0;
double tolerance;
 
puts ("-------------------------------------------------------------------------------");
printf ("%s:\n", text);
 
for (i = 0; i < 256; i++)
{
if (buf[i] > max_value)
{
max_value = buf[i];
}
}
 
for (i = 0; i < 100; i++)
{
if (buf[i] > 0)
{
printf ("%3d ", i);
value = (buf[i] * 60) / max_value;
 
for (j = 0; j < value; j++)
{
putchar ('o');
}
printf (" %d\n", buf[i]);
 
sum += i * buf[i];
counter += buf[i];
}
else
{
max = i - 1;
 
if (counter > 0)
{
average = (float) sum / (float) counter;
 
if (is_pulse)
{
printf ("pulse ");
}
else
{
printf ("pause ");
}
 
printf ("avg: %4.1f=%6.1f us, ", average, (1000000. * average) / (float) F_INTERRUPTS);
printf ("min: %2d=%6.1f us, ", min, (1000000. * min) / (float) F_INTERRUPTS);
printf ("max: %2d=%6.1f us, ", max, (1000000. * max) / (float) F_INTERRUPTS);
 
tolerance = (max - average);
 
if (average - min > tolerance)
{
tolerance = average - min;
}
 
tolerance = tolerance * 100 / average;
printf ("tol: %4.1f%%\n", tolerance);
}
 
counter = 0;
sum = 0;
min = i + 1;
}
}
}
 
#define STATE_LEFT_SHIFT 0x01
#define STATE_RIGHT_SHIFT 0x02
#define STATE_LEFT_CTRL 0x04
#define STATE_LEFT_ALT 0x08
#define STATE_RIGHT_ALT 0x10
 
#define KEY_ESCAPE 0x1B // keycode = 0x006e
#define KEY_MENUE 0x80 // keycode = 0x0070
#define KEY_BACK 0x81 // keycode = 0x0071
#define KEY_FORWARD 0x82 // keycode = 0x0072
#define KEY_ADDRESS 0x83 // keycode = 0x0073
#define KEY_WINDOW 0x84 // keycode = 0x0074
#define KEY_1ST_PAGE 0x85 // keycode = 0x0075
#define KEY_STOP 0x86 // keycode = 0x0076
#define KEY_MAIL 0x87 // keycode = 0x0077
#define KEY_FAVORITES 0x88 // keycode = 0x0078
#define KEY_NEW_PAGE 0x89 // keycode = 0x0079
#define KEY_SETUP 0x8A // keycode = 0x007a
#define KEY_FONT 0x8B // keycode = 0x007b
#define KEY_PRINT 0x8C // keycode = 0x007c
#define KEY_ON_OFF 0x8E // keycode = 0x007c
 
#define KEY_INSERT 0x90 // keycode = 0x004b
#define KEY_DELETE 0x91 // keycode = 0x004c
#define KEY_LEFT 0x92 // keycode = 0x004f
#define KEY_HOME 0x93 // keycode = 0x0050
#define KEY_END 0x94 // keycode = 0x0051
#define KEY_UP 0x95 // keycode = 0x0053
#define KEY_DOWN 0x96 // keycode = 0x0054
#define KEY_PAGE_UP 0x97 // keycode = 0x0055
#define KEY_PAGE_DOWN 0x98 // keycode = 0x0056
#define KEY_RIGHT 0x99 // keycode = 0x0059
#define KEY_MOUSE_1 0x9E // keycode = 0x0400
#define KEY_MOUSE_2 0x9F // keycode = 0x0800
 
static uint8_t
get_fdc_key (uint16_t cmd)
{
static uint8_t key_table[128] =
{
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
0, '^', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', 'ß', '´', 0, '\b',
'\t','q', 'w', 'e', 'r', 't', 'z', 'u', 'i', 'o', 'p', 'ü', '+', 0, 0, 'a',
's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'ö', 'ä', '#', '\r', 0, '<', 'y', 'x',
'c', 'v', 'b', 'n', 'm', ',', '.', '-', 0, 0, 0, 0, 0, ' ', 0, 0,
 
0, '°', '!', '"', '§', '$', '%', '&', '/', '(', ')', '=', '?', '`', 0, '\b',
'\t','Q', 'W', 'E', 'R', 'T', 'Z', 'U', 'I', 'O', 'P', 'Ü', '*', 0, 0, 'A',
'S', 'D', 'F', 'G', 'H', 'J', 'K', 'L', 'Ö', 'Ä', '\'','\r', 0, '>', 'Y', 'X',
'C', 'V', 'B', 'N', 'M', ';', ':', '_', 0, 0, 0, 0, 0, ' ', 0, 0
};
static uint8_t state;
 
uint8_t key = 0;
 
