Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 1611 → Rev 1612

/branches/dongfang_FC_rewrite/flight.c
0,0 → 1,585
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) 04.2007 Holger Buss
// + Nur für den privaten Gebrauch
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
// + bzgl. der Nutzungsbedingungen aufzunehmen.
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
// + Verkauf von Luftbildaufnahmen, usw.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
// + eindeutig als Ursprung verlinkt werden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
// + Benutzung auf eigene Gefahr
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + mit unserer Zustimmung zulässig
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + this list of conditions and the following disclaimer.
// + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
// + from this software without specific prior written permission.
// + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// + for non-commercial use (directly or indirectly)
// + Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// + with our written permission
// + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
// + clearly linked as origin
// + * porting to systems other than hardware from www.mikrokopter.de is not allowed
// + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// + POSSIBILITY OF SUCH DAMAGE.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
#include <stdlib.h>
#include <avr/io.h>
#include "eeprom.h"
#include "flight.h"
 
// Only for debug. Remove.
#include "analog.h"
#include "rc.h"
 
// Necessary for external control and motor test
#include "uart0.h"
#include "twimaster.h"
#include "attitude.h"
#include "controlMixer.h"
#ifdef USE_MK3MAG
#include "gps.h"
#endif
 
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
 
/*
* These are no longer maintained, just left at 0. The original implementation just summed the acc.
* value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
*/
int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
 
// MK flags
uint16_t isFlying = 0;
volatile uint8_t MKFlags = 0;
 
uint8_t gyroPFactor, gyroIFactor; // the PD factors for the attitude control
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
 
// Some integral weight constant...
uint16_t Ki = 10300 / 33;
uint8_t RequiredMotors = 0;
 
// No support for altitude control right now.
// int16_t SetPointHeight = 0;
 
/************************************************************************/
/* Filter for motor value smoothing (necessary???) */
/************************************************************************/
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
switch(dynamicParams.UserParams[5]) {
case 0:
return newvalue;
case 1:
return (oldvalue + newvalue) / 2;
case 2:
if(newvalue > oldvalue)
return (1 * (int16_t)oldvalue + newvalue) / 2; //mean of old and new
else
return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
case 3:
if(newvalue < oldvalue)
return (1 * (int16_t)oldvalue + newvalue) / 2; //mean of old and new
else
return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
default: return newvalue;
}
}
 
/************************************************************************/
/* Neutral Readings */
/************************************************************************/
void flight_setNeutral() {
// GPSStickPitch = 0;
// GPSStickRoll = 0;
 
MKFlags |= MKFLAG_CALIBRATE;
 
// not really used here any more.
dynamicParams.KalmanK = -1;
dynamicParams.KalmanMaxDrift = 0;
dynamicParams.KalmanMaxFusion = 32;
 
controlMixer_initVariables();
 
// TODO: Move off.
// RC_Quality = 100;
}
 
/************************************************************************/
/* Transmit Motor Data via I2C */
/************************************************************************/
void sendMotorData(void) {
uint8_t i;
if(!(MKFlags & MKFLAG_MOTOR_RUN)) {
// If pilot has not started the engines....
MKFlags &= ~(MKFLAG_FLY | MKFLAG_START); // clear flag FLY and START if motors are off
for(i = 0; i < MAX_MOTORS; i++) {
// and if we are not in motor test mode, cut throttle on all motors.
if(!motorTestActive) Motor[i].SetPoint = 0;
else Motor[i].SetPoint = motorTest[i];
}
if(motorTestActive) motorTestActive--;
}
/*
DebugOut.Analog[12] = Motor[0].SetPoint; // Front
DebugOut.Analog[13] = Motor[1].SetPoint; // Rear
DebugOut.Analog[14] = Motor[3].SetPoint; // Left
DebugOut.Analog[15] = Motor[2].SetPoint; // Right
*/
// Start I2C Interrupt Mode
I2C_Start(TWI_STATE_MOTOR_TX);
}
 
void setFlightParameters(uint8_t _Ki, uint8_t _gyroPFactor, uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
Ki = 10300 / _Ki;
gyroPFactor = _gyroPFactor;
gyroIFactor = _gyroIFactor;
yawPFactor = _yawPFactor;
yawIFactor = _yawIFactor;
}
 
