Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 1869 → Rev 1873

/branches/dongfang_FC_rewrite/rc.c
74,54 → 74,54
* 16bit timer 1 is used to decode the PPM-Signal
***************************************************************/
void RC_Init(void) {
uint8_t sreg = SREG;
uint8_t sreg = SREG;
 
// disable all interrupts before reconfiguration
cli();
// disable all interrupts before reconfiguration
cli();
 
// PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
DDRD &= ~(1 << DDD6);
PORTD |= (1 << PORTD6);
// PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
DDRD &= ~(1 << DDD6);
PORTD |= (1 << PORTD6);
 
// Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
// set as output
DDRD |= (1 << DDD5) | (1 << DDD4) | (1 << DDD3);
// low level
PORTD &= ~((1 << PORTD5) | (1 << PORTD4) | (1 << PORTD3));
// Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
// set as output
DDRD |= (1 << DDD5) | (1 << DDD4) | (1 << DDD3);
// low level
PORTD &= ~((1 << PORTD5) | (1 << PORTD4) | (1 << PORTD3));
 
// PD3 can't be used if 2nd UART is activated
// because TXD1 is at that port
if (CPUType != ATMEGA644P) {
DDRD |= (1 << PORTD3);
PORTD &= ~(1 << PORTD3);
}
// PD3 can't be used if 2nd UART is activated
// because TXD1 is at that port
if (CPUType != ATMEGA644P) {
DDRD |= (1 << PORTD3);
PORTD &= ~(1 << PORTD3);
}
 
// Timer/Counter1 Control Register A, B, C
// Timer/Counter1 Control Register A, B, C
 
// Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
// Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
// Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
// Enable input capture noise cancler (bit: ICNC1=1)
// Trigger on positive edge of the input capture pin (bit: ICES1=1),
// Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2µs
// The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0)
| (1 << WGM11) | (1 << WGM10));
TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12));
TCCR1B |= (1 << CS11) | (1 << CS10) | (1 << ICES1) | (1 << ICNC1);
TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B));
// Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
// Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
// Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
// Enable input capture noise cancler (bit: ICNC1=1)
// Trigger on positive edge of the input capture pin (bit: ICES1=1),
// Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2µs
// The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0)
| (1 << WGM11) | (1 << WGM10));
TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12));
TCCR1B |= (1 << CS11) | (1 << CS10) | (1 << ICES1) | (1 << ICNC1);
TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B));
 
// Timer/Counter1 Interrupt Mask Register
// Timer/Counter1 Interrupt Mask Register
 
// Enable Input Capture Interrupt (bit: ICIE1=1)
// Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
// Enable Overflow Interrupt (bit: TOIE1=0)
TIMSK1 &= ~((1 << OCIE1B) | (1 << OCIE1A) | (1 << TOIE1));
TIMSK1 |= (1 << ICIE1);
// Enable Input Capture Interrupt (bit: ICIE1=1)
// Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
// Enable Overflow Interrupt (bit: TOIE1=0)
TIMSK1 &= ~((1 << OCIE1B) | (1 << OCIE1A) | (1 << TOIE1));
TIMSK1 |= (1 << ICIE1);
 
RC_Quality = 0;
RC_Quality = 0;
 
SREG = sreg;
SREG = sreg;
}
 
/********************************************************************/
129,11 → 129,11
/********************************************************************/
/* t-Frame
<----------------------------------------------------------------------->
____ ______ _____ ________ ______ sync gap ____
| | | | | | | | | | |
| | | | | | | | | | |
___| |_| |_| |_| |_.............| |________________|
<-----><-------><------><--------> <------> <---
____ ______ _____ ________ ______ sync gap ____
| | | | | | | | | | |
| | | | | | | | | | |
___| |_| |_| |_| |_.............| |________________|
<-----><-------><------><--------> <------> <---
t0 t1 t2 t4 tn t0
 