switch (cmd)
{
case 0x002C: state |= STATE_LEFT_SHIFT; break; // pressed left shift
case 0x00AC: state &= ~STATE_LEFT_SHIFT; break; // released left shift
case 0x0039: state |= STATE_RIGHT_SHIFT; break; // pressed right shift
case 0x00B9: state &= ~STATE_RIGHT_SHIFT; break; // released right shift
case 0x003A: state |= STATE_LEFT_CTRL; break; // pressed left ctrl
case 0x00BA: state &= ~STATE_LEFT_CTRL; break; // released left ctrl
case 0x003C: state |= STATE_LEFT_ALT; break; // pressed left alt
case 0x00BC: state &= ~STATE_LEFT_ALT; break; // released left alt
case 0x003E: state |= STATE_RIGHT_ALT; break; // pressed left alt
case 0x00BE: state &= ~STATE_RIGHT_ALT; break; // released left alt
 
case 0x006e: key = KEY_ESCAPE; break;
case 0x004b: key = KEY_INSERT; break;
case 0x004c: key = KEY_DELETE; break;
case 0x004f: key = KEY_LEFT; break;
case 0x0050: key = KEY_HOME; break;
case 0x0051: key = KEY_END; break;
case 0x0053: key = KEY_UP; break;
case 0x0054: key = KEY_DOWN; break;
case 0x0055: key = KEY_PAGE_UP; break;
case 0x0056: key = KEY_PAGE_DOWN; break;
case 0x0059: key = KEY_RIGHT; break;
case 0x0400: key = KEY_MOUSE_1; break;
case 0x0800: key = KEY_MOUSE_2; break;
 
default:
{
if (!(cmd & 0x80)) // pressed key
{
if (cmd >= 0x70 && cmd <= 0x7F) // function keys
{
key = cmd + 0x10; // 7x -> 8x
}
else if (cmd < 64) // key listed in key_table
{
if (state & (STATE_LEFT_ALT | STATE_RIGHT_ALT))
{
switch (cmd)
{
case 0x0003: key = '²'; break;
case 0x0008: key = '{'; break;
case 0x0009: key = '['; break;
case 0x000A: key = ']'; break;
case 0x000B: key = '}'; break;
case 0x000C: key = '\\'; break;
case 0x001C: key = '~'; break;
case 0x002D: key = '|'; break;
case 0x0034: key = 'µ'; break;
}
}
else if (state & (STATE_LEFT_CTRL))
{
if (key_table[cmd] >= 'a' && key_table[cmd] <= 'z')
{
key = key_table[cmd] - 'a' + 1;
}
else
{
key = key_table[cmd];
}
}
else
{
int idx = cmd + ((state & (STATE_LEFT_SHIFT | STATE_RIGHT_SHIFT)) ? 64 : 0);
 
if (key_table[idx])
{
key = key_table[idx];
}
}
}
}
break;
}
}
 
return (key);
}
 
static int analyze = FALSE;
static int list = FALSE;
static IRMP_DATA irmp_data;
 
static void
next_tick (void)
{
if (! analyze && ! list)
{
(void) irmp_ISR ();
 
if (irmp_get_data (&irmp_data))
{
uint8_t key;
 
ANALYZE_ONLY_NORMAL_PUTCHAR (' ');
 
if (verbose)
{
printf ("%8d ", time_counter);
}
 
if (irmp_data.protocol == IRMP_FDC_PROTOCOL && (key = get_fdc_key (irmp_data.command)) != 0)
{
if ((key >= 0x20 && key < 0x7F) || key >= 0xA0)
{
printf ("p = %2d, a = 0x%04x, c = 0x%04x, f = 0x%02x, asc = 0x%02x, key = '%c'\n",
irmp_data.protocol, irmp_data.address, irmp_data.command, irmp_data.flags, key, key);
}
else if (key == '\r' || key == '\t' || key == KEY_ESCAPE || (key >= 0x80 && key <= 0x9F)) // function keys
{
char * p = (char *) NULL;
 
switch (key)
{
case '\t' : p = "TAB"; break;
case '\r' : p = "CR"; break;
case KEY_ESCAPE : p = "ESCAPE"; break;
case KEY_MENUE : p = "MENUE"; break;
case KEY_BACK : p = "BACK"; break;
case KEY_FORWARD : p = "FORWARD"; break;
case KEY_ADDRESS : p = "ADDRESS"; break;
case KEY_WINDOW : p = "WINDOW"; break;
case KEY_1ST_PAGE : p = "1ST_PAGE"; break;
case KEY_STOP : p = "STOP"; break;
case KEY_MAIL : p = "MAIL"; break;
case KEY_FAVORITES : p = "FAVORITES"; break;
case KEY_NEW_PAGE : p = "NEW_PAGE"; break;
case KEY_SETUP : p = "SETUP"; break;
case KEY_FONT : p = "FONT"; break;
case KEY_PRINT : p = "PRINT"; break;
case KEY_ON_OFF : p = "ON_OFF"; break;
 