void setNormalFlightParameters(void) {
setFlightParameters(dynamicParams.IFactor + 1,
dynamicParams.GyroP + 10,
staticParams.GlobalConfig & CFG_HEADING_HOLD ? dynamicParams.GyroI : 0,
dynamicParams.GyroP + 10,
dynamicParams.UserParams[6]
);
}
 
void setStableFlightParameters(void) {
setFlightParameters(33, 90, 120, 90, 120);
}
 
void handleCommands(uint8_t command, uint8_t argument, uint8_t isCommandRepeated) {
if(!(MKFlags & MKFLAG_MOTOR_RUN)) {
if (command == COMMAND_GYROCAL && !isCommandRepeated) {
// Run gyro calibration but do not repeat it.
GRN_OFF;
// TODO: out of here. Anyway, MKFLAG_MOTOR_RUN is cleared. Not enough?
// isFlying = 0;
// check roll/pitch stick position
// if pitch stick is top or roll stick is left or right --> change parameter setting
// according to roll/pitch stick position
if (argument < 6) {
// Gyro calinbration, with or without selecting a new parameter-set.
if(argument > 0 && argument < 6) {
// A valid parameter-set (1..5) was chosen - use it.
setActiveParamSet(argument);
}
ParamSet_ReadFromEEProm(getActiveParamSet());
attitude_setNeutral();
flight_setNeutral();
// Right stick is centered; calibrate it to zero (hmm strictly does not belong here).
// If heading hold is active, do not do it. TODO: We also want to re-set old calibration.
controlMixer_setNeutral(!argument);
beepNumber(getActiveParamSet());
} else if(staticParams.GlobalConfig & (CFG_COMPASS_ACTIVE | CFG_GPS_ACTIVE) && argument == 7) {
// If right stick is centered and down
compassCalState = 1;
beep(1000);
}
}
// save the ACC neutral setting to eeprom
else {
if(command == COMMAND_ACCCAL && !isCommandRepeated) {
// Run gyro and acc. meter calibration but do not repeat it.
GRN_OFF;
analog_calibrateAcc();
attitude_setNeutral();
flight_setNeutral();
controlMixer_setNeutral(1); // Calibrate right stick neutral position.
beepNumber(getActiveParamSet());
}
}
} // end !MOTOR_RUN condition.
if (command == COMMAND_START) {
isFlying = 1; // TODO: Really????
// if (!controlMixer_isCommandRepeated()) {
// attitude_startDynamicCalibration(); // Try sense the effect of the motors on sensors.
MKFlags |= (MKFLAG_MOTOR_RUN | MKFLAG_START); // set flag RUN and START. TODO: Is that START flag used at all???
// } else { // Pilot is holding stick, ever after motor start. Continue to sense the effect of the motors on sensors.
// attitude_continueDynamicCalibration();
// setPointYaw = 0;
// IPartPitch = 0;
// IPartRoll = 0;
// }
} else if (command == COMMAND_STOP) {
isFlying = 0;
MKFlags &= ~(MKFLAG_MOTOR_RUN);
}
}
 
/************************************************************************/
/* Main Flight Control */
/************************************************************************/
void flight_control(void) {
int16_t tmp_int;
// Mixer Fractions that are combined for Motor Control
int16_t yawTerm, throttleTerm, pitchTerm, rollTerm;
 
// PID controller variables
int16_t PDPartPitch, PDPartRoll, PDPartYaw, PPartPitch, PPartRoll;
static int32_t IPartPitch = 0, IPartRoll = 0;
 
static int32_t setPointYaw = 0;
 
// Removed. Too complicated, and apparently not necessary with MEMS gyros anyway.
// static int32_t IntegralGyroPitchError = 0, IntegralGyroRollError = 0;
// static int32_t CorrectionPitch, CorrectionRoll;
 
static uint16_t emergencyFlightTime;
 
// No support for altitude control right now.
// static uint8_t HeightControlActive = 0;
// static int16_t HeightControlGas = 0;
 
static int8_t debugDataTimer = 1;
 
// High resolution motor values for smoothing of PID motor outputs
static int16_t motorFilters[MAX_MOTORS];
 
uint8_t i;
 
// Fire the main flight attitude calculation, including integration of angles.
calculateFlightAttitude();
GRN_ON;
 