The PPM-Frame length is 22.5 ms.
147,71 → 147,71
*/
ISR(TIMER1_CAPT_vect)
{ // typical rate of 1 ms to 2 ms
int16_t signal = 0, tmp;
static int16_t index;
static uint16_t oldICR1 = 0;
int16_t signal = 0, tmp;
static int16_t index;
static uint16_t oldICR1 = 0;
 
// 16bit Input Capture Register ICR1 contains the timer value TCNT1
// at the time the edge was detected
// 16bit Input Capture Register ICR1 contains the timer value TCNT1
// at the time the edge was detected
 
// calculate the time delay to the previous event time which is stored in oldICR1
// calculatiing the difference of the two uint16_t and converting the result to an int16_t
// implicit handles a timer overflow 65535 -> 0 the right way.
signal = (uint16_t) ICR1 - oldICR1;
oldICR1 = ICR1;
// calculate the time delay to the previous event time which is stored in oldICR1
// calculatiing the difference of the two uint16_t and converting the result to an int16_t
// implicit handles a timer overflow 65535 -> 0 the right way.
signal = (uint16_t) ICR1 - oldICR1;
oldICR1 = ICR1;
 
//sync gap? (3.52 ms < signal < 25.6 ms)
if ((signal > 1100) && (signal < 8000)) {
// if a sync gap happens and there where at least 4 channels decoded before
// then the NewPpmData flag is reset indicating valid data in the PPM_in[] array.
if (index >= 4) {
NewPpmData = 0; // Null means NewData for the first 4 channels
}
// synchronize channel index
index = 1;
} else { // within the PPM frame
if (index < MAX_CHANNELS - 1) { // PPM24 supports 12 channels
// check for valid signal length (0.8 ms < signal < 2.1984 ms)
// signal range is from 1.0ms/3.2us = 312 to 2.0ms/3.2us = 625
if ((signal > 250) && (signal < 687)) {
// shift signal to zero symmetric range -154 to 159
signal -= 470; // offset of 1.4912 ms ??? (469 * 3.2µs = 1.5008 ms)
// check for stable signal
if (abs(signal - PPM_in[index]) < 6) {
if (RC_Quality < 200)
RC_Quality += 10;
else
RC_Quality = 200;
}
// If signal is the same as before +/- 1, just keep it there.
if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) {
// In addition, if the signal is very close to 0, just set it to 0.
if (signal >= -1 && signal <= 1) {
tmp = 0;
} else {
tmp = PPM_in[index];
}
} else
tmp = signal;
// calculate signal difference on good signal level
if (RC_Quality >= 195)
PPM_diff[index] = ((tmp - PPM_in[index]) / 3) * 3; // cut off lower 3 bit for nois reduction
else
PPM_diff[index] = 0;
PPM_in[index] = tmp; // update channel value
}
index++; // next channel
// demux sum signal for channels 5 to 7 to J3, J4, J5
// TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
// channels are usually available at the receiver anyway.
// if(index == 5) J3HIGH; else J3LOW;
// if(index == 6) J4HIGH; else J4LOW;
// if(CPUType != ATMEGA644P) // not used as TXD1
// {
// if(index == 7) J5HIGH; else J5LOW;
// }
}
}
//sync gap? (3.52 ms < signal < 25.6 ms)
if ((signal > 1100) && (signal < 8000)) {
// if a sync gap happens and there where at least 4 channels decoded before
// then the NewPpmData flag is reset indicating valid data in the PPM_in[] array.
if (index >= 4) {
NewPpmData = 0; // Null means NewData for the first 4 channels
}
// synchronize channel index
index = 1;
} else { // within the PPM frame
if (index < MAX_CHANNELS - 1) { // PPM24 supports 12 channels
// check for valid signal length (0.8 ms < signal < 2.1984 ms)
// signal range is from 1.0ms/3.2us = 312 to 2.0ms/3.2us = 625
if ((signal > 250) && (signal < 687)) {
// shift signal to zero symmetric range -154 to 159
signal -= 470; // offset of 1.4912 ms ??? (469 * 3.2µs = 1.5008 ms)
// check for stable signal
if (abs(signal - PPM_in[index]) < 6) {
if (RC_Quality < 200)
RC_Quality += 10;
else
RC_Quality = 200;
}
// If signal is the same as before +/- 1, just keep it there.
if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) {
// In addition, if the signal is very close to 0, just set it to 0.
if (signal >= -1 && signal <= 1) {
tmp = 0;
} else {
tmp = PPM_in[index];
}
} else
tmp = signal;
// calculate signal difference on good signal level
if (RC_Quality >= 195)
PPM_diff[index] = ((tmp - PPM_in[index]) / 3) * 3; // cut off lower 3 bit for nois reduction
else
PPM_diff[index] = 0;
PPM_in[index] = tmp; // update channel value
}
index++; // next channel
// demux sum signal for channels 5 to 7 to J3, J4, J5
// TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
// channels are usually available at the receiver anyway.
// if(index == 5) J3HIGH; else J3LOW;
// if(index == 6) J4HIGH; else J4LOW;
// if(CPUType != ATMEGA644P) // not used as TXD1
// {
// if(index == 7) J5HIGH; else J5LOW;
// }
}
}
}
 
