Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 1879 → Rev 1880

/tags/V0.84a/Spektrum.c
0,0 → 1,407
/*#######################################################################################
Decodieren eines RC Summen Signals oder Spektrum Empfänger-Satellit
#######################################################################################*/
 
#include "Spektrum.h"
#include "main.h"
// Achtung: RECEIVER_SPEKTRUM_EXP wird in der Main.h gesetzt
 
unsigned char SpektrumTimer = 0;
 
#ifdef RECEIVER_SPEKTRUM_EXP
unsigned char s_excnt = 0; // Counter for Spektrum-Expander
unsigned char s_exparity = 0; // Parity Bit for Spektrum-Expander
signed char s_exdata[11]; // Data for Spektrum-Expander
#endif
//--------------------------------------------------------------//
//--------------------------------------------------------------//
/*
void SpektrumBinding(void)
{
unsigned int timerTimeout = SetDelay(10000); // Timeout 10 sec.
unsigned char connected = 0;
unsigned int delaycounter;
 
UCSR1B &= ~(1 << RXCIE1); // disable rx-interrupt
UCSR1B &= ~(1<<RXEN1); // disable Uart-Rx
PORTD &= ~(1 << PORTD2); // disable pull-up
 
printf("\n\rPlease connect Spektrum receiver for binding NOW...");
 
while(!CheckDelay(timerTimeout))
{
if (PIND & (1 << PORTD2)) { timerTimeout = SetDelay(90); connected = 1; break; }
}
 
if (connected)
{
 
printf("ok.\n\r");
DDRD |= (1 << DDD2); // Rx as output
 
while(!CheckDelay(timerTimeout)); // delay after startup of RX
for (delaycounter = 0; delaycounter < 100; delaycounter++) PORTD |= (1 << PORTD2);
for (delaycounter = 0; delaycounter < 400; delaycounter++) PORTD &= ~(1 << PORTD2);
 
for (delaycounter = 0; delaycounter < 10; delaycounter++) PORTD |= (1 << PORTD2);
for (delaycounter = 0; delaycounter < 10; delaycounter++) PORTD &= ~(1 << PORTD2);
for (delaycounter = 0; delaycounter < 400; delaycounter++) PORTD |= (1 << PORTD2);
for (delaycounter = 0; delaycounter < 400; delaycounter++) PORTD &= ~(1 << PORTD2);
 
for (delaycounter = 0; delaycounter < 10; delaycounter++) PORTD |= (1 << PORTD2);
for (delaycounter = 0; delaycounter < 10; delaycounter++) PORTD &= ~(1 << PORTD2);
for (delaycounter = 0; delaycounter < 400; delaycounter++) PORTD |= (1 << PORTD2);
for (delaycounter = 0; delaycounter < 400; delaycounter++) PORTD &= ~(1 << PORTD2);
 
for (delaycounter = 0; delaycounter < 10; delaycounter++) PORTD |= (1 << PORTD2);
for (delaycounter = 0; delaycounter < 10; delaycounter++) PORTD &= ~(1 << PORTD2);
for (delaycounter = 0; delaycounter < 400; delaycounter++) PORTD |= (1 << PORTD2);
 
}
else
{ printf("Timeout.\n\r");
 
 
}
 
DDRD &= ~(1 << DDD2); // RX as input
PORTD &= ~(1 << PORTD2);
 
SpektrumUartInit(); // init Uart again
}
*/
//############################################################################
// USART1 initialisation from killagreg
void SpektrumUartInit(void)
//############################################################################
{
// -- Start of USART1 initialisation for Spekturm seriell-mode
// USART1 Control and Status Register A, B, C and baud rate register
uint8_t sreg = SREG;
uint16_t ubrr = (uint16_t) ((uint32_t) SYSCLK/(8 * 115200) - 1);
// disable all interrupts before reconfiguration
cli();
// disable RX-Interrupt
UCSR1B &= ~(1 << RXCIE1);
// disable TX-Interrupt
UCSR1B &= ~(1 << TXCIE1);
// disable DRE-Interrupt
UCSR1B &= ~(1 << UDRIE1);
// set direction of RXD1 and TXD1 pins
// set RXD1 (PD2) as an input pin
PORTD |= (1 << PORTD2);
DDRD &= ~(1 << DDD2);
 