/*
* TODO: update should: Set the stick variables if good signal, set them to zero if bad.
* Set variables also.
*/
controlMixer_update();
 
throttleTerm = controlThrottle;
if(throttleTerm < staticParams.GasMin + 10) throttleTerm = staticParams.GasMin + 10;
 
/************************************************************************/
/* RC-signal is bad */
/* This part could be abstracted, as having yet another control input */
/* to the control mixer: An emergency autopilot control. */
/************************************************************************/
if(controlMixer_getSignalQuality() <= SIGNAL_BAD) { // the rc-frame signal is not reveived or noisy
RED_ON;
beepRCAlarm();
if(emergencyFlightTime) {
// continue emergency flight
emergencyFlightTime--;
if(isFlying > 1000) {
// We're probably still flying. Descend slowly.
throttleTerm = staticParams.EmergencyGas; // Set emergency throttle
MKFlags |= (MKFLAG_EMERGENCY_LANDING); // Set flag for emergency landing
setStableFlightParameters();
} else {
MKFlags &= ~(MKFLAG_MOTOR_RUN); // Probably not flying, and bad R/C signal. Kill motors.
}
} else {
// end emergency flight (just cut the motors???)
MKFlags &= ~(MKFLAG_MOTOR_RUN | MKFLAG_EMERGENCY_LANDING);
}
} else {
// signal is acceptable
if(controlMixer_getSignalQuality() > SIGNAL_BAD) {
// Reset emergency landing control variables.
MKFlags &= ~(MKFLAG_EMERGENCY_LANDING); // clear flag for emergency landing
// The time is in whole seconds.
emergencyFlightTime = staticParams.EmergencyGasDuration * 488;
}
 
// If some throttle is given, and the motor-run flag is on, increase the probability that we are flying.
if(throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
// increment flight-time counter until overflow.
if(isFlying != 0xFFFF) isFlying++;
} else
/*
* When standing on the ground, do not apply I controls and zero the yaw stick.
* Probably to avoid integration effects that will cause the copter to spin
* or flip when taking off.
* TODO: What was the value of IPartPitch? At 1st run of this, it's 0 already.
*/
if(isFlying < 256) {
IPartPitch = 0;
IPartRoll = 0;
// TODO: Don't stomp on other modules' variables!!!
controlYaw = 0;
if(isFlying == 250) {
updateCompassCourse = 1;
yawAngle = 0;
setPointYaw = 0;
}
} else {
// DebugOut.Digital[1] = 0;
// Set fly flag. TODO: Hmmm what can we trust - the isFlying counter or the flag?
// Answer: The counter. The flag is not read from anywhere anyway... except the NC maybe.
MKFlags |= (MKFLAG_FLY);
}
/*
* Get the current command (start/stop motors, calibrate), if any.
*/
uint8_t command = controlMixer_getCommand();
uint8_t repeated = controlMixer_isCommandRepeated();
uint8_t argument = controlMixer_getArgument();
 
handleCommands(command, argument, repeated);
 
// if(controlMixer_getSignalQuality() >= SIGNAL_GOOD) {
setNormalFlightParameters();
// }
} // end else (not bad signal case)
/*
* Looping the H&I way basically is just a matter of turning off attitude angle measurement
* by integration (because 300 deg/s gyros are too slow) and turning down the throttle.
* This is the throttle part.
*/
if(looping) {
if(throttleTerm > staticParams.LoopGasLimit) throttleTerm = staticParams.LoopGasLimit;
}
/************************************************************************/
/* Yawing */
/************************************************************************/
if(abs(controlYaw) > 4 * staticParams.StickYawP) { // yaw stick is activated
badCompassHeading = 1000;
if(!(staticParams.GlobalConfig & CFG_COMPASS_FIX)) {
updateCompassCourse = 1;
}
}
setPointYaw = controlYaw;
 
// Trim drift of yawAngle with controlYaw.
// TODO: We want NO feedback of control related stuff to the attitude related stuff.
yawAngle -= controlYaw;
// limit the effect
CHECK_MIN_MAX(yawAngle, -50000, 50000)
 
/************************************************************************/
/* Compass is currently not supported. */
/************************************************************************/
/*
if(staticParams.GlobalConfig & (CFG_COMPASS_ACTIVE|CFG_GPS_ACTIVE)) {
updateCompass();
}
*/
 