#define RCChannel(dimension) PPM_in[staticParams.ChannelAssignment[dimension]]
222,23 → 222,23
 
// Internal.
uint8_t RC_getStickCommand(void) {
if (RCChannel(COMMAND_CHANNEL_VERTICAL) > COMMAND_THRESHOLD) {
// vertical is up
if (RCChannel(COMMAND_CHANNEL_HORIZONTAL) > COMMAND_THRESHOLD)
return COMMAND_GYROCAL;
if (RCChannel(COMMAND_CHANNEL_HORIZONTAL) < -COMMAND_THRESHOLD)
return COMMAND_ACCCAL;
return COMMAND_NONE;
} else if (RCChannel(COMMAND_CHANNEL_VERTICAL) < -COMMAND_THRESHOLD) {
// vertical is down
if (RCChannel(COMMAND_CHANNEL_HORIZONTAL) > COMMAND_THRESHOLD)
return COMMAND_STOP;
if (RCChannel(COMMAND_CHANNEL_HORIZONTAL) < -COMMAND_THRESHOLD)
return COMMAND_START;
return COMMAND_NONE;
}
// vertical is around center
return COMMAND_NONE;
if (RCChannel(COMMAND_CHANNEL_VERTICAL) > COMMAND_THRESHOLD) {
// vertical is up
if (RCChannel(COMMAND_CHANNEL_HORIZONTAL) > COMMAND_THRESHOLD)
return COMMAND_GYROCAL;
if (RCChannel(COMMAND_CHANNEL_HORIZONTAL) < -COMMAND_THRESHOLD)
return COMMAND_ACCCAL;
return COMMAND_NONE;
} else if (RCChannel(COMMAND_CHANNEL_VERTICAL) < -COMMAND_THRESHOLD) {
// vertical is down
if (RCChannel(COMMAND_CHANNEL_HORIZONTAL) > COMMAND_THRESHOLD)
return COMMAND_STOP;
if (RCChannel(COMMAND_CHANNEL_HORIZONTAL) < -COMMAND_THRESHOLD)
return COMMAND_START;
return COMMAND_NONE;
}
// vertical is around center
return COMMAND_NONE;
}
 