case KEY_INSERT : p = "INSERT"; break;
case KEY_DELETE : p = "DELETE"; break;
case KEY_LEFT : p = "LEFT"; break;
case KEY_HOME : p = "HOME"; break;
case KEY_END : p = "END"; break;
case KEY_UP : p = "UP"; break;
case KEY_DOWN : p = "DOWN"; break;
case KEY_PAGE_UP : p = "PAGE_UP"; break;
case KEY_PAGE_DOWN : p = "PAGE_DOWN"; break;
case KEY_RIGHT : p = "RIGHT"; break;
case KEY_MOUSE_1 : p = "KEY_MOUSE_1"; break;
case KEY_MOUSE_2 : p = "KEY_MOUSE_2"; break;
default : p = "<UNKNWON>"; break;
}
 
printf ("p = %2d, a = 0x%04x, c = 0x%04x, f = 0x%02x, asc = 0x%02x, key = %s\n",
irmp_data.protocol, irmp_data.address, irmp_data.command, irmp_data.flags, key, p);
}
else
{
printf ("p = %2d, a = 0x%04x, c = 0x%04x, f = 0x%02x, asc = 0x%02x\n",
irmp_data.protocol, irmp_data.address, irmp_data.command, irmp_data.flags, key);
}
}
else
{
printf ("p = %2d, a = 0x%04x, c = 0x%04x, f = 0x%02x\n",
irmp_data.protocol, irmp_data.address, irmp_data.command, irmp_data.flags);
}
}
}
}
 
int
main (int argc, char ** argv)
{
int i;
int ch;
int last_ch = 0;
int pulse = 0;
int pause = 0;
 
int start_pulses[256];
int start_pauses[256];
int pulses[256];
int pauses[256];
 
int first_pulse = TRUE;
int first_pause = TRUE;
 
if (argc == 2)
{
if (! strcmp (argv[1], "-v"))
{
verbose = TRUE;
}
else if (! strcmp (argv[1], "-l"))
{
list = TRUE;
}
else if (! strcmp (argv[1], "-a"))
{
analyze = TRUE;
}
else if (! strcmp (argv[1], "-s"))
{
silent = TRUE;
}
else if (! strcmp (argv[1], "-p"))
{
print_timings ();
return (0);
}
}
 
for (i = 0; i < 256; i++)
{
start_pulses[i] = 0;
start_pauses[i] = 0;
pulses[i] = 0;
pauses[i] = 0;
}
 
IRMP_PIN = 0xFF;
 
while ((ch = getchar ()) != EOF)
{
if (ch == '_' || ch == '0')
{
if (last_ch != ch)
{
if (pause > 0)
{
if (list)
{
printf ("pause: %d\n", pause);
}
 
if (analyze)
{
if (first_pause)
{
if (pause < 256)
{
start_pauses[pause]++;
}
first_pause = FALSE;
}
else
{
if (pause < 256)
{
pauses[pause]++;
}
}
}
}
pause = 0;
}
pulse++;
IRMP_PIN = 0x00;
}
else if (ch == 0xaf || ch == '-' || ch == '1')
{
if (last_ch != ch)
{
if (list)
{
printf ("pulse: %d ", pulse);
}
 
if (analyze)
{
if (first_pulse)
{
if (pulse < 256)
{
start_pulses[pulse]++;
}
first_pulse = FALSE;
}
else
{
if (pulse < 256)
{
pulses[pulse]++;
}
}
}
pulse = 0;
}
 
pause++;
IRMP_PIN = 0xff;
}
else if (ch == '\n')
{
IRMP_PIN = 0xff;
 
if (list && pause > 0)
{
printf ("pause: %d\n", pause);
}
pause = 0;
 
if (! analyze)
{
for (i = 0; i < (int) ((8000.0 * F_INTERRUPTS) / 10000); i++) // newline: long pause of 800 msec
{
next_tick ();
}
}
first_pulse = TRUE;
first_pause = TRUE;
}
else if (ch == '#')
{
if (analyze)
{
while ((ch = getchar()) != '\n' && ch != EOF)
{
;
}
}
else
{
puts ("-------------------------------------------------------------------");
putchar (ch);
 
while ((ch = getchar()) != '\n' && ch != EOF)
{
if (ch != '\r') // ignore CR in DOS/Windows files
{
putchar (ch);
}
}
putchar ('\n');
}
 
}
 
last_ch = ch;
 
next_tick ();
}
 
if (analyze)
{
print_spectrum ("START PULSES", start_pulses, TRUE);
print_spectrum ("START PAUSES", start_pauses, FALSE);
print_spectrum ("PULSES", pulses, TRUE);
print_spectrum ("PAUSES", pauses, FALSE);
puts ("-------------------------------------------------------------------------------");
}
return 0;
}
 
#endif // ANALYZE