#if defined (USE_MK3MAG)
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
/************************************************************************/
/* GPS is currently not supported. */
/************************************************************************/
/*
if(staticParams.GlobalConfig & CFG_GPS_ACTIVE) {
GPS_Main();
MKFlags &= ~(MKFLAG_CALIBRATE | MKFLAG_START);
}
else {
// GPSStickPitch = 0;
// GPSStickRoll = 0;
}
*/
#endif
/************************************************************************/
/* Calculate control feedback from angle (gyro integral) */
/* and angular velocity (gyro signal) */
/************************************************************************/
// The P-part is the P of the PID controller. That's the angle integrals (not rates).
if(looping & LOOPING_PITCH_AXIS) {
PPartPitch = 0;
} else { // TODO: Where do the 44000 come from???
PPartPitch = pitchAngle * gyroIFactor / (44000 / STICK_GAIN); // P-Part - Proportional to Integral
}
// Now blend in the D-part - proportional to the Differential of the integral = the rate.
PDPartPitch = PPartPitch + (int32_t)((int32_t)pitchRate_PID * gyroPFactor / (256L / STICK_GAIN))
+ (pitchDifferential * (int16_t)dynamicParams.GyroD) / 16;
// The P-part is actually the I-part...
if(looping & LOOPING_ROLL_AXIS) {
PPartRoll = 0;
} else { // TODO: Where do the 44000 come from???
PPartRoll = (rollAngle * gyroIFactor) / (44000 / STICK_GAIN); // P-Part - Proportional to Integral
}
// Now blend in the P-part - proportional to the Differential of the integral = the rate
PDPartRoll = PPartRoll + (int32_t)((int32_t)rollRate_PID * gyroPFactor / (256L / STICK_GAIN))
+ (rollDifferential * (int16_t)dynamicParams.GyroD) / 16;
PDPartYaw = (int32_t)(yawRate * 2 * (int32_t)yawPFactor) / (256L / STICK_GAIN)
+ (int32_t)(yawAngle * yawIFactor) / (2 * (44000 / STICK_GAIN));
// limit control feedback
#define SENSOR_LIMIT (4096 * 4)
CHECK_MIN_MAX(PDPartPitch, -SENSOR_LIMIT, SENSOR_LIMIT);
CHECK_MIN_MAX(PDPartRoll, -SENSOR_LIMIT, SENSOR_LIMIT);
CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT);
/*
* Compose throttle term.
* If a Bl-Ctrl is missing, prevent takeoff.
*/
if(missingMotor) {
// if we are in the lift off condition. Hmmmmmm when is throttleTerm == 0 anyway???
if((isFlying > 1) && (isFlying < 50) && (throttleTerm > 0))
isFlying = 1; // keep within lift off condition
throttleTerm = staticParams.GasMin; // reduce gas to min to avoid lift of
}
 
/*
* Height control was here.
*/
if(throttleTerm > staticParams.GasMax - 20) throttleTerm = (staticParams.GasMax - 20);
throttleTerm *= STICK_GAIN;
 
/*
* Compose yaw term.
*/
#define MIN_YAWGAS (40 * STICK_GAIN) // yaw also below this gas value
yawTerm = PDPartYaw - setPointYaw * STICK_GAIN;
// limit yawTerm
if(throttleTerm > MIN_YAWGAS) {
/*
* -throttle/2 < -20 <= yawTerm <= 20 < throttle/2
*/
CHECK_MIN_MAX(yawTerm, - (throttleTerm / 2), (throttleTerm / 2));
} else {
/*
* -20 <= yawTerm <= 20
*/
CHECK_MIN_MAX(yawTerm, - (MIN_YAWGAS / 2), (MIN_YAWGAS / 2));
}
tmp_int = staticParams.GasMax * STICK_GAIN;
 