/*
245,39 → 245,40
* This must be called (as the only thing) for each control loop cycle (488 Hz).
*/
void RC_update() {
int16_t tmp1, tmp2;
if (RC_Quality) {
RC_Quality--;
if (NewPpmData-- == 0) {
RC_PRTY[CONTROL_PITCH] = RCChannel(CH_PITCH) * staticParams.StickP
+ RCDiff(CH_PITCH) * staticParams.StickD;
RC_PRTY[CONTROL_ROLL] = RCChannel(CH_ROLL) * staticParams.StickP
+ RCDiff(CH_ROLL) * staticParams.StickD;
RC_PRTY[CONTROL_THROTTLE] = RCChannel(CH_THROTTLE) + RCDiff(CH_THROTTLE)
* dynamicParams.UserParams[3] + 120;
if (RC_PRTY[CONTROL_THROTTLE] < 0)
RC_PRTY[CONTROL_THROTTLE] = 0; // Throttle is non negative.
tmp1 = -RCChannel(CH_YAW) - RCDiff(CH_YAW);
// exponential stick sensitivity in yawing rate
tmp2 = (int32_t) staticParams.StickYawP * ((int32_t) tmp1 * abs(tmp1))
/ 512L; // expo y = ax + bx^2
tmp2 += (staticParams.StickYawP * tmp1) / 4;
RC_PRTY[CONTROL_YAW] = tmp2;
}
uint8_t command = RC_getStickCommand();
if (lastRCCommand == command) {
// Keep timer from overrunning.
if (commandTimer < COMMAND_TIMER)
commandTimer++;
} else {
// There was a change.
lastRCCommand = command;
commandTimer = 0;
}
} else { // Bad signal
RC_PRTY[CONTROL_PITCH] = RC_PRTY[CONTROL_ROLL] = RC_PRTY[CONTROL_THROTTLE]
= RC_PRTY[CONTROL_YAW] = 0;
}
int16_t tmp1, tmp2;
if (RC_Quality) {
RC_Quality--;
if (NewPpmData-- == 0) {
RC_PRTY[CONTROL_PITCH] = RCChannel(CH_PITCH) * staticParams.StickP
+ RCDiff(CH_PITCH) * staticParams.StickD;
RC_PRTY[CONTROL_ROLL] = RCChannel(CH_ROLL) * staticParams.StickP
+ RCDiff(CH_ROLL) * staticParams.StickD;
RC_PRTY[CONTROL_THROTTLE] = RCChannel(CH_THROTTLE) + RCDiff(CH_THROTTLE)
* dynamicParams.UserParams[3] + 120;
if (RC_PRTY[CONTROL_THROTTLE] < 0)
RC_PRTY[CONTROL_THROTTLE] = 0; // Throttle is non negative.
tmp1 = -RCChannel(CH_YAW) - RCDiff(CH_YAW);
// exponential stick sensitivity in yawing rate
tmp2 = (int32_t) staticParams.StickYawP * ((int32_t) tmp1 * abs(tmp1))
/ 512L; // expo y = ax + bx^2
tmp2 += (staticParams.StickYawP * tmp1) >> 2;
RC_PRTY[CONTROL_YAW] = tmp2;
}
uint8_t command = RC_getStickCommand();
 
if (lastRCCommand == command) {
// Keep timer from overrunning.
if (commandTimer < COMMAND_TIMER)
commandTimer++;
} else {
// There was a change.
lastRCCommand = command;
commandTimer = 0;
}
} else { // Bad signal
RC_PRTY[CONTROL_PITCH] = RC_PRTY[CONTROL_ROLL] = RC_PRTY[CONTROL_THROTTLE]
= RC_PRTY[CONTROL_YAW] = 0;
}
}
 
/*
284,7 → 285,7
* Get Pitch, Roll, Throttle, Yaw values
*/
int16_t* RC_getPRTY(void) {
return RC_PRTY;
return RC_PRTY;
}
 
/*
291,28 → 292,28
* Get other channel value
*/
int16_t RC_getVariable(uint8_t varNum) {
if (varNum < 4)
// 0th variable is 5th channel (1-based) etc.
return RCChannel(varNum + 4) + POT_OFFSET;
/*
* Let's just say:
* The RC variable 4 is hardwired to channel 5
* The RC variable 5 is hardwired to channel 6
* The RC variable 6 is hardwired to channel 7
* The RC variable 7 is hardwired to channel 8
* Alternatively, one could bind them to channel (4 + varNum) - or whatever...
*/
return PPM_in[varNum + 1] + POT_OFFSET;
if (varNum < 4)
// 0th variable is 5th channel (1-based) etc.
return RCChannel(varNum + 4) + POT_OFFSET;
/*
* Let's just say:
* The RC variable 4 is hardwired to channel 5
* The RC variable 5 is hardwired to channel 6
* The RC variable 6 is hardwired to channel 7
* The RC variable 7 is hardwired to channel 8
* Alternatively, one could bind them to channel (4 + varNum) - or whatever...
*/
return PPM_in[varNum + 1] + POT_OFFSET;
}
 