// set TXD1 (PD3) as an output pin
PORTD |= (1 << PORTD3);
DDRD |= (1 << DDD3);
// USART0 Baud Rate Register
// set clock divider
UBRR1H = (uint8_t)(ubrr>>8);
UBRR1L = (uint8_t)ubrr;
// enable double speed operation
UCSR1A |= (1 << U2X1);
// enable receiver and transmitter
//UCSR1B = (1<<RXEN1)|(1<<TXEN1);
 
UCSR1B = (1<<RXEN1);
// set asynchronous mode
UCSR1C &= ~(1 << UMSEL11);
UCSR1C &= ~(1 << UMSEL10);
// no parity
UCSR1C &= ~(1 << UPM11);
UCSR1C &= ~(1 << UPM10);
// 1 stop bit
UCSR1C &= ~(1 << USBS1);
// 8-bit
UCSR1B &= ~(1 << UCSZ12);
UCSR1C |= (1 << UCSZ11);
UCSR1C |= (1 << UCSZ10);
// flush receive buffer explicit
while(UCSR1A & (1<<RXC1)) UDR1;
// enable RX-interrupts at the end
UCSR1B |= (1 << RXCIE1);
// -- End of USART1 initialisation
// restore global interrupt flags
SREG = sreg;
return;
}
 
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) Rainer Walther
// + RC-routines from original MK rc.c (c) H&I
// + Useful infos from Walter: http://www.rcgroups.com/forums/showthread.php?t=714299&page=2
// + only for non-profit use
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//
// 20080808 rw Modified for Spektrum AR6100 (PPM)
// 20080823 rw Add Spektrum satellite receiver on USART1 (644P only)
// 20081213 rw Add support for Spektrum DS9 Air-Tx-Module (9 channels)
// Replace AR6100-coding with original composit-signal routines
//
// ---
// Entweder Summensignal ODER Spektrum-Receiver anschließen. Nicht beides gleichzeitig betreiben!
// Binding is not implemented. Bind with external Receiver.
// Servo output J3, J4, J5 not serviced
//
// Anschuß Spektrum Receiver
// Orange: 3V von der FC (keinesfalls an 5V anschließen!)
// Schwarz: GND
// Grau: RXD1 (Pin 3) auf 10-Pol FC-Stecker
//
// ---
// Satellite-Reciever connected on USART1:
//
// DX7/DX6i: One data-frame at 115200 baud every 22ms.
// DX7se: One data-frame at 115200 baud every 11ms.
// byte1: unknown
// byte2: unknown
// byte3: and byte4: channel data (FLT-Mode)
// byte5: and byte6: channel data (Roll)
// byte7: and byte8: channel data (Nick)
// byte9: and byte10: channel data (Gier)
// byte11: and byte12: channel data (Gear Switch)
// byte13: and byte14: channel data (Gas)
// byte15: and byte16: channel data (AUX2)
//
// DS9 (9 Channel): One data-frame at 115200 baud every 11ms, alternating frame 1/2 for CH1-7 / CH8-9
// 1st Frame:
// byte1: unknown
// byte2: unknown
// byte3: and byte4: channel data
// byte5: and byte6: channel data
// byte7: and byte8: channel data
// byte9: and byte10: channel data
// byte11: and byte12: channel data
// byte13: and byte14: channel data
// byte15: and byte16: channel data
// 2nd Frame:
// byte1: unknown
// byte2: unknown
// byte3: and byte4: channel data
// byte5: and byte6: channel data
// byte7: and byte8: 0xffff
// byte9: and byte10: 0xffff
// byte11: and byte12: 0xffff
// byte13: and byte14: 0xffff
// byte15: and byte16: 0xffff
//
// Each channel data (16 bit= 2byte, first msb, second lsb) is arranged as:
//
// Bits: F 0 C3 C2 C1 C0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
//
// 0 means a '0' bit
// F: 1 = indicates beginning of 2nd frame for CH8-9 (DS9 only)
// C3 to C0 is the channel number. 0 to 9 (4 bit, as assigned in the transmitter)
// D9 to D0 is the channel data (10 bit) 0xaa..0x200..0x356 for 100% transmitter-travel
//
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
#define MIN_FRAMEGAP 68 // 7ms
#define MAX_BYTEGAP 3 // 310us
 