/*
* throttle-MaxThrottle <= yawTerm <= MaxThrottle-throttle
*/
CHECK_MIN_MAX(yawTerm, -(tmp_int - throttleTerm), (tmp_int - throttleTerm));
/*
* Compose pitch and roll terms. This is finally where the sticks come into play.
*/
if(gyroIFactor) {
// Integration mode: Integrate (angle - stick) = the difference between angle and stick pos.
// That means: Holding the stick a little forward will, at constant flight attitude, cause this to grow (decline??) over time.
// TODO: Find out why this seems to be proportional to stick position - not integrating it at all.
IPartPitch += PPartPitch - controlPitch; // Integrate difference between P part (the angle) and the stick pos.
IPartRoll += PPartRoll - controlRoll; // I-part for attitude control OK
} else {
// "HH" mode: Integrate (rate - stick) = the difference between rotation rate and stick pos.
IPartPitch += PDPartPitch - controlPitch; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
IPartRoll += PDPartRoll - controlRoll; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
}
// TODO: From which planet comes the 16000?
CHECK_MIN_MAX(IPartPitch, -(STICK_GAIN * 16000L), (STICK_GAIN * 16000L));
 
// Add (P, D) parts minus stick pos. to the scaled-down I part.
pitchTerm = PDPartPitch - controlPitch + IPartPitch / Ki; // PID-controller for pitch
 
CHECK_MIN_MAX(IPartRoll, -(STICK_GAIN * 16000L), (STICK_GAIN * 16000L));
rollTerm = PDPartRoll - controlRoll + IPartRoll / Ki; // PID-controller for roll
 
/*
* Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
* The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
* (max. pitch or roll term is the throttle value).
* TODO: Why a growing function of yaw?
*/
tmp_int = (int32_t)((int32_t)dynamicParams.DynamicStability * (int32_t)(throttleTerm + abs(yawTerm) / 2)) / 64;
CHECK_MIN_MAX(pitchTerm, -tmp_int, tmp_int);
CHECK_MIN_MAX(rollTerm, -tmp_int, tmp_int);
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Universal Mixer
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
for(i = 0; i < MAX_MOTORS; i++) {
int16_t tmp;
if(Mixer.Motor[i][MIX_THROTTLE] > 0) { // If a motor has a zero throttle mix, it is not considered.
tmp = ((int32_t)throttleTerm * Mixer.Motor[i][MIX_THROTTLE]) / 64L;
tmp += ((int32_t)pitchTerm * Mixer.Motor[i][MIX_PITCH]) / 64L;
tmp += ((int32_t)rollTerm * Mixer.Motor[i][MIX_ROLL]) / 64L;
tmp += ((int32_t)yawTerm * Mixer.Motor[i][MIX_YAW]) / 64L;
motorFilters[i] = motorFilter(tmp, motorFilters[i]);
tmp = motorFilters[i] / STICK_GAIN;
CHECK_MIN_MAX(tmp, staticParams.GasMin, staticParams.GasMax);
Motor[i].SetPoint = tmp;
}
else Motor[i].SetPoint = 0;
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Debugwerte zuordnen
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(!(--debugDataTimer)) {
debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
DebugOut.Analog[0] = (10 * pitchAngle) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
DebugOut.Analog[1] = (10 * rollAngle) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
DebugOut.Analog[2] = yawGyroHeading / GYRO_DEG_FACTOR_YAW;
 
DebugOut.Analog[9] = setPointYaw;
DebugOut.Analog[10] = yawIFactor;
DebugOut.Analog[11] = gyroIFactor;
DebugOut.Analog[12] = RC_getVariable(0);
DebugOut.Analog[13] = dynamicParams.UserParams[0];
DebugOut.Analog[14] = RC_getVariable(4);
DebugOut.Analog[15] = dynamicParams.UserParams[4];
/* DebugOut.Analog[11] = yawGyroHeading / GYRO_DEG_FACTOR_YAW; */
 
// 12..15 are the controls.
// DebugOut.Analog[16] = pitchAxisAcc;
// DebugOut.Analog[17] = rollAxisAcc;
// DebugOut.Analog[18] = ZAxisAcc;
 
DebugOut.Analog[19] = throttleTerm;
DebugOut.Analog[20] = pitchTerm;
DebugOut.Analog[21] = rollTerm;
DebugOut.Analog[22] = yawTerm;
DebugOut.Analog[23] = PPartPitch; //
DebugOut.Analog[24] = IPartPitch /Ki; // meget meget lille.
DebugOut.Analog[25] = PDPartPitch; // omtrent lig ppart.
 
DebugOut.Analog[26] = pitchAccNoisePeak;
DebugOut.Analog[27] = rollAccNoisePeak;
 
DebugOut.Analog[30] = pitchGyroNoisePeak;
DebugOut.Analog[31] = rollGyroNoisePeak;
}
}