uint8_t RC_getSignalQuality(void) {
if (RC_Quality >= 160)
return SIGNAL_GOOD;
if (RC_Quality >= 140)
return SIGNAL_OK;
if (RC_Quality >= 120)
return SIGNAL_BAD;
return SIGNAL_LOST;
if (RC_Quality >= 160)
return SIGNAL_GOOD;
if (RC_Quality >= 140)
return SIGNAL_OK;
if (RC_Quality >= 120)
return SIGNAL_BAD;
return SIGNAL_LOST;
}
 
/*
325,7 → 326,7
* of a stick, it may be useful.
*/
void RC_calibrate(void) {
// Do nothing.
// Do nothing.
}
 
/*
340,12 → 341,12
*/
 
uint8_t RC_getCommand(void) {
if (commandTimer == COMMAND_TIMER) {
// Stick has been held long enough; command committed.
return lastRCCommand;
}
// Not yet sure what the command is.
return COMMAND_NONE;
if (commandTimer == COMMAND_TIMER) {
// Stick has been held long enough; command committed.
return lastRCCommand;
}
// Not yet sure what the command is.
return COMMAND_NONE;
}
 
/*
367,79 → 368,79
#define ARGUMENT_CHANNEL_HORIZONTAL CH_ROLL
 
uint8_t RC_getArgument(void) {
if (RCChannel(ARGUMENT_CHANNEL_VERTICAL) > ARGUMENT_THRESHOLD) {
// vertical is up
if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) > ARGUMENT_THRESHOLD)
return 2;
if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) < -ARGUMENT_THRESHOLD)
return 4;
return 3;
} else if (RCChannel(ARGUMENT_CHANNEL_VERTICAL) < -ARGUMENT_THRESHOLD) {
// vertical is down
if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) > ARGUMENT_THRESHOLD)
return 8;
if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) < -ARGUMENT_THRESHOLD)
return 6;
return 7;
} else {
// vertical is around center
if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) > ARGUMENT_THRESHOLD)
return 1;
if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) < -ARGUMENT_THRESHOLD)
return 5;
return 0;
}
if (RCChannel(ARGUMENT_CHANNEL_VERTICAL) > ARGUMENT_THRESHOLD) {
// vertical is up
if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) > ARGUMENT_THRESHOLD)
return 2;
if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) < -ARGUMENT_THRESHOLD)
return 4;
return 3;
} else if (RCChannel(ARGUMENT_CHANNEL_VERTICAL) < -ARGUMENT_THRESHOLD) {
// vertical is down
if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) > ARGUMENT_THRESHOLD)
return 8;
if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) < -ARGUMENT_THRESHOLD)
return 6;
return 7;
} else {
// vertical is around center
if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) > ARGUMENT_THRESHOLD)
return 1;
if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) < -ARGUMENT_THRESHOLD)
return 5;
return 0;
}
}
 
uint8_t RC_getLooping(uint8_t looping) {
// static uint8_t looping = 0;
// static uint8_t looping = 0;
 
if (RCChannel(CH_ROLL) > staticParams.LoopThreshold && staticParams.BitConfig
& CFG_LOOP_LEFT) {
looping |= (LOOPING_ROLL_AXIS | LOOPING_LEFT);
} else if ((looping & LOOPING_LEFT) && RCChannel(CH_ROLL)
< staticParams.LoopThreshold - staticParams.LoopHysteresis) {
looping &= (~(LOOPING_ROLL_AXIS | LOOPING_LEFT));
}
if (RCChannel(CH_ROLL) > staticParams.LoopThreshold && staticParams.BitConfig
& CFG_LOOP_LEFT) {
looping |= (LOOPING_ROLL_AXIS | LOOPING_LEFT);
} else if ((looping & LOOPING_LEFT) && RCChannel(CH_ROLL)
< staticParams.LoopThreshold - staticParams.LoopHysteresis) {
looping &= (~(LOOPING_ROLL_AXIS | LOOPING_LEFT));
}
 