 
//############################################################################
// Wird im UART-Interrupt aufgerufen
//############################################################################
void SpektrumParser(unsigned char c)
{
static unsigned char Sync=0, FrameCnt=0, ByteHigh=0, ReSync=1, Frame2=0;
unsigned int Channel, index = 0;
signed int signal = 0, tmp;
int bCheckDelay;
// c = UDR1; // get data byte
if(ReSync == 1)
{
// wait for beginning of new frame
ReSync = 0;
SpektrumTimer = MIN_FRAMEGAP;
FrameCnt = 0;
Sync = 0;
ByteHigh = 0;
}
else
{
if(!SpektrumTimer) bCheckDelay = 1; else bCheckDelay = 0;//CheckDelay(FrameTimer);
if ( Sync == 0 )
{
if(bCheckDelay)
{
// nach einer Pause von mind. 7ms erstes Sync-Character gefunden
// Zeichen ignorieren, da Bedeutung unbekannt
Sync = 1;
FrameCnt ++;
SpektrumTimer = MAX_BYTEGAP;
}
else
{
// Zeichen kam vor Ablauf der 7ms Sync-Pause
// warten auf erstes Sync-Zeichen
SpektrumTimer = MIN_FRAMEGAP;
FrameCnt = 0;
Sync = 0;
ByteHigh = 0;
}
}
else if((Sync == 1) && !bCheckDelay)
{
// zweites Sync-Character ignorieren, Bedeutung unbekannt
Sync = 2;
FrameCnt ++;
SpektrumTimer = MAX_BYTEGAP;
}
else if((Sync == 2) && !bCheckDelay)
{
SpektrumTimer = MAX_BYTEGAP;
// Datenbyte high
ByteHigh = c;
if (FrameCnt == 2)
{
// is 1st Byte of Channel-data
// Frame 1 with Channel 1-7 comming next
Frame2 = 0;
if(ByteHigh & 0x80)
{
// DS9: Frame 2 with Channel 8-9 comming next
Frame2 = 1;
}
}
Sync = 3;
FrameCnt ++;
}
else if((Sync == 3) && !bCheckDelay)
{
// Datenbyte low
// High-Byte for next channel comes next
SpektrumTimer = MAX_BYTEGAP;
Sync = 2;
FrameCnt ++;
Channel = ((unsigned int)ByteHigh << 8) | c;
if(EE_Parameter.Receiver == RECEIVER_SPEKTRUM)
{
signal = Channel & 0x3ff;
signal -= 0x200; // Offset, range 0x000..0x3ff?
signal = signal/3; // scaling to fit PPM resolution
index = (ByteHigh >> 2) & 0x0f;
}
else
if(EE_Parameter.Receiver == RECEIVER_SPEKTRUM_HI_RES)
{
signal = Channel & 0x7ff;
signal -= 0x400; // Offset, range 0x000..0x7ff?
signal = signal/6; // scaling to fit PPM resolution
index = (ByteHigh >> 3) & 0x0f;
}
else
//if(EE_Parameter.Receiver == RECEIVER_SPEKTRUM_LOW_RES)
{
signal = Channel & 0x3ff;
signal -= 360; // Offset, range 0x000..0x3ff?
signal = signal/2; // scaling to fit PPM resolution
index = (ByteHigh >> 2) & 0x0f;
}
 