if (RCChannel(CH_ROLL) < -staticParams.LoopThreshold
&& staticParams.BitConfig & CFG_LOOP_RIGHT) {
looping |= (LOOPING_ROLL_AXIS | LOOPING_RIGHT);
} else if ((looping & LOOPING_RIGHT) && RCChannel(CH_ROLL)
> -staticParams.LoopThreshold - staticParams.LoopHysteresis) {
looping &= (~(LOOPING_ROLL_AXIS | LOOPING_RIGHT));
}
if (RCChannel(CH_ROLL) < -staticParams.LoopThreshold
&& staticParams.BitConfig & CFG_LOOP_RIGHT) {
looping |= (LOOPING_ROLL_AXIS | LOOPING_RIGHT);
} else if ((looping & LOOPING_RIGHT) && RCChannel(CH_ROLL)
> -staticParams.LoopThreshold - staticParams.LoopHysteresis) {
looping &= (~(LOOPING_ROLL_AXIS | LOOPING_RIGHT));
}
 
if (RCChannel(CH_PITCH) > staticParams.LoopThreshold
&& staticParams.BitConfig & CFG_LOOP_UP) {
looping |= (LOOPING_PITCH_AXIS | LOOPING_UP);
} else if ((looping & LOOPING_UP) && RCChannel(CH_PITCH)
< staticParams.LoopThreshold - staticParams.LoopHysteresis) {
looping &= (~(LOOPING_PITCH_AXIS | LOOPING_UP));
}
if (RCChannel(CH_PITCH) > staticParams.LoopThreshold
&& staticParams.BitConfig & CFG_LOOP_UP) {
looping |= (LOOPING_PITCH_AXIS | LOOPING_UP);
} else if ((looping & LOOPING_UP) && RCChannel(CH_PITCH)
< staticParams.LoopThreshold - staticParams.LoopHysteresis) {
looping &= (~(LOOPING_PITCH_AXIS | LOOPING_UP));
}
 
if (RCChannel(CH_PITCH) < -staticParams.LoopThreshold
&& staticParams.BitConfig & CFG_LOOP_DOWN) {
looping |= (LOOPING_PITCH_AXIS | LOOPING_DOWN);
} else if ((looping & LOOPING_DOWN) && RCChannel(CH_PITCH)
> -staticParams.LoopThreshold - staticParams.LoopHysteresis) {
looping &= (~(LOOPING_PITCH_AXIS | LOOPING_DOWN));
}
if (RCChannel(CH_PITCH) < -staticParams.LoopThreshold
&& staticParams.BitConfig & CFG_LOOP_DOWN) {
looping |= (LOOPING_PITCH_AXIS | LOOPING_DOWN);
} else if ((looping & LOOPING_DOWN) && RCChannel(CH_PITCH)
> -staticParams.LoopThreshold - staticParams.LoopHysteresis) {
looping &= (~(LOOPING_PITCH_AXIS | LOOPING_DOWN));
}
 
return looping;
return looping;
}
 
uint8_t RC_testCompassCalState(void) {
static uint8_t stick = 1;
// if pitch is centered or top set stick to zero
if (RCChannel(CH_PITCH) > -20)
stick = 0;
// if pitch is down trigger to next cal state
if ((RCChannel(CH_PITCH) < -70) && !stick) {
stick = 1;
return 1;
}
return 0;
static uint8_t stick = 1;
// if pitch is centered or top set stick to zero
if (RCChannel(CH_PITCH) > -20)
stick = 0;
// if pitch is down trigger to next cal state
if ((RCChannel(CH_PITCH) < -70) && !stick) {
stick = 1;
return 1;
}
return 0;
}
/*
* Abstract controls are not used at the moment.