index++;
if(index < 13)
{
// Stabiles Signal
#ifdef RECEIVER_SPEKTRUM_EXP
if (index == 2) index = 4; // Analog channel reassigment (2 <-> 4) for logical numbering (1,2,3,4)
else if (index == 4) index = 2;
#endif
if(abs(signal - PPM_in[index]) < 6)
{
if(SenderOkay < 200) SenderOkay += 10;
else
{
SenderOkay = 200;
TIMSK1 &= ~_BV(ICIE1); // disable PPM-Input
}
}
tmp = (3 * (PPM_in[index]) + signal) / 4;
if(tmp > signal+1) tmp--; else
if(tmp < signal-1) tmp++;
#ifdef RECEIVER_SPEKTRUM_EXP
if(index == 6) // FLIGHT-MODE - The channel used for our data uplink
{
if (signal > 100) // SYNC received
{
if (s_exdata[s_excnt] == 125) s_exparity = ~s_exparity; // Bit = 1 -> Re-Invert parity bit
if ((s_excnt == 6 && ((s_exparity != 0 && s_exdata[s_excnt] == -125) || (s_exparity == 0 && s_exdata[s_excnt] == 125))) || (s_excnt == 9 && ((s_exparity == 0 && s_exdata[s_excnt] == -125) || (s_exparity != 0 && s_exdata[s_excnt] == 125)))) // Parity check
{
if (s_exdata[1] == 125 && s_exdata[2] == -125) PPM_in[5] = -125; // Reconstruct tripole Flight-Mode value (CH5)
else if (s_exdata[1] == -125 && s_exdata[2] == -125) PPM_in[5] = 0; // Reconstruct tripole Flight-Mode value (CH5)
else if (s_exdata[1] == -125 && s_exdata[2] == 125) PPM_in[5] = 125; // Reconstruct tripole Flight-Mode value (CH5)
PPM_in[6] = s_exdata[3]; // Elevator (CH6)
PPM_in[11] = s_exdata[4]; // Aileron (CH11)
PPM_in[12] = s_exdata[5]; // Rudder (CH12)
 
if (s_excnt == 9) // New Mode (12 Channels)
{
if (s_exdata[7] == 125) PPM_in[8] += 5; // Hover Pitch UP (CH8)
if (s_exdata[8] == 125) PPM_in[8] -= 5; // Hover Pitch DN (CH8)
if (PPM_in[8] < -125) PPM_in[8] = -125; // Range-Limit
else if (PPM_in[8] > 125) PPM_in[8] = 125; // Range-Limit
PPM_in[10] = s_exdata[6]; // AUX2 (CH10)
}
}
 
s_excnt = 0; // Reset bitcounter
s_exparity = 0; // Reset parity bit
}
 
if (signal < 10) s_exdata[++s_excnt] = -125; // Bit = 0 -> value = -125 (min)
if (s_excnt == 10) s_excnt = 0; // Overflow protection
if (signal < -100)
{
s_exdata[s_excnt] = 125; // Bit = 1 -> value = 125 (max)
s_exparity = ~s_exparity; // Bit = 1 -> Invert parity bit
}
 
}
#endif
if(SenderOkay >= 180) PPM_diff[index] = ((tmp - PPM_in[index]) / 3) * 3;
else PPM_diff[index] = 0;
 
#ifdef RECEIVER_SPEKTRUM_EXP
if (index < 5 ) PPM_in[index] = tmp; // Update normal potis (CH1-4)
else if (index == 5) PPM_in[7] = signal; // Gear (CH7)
else if (index == 7) PPM_in[9] = signal; // Hover Throttle (CH9)
#else
PPM_in[index] = tmp;
#endif
}
else if(index > 17) ReSync = 1; // hier stimmt was nicht: neu synchronisieren
}
else
{
// hier stimmt was nicht: neu synchronisieren
ReSync = 1;
FrameCnt = 0;
Frame2 = 0;
// new frame next, nach fruehestens 7ms erwartet
SpektrumTimer = MIN_FRAMEGAP;
}
 
// 16 Bytes eingetroffen -> Komplett
if(FrameCnt >= 16)
{
// Frame complete
if(Frame2 == 0)
{
// Null bedeutet: Neue Daten
// nur beim ersten Frame (CH 0-7) setzen
if(!ReSync) NewPpmData = 0;
}
FrameCnt = 0;
Frame2 = 0;
Sync = 0;
SpektrumTimer = MIN_FRAMEGAP;
}
}
}