Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev HEAD → Rev 2087

/branches/dongfang_FC_rewrite/attitude.c
0,0 → 1,541
#include <stdlib.h>
#include <avr/io.h>
 
#include "attitude.h"
#include "dongfangMath.h"
#include "commands.h"
 
// For scope debugging only!
#include "rc.h"
 
// where our main data flow comes from.
#include "analog.h"
 
#include "configuration.h"
#include "output.h"
 
// Some calculations are performed depending on some stick related things.
#include "controlMixer.h"
 
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
 
/*
* Gyro readings, as read from the analog module. It would have been nice to flow
* them around between the different calculations as a struct or array (doing
* things functionally without side effects) but this is shorter and probably
* faster too.
* The variables are overwritten at each attitude calculation invocation - the values
* are not preserved or reused.
*/
int16_t rate_ATT[2], yawRate;
 
// With different (less) filtering
int16_t rate_PID[2];
int16_t differential[2];
 
/*
* Gyro readings, after performing "axis coupling" - that is, the transfomation
* of rotation rates from the airframe-local coordinate system to a ground-fixed
* coordinate system. If axis copling is disabled, the gyro readings will be
* copied into these directly.
* These are global for the same pragmatic reason as with the gyro readings.
* The variables are overwritten at each attitude calculation invocation - the values
* are not preserved or reused.
*/
int16_t ACRate[2], ACYawRate;
 
/*
* Gyro integrals. These are the rotation angles of the airframe compared to the
* horizontal plane, yaw relative to yaw at start.
*/
int32_t attitude[2];
 
//int readingHeight = 0;
 
// Yaw angle and compass stuff.
int32_t headingError;
 
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
// Not necessary. Never read anywhere.
// int16_t compassOffCourse = 0;
 
uint16_t ignoreCompassTimer = 0;// 500;
 
int32_t heading; // Yaw Gyro Integral supported by compass
int16_t yawGyroDrift;
 
int16_t correctionSum[2] = { 0, 0 };
 
// For NaviCTRL use.
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
 
/*
* Experiment: Compensating for dynamic-induced gyro biasing.
*/
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
// int16_t dynamicCalCount;
 
uint16_t accVector;
 
/************************************************************************
* Set inclination angles from the acc. sensor data.
* If acc. sensors are not used, set to zero.
* TODO: One could use inverse sine to calculate the angles more
* accurately, but since: 1) the angles are rather small at times when
* it makes sense to set the integrals (standing on ground, or flying at
* constant speed, and 2) at small angles a, sin(a) ~= constant * a,
* it is hardly worth the trouble.
************************************************************************/
 
int32_t getAngleEstimateFromAcc(uint8_t axis) {
//int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L;
return (int32_t) GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis]; // + correctionTerm;
// return 342L * filteredAcc[axis];
}
 
void setStaticAttitudeAngles(void) {
#ifdef ATTITUDE_USE_ACC_SENSORS
attitude[PITCH] = getAngleEstimateFromAcc(PITCH);
attitude[ROLL] = getAngleEstimateFromAcc(ROLL);
#else
attitude[PITCH] = attitude[ROLL] = 0;
#endif
}
 
/************************************************************************
* Neutral Readings
************************************************************************/
void attitude_setNeutral(void) {
// Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
// dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
 
driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
correctionSum[PITCH] = correctionSum[ROLL] = 0;
 
// Calibrate hardware.
analog_setNeutral();
 
// reset gyro integrals to acc guessing
setStaticAttitudeAngles();
#ifdef USE_MK3MAG
attitude_resetHeadingToMagnetic();
#endif
// Servo_On(); //enable servo output
}
 
/************************************************************************
* Get sensor data from the analog module, and release the ADC
* TODO: Ultimately, the analog module could do this (instead of dumping
* the values into variables).
* The rate variable end up in a range of about [-1024, 1023].
*************************************************************************/
void getAnalogData(void) {
uint8_t axis;
 
analog_update();
 
for (axis = PITCH; axis <= ROLL; axis++) {
rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
differential[axis] = gyroD[axis];
averageAcc[axis] += acc[axis];
}
 
averageAccCount++;
yawRate = yawGyro + driftCompYaw;
}
 
/*
* This is the standard flight-style coordinate system transformation
* (from airframe-local axes to a ground-based system). For some reason
* the MK uses a left-hand coordinate system. The tranformation has been
* changed accordingly.
*/
void trigAxisCoupling(void) {
int16_t rollAngleInDegrees = attitude[ROLL] / GYRO_DEG_FACTOR_PITCHROLL;
int16_t pitchAngleInDegrees = attitude[PITCH] / GYRO_DEG_FACTOR_PITCHROLL;
 
int16_t cospitch = cos_360(pitchAngleInDegrees);
int16_t cosroll = cos_360(rollAngleInDegrees);
int16_t sinroll = sin_360(rollAngleInDegrees);
 
ACRate[PITCH] = (((int32_t) rate_ATT[PITCH] * cosroll
- (int32_t) yawRate * sinroll) >> LOG_MATH_UNIT_FACTOR);
 
ACRate[ROLL] = rate_ATT[ROLL]
+ (((((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
>> LOG_MATH_UNIT_FACTOR) * tan_360(pitchAngleInDegrees))
>> LOG_MATH_UNIT_FACTOR);
 
ACYawRate =
((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
/ cospitch;
}
 
// 480 usec with axis coupling - almost no time without.
void integrate(void) {
// First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
uint8_t axis;
 
if (staticParams.bitConfig & CFG_AXIS_COUPLING_ENABLED) {
trigAxisCoupling();
} else {
ACRate[PITCH] = rate_ATT[PITCH];
ACRate[ROLL] = rate_ATT[ROLL];
ACYawRate = yawRate;
}
 
/*
* Yaw
* Calculate yaw gyro integral (~ to rotation angle)
* Limit heading proportional to 0 deg to 360 deg
*/
heading += ACYawRate;
intervalWrap(&heading, YAWOVER360);
headingError += ACYawRate;
 
/*
* Pitch axis integration and range boundary wrap.
*/
for (axis = PITCH; axis <= ROLL; axis++) {
attitude[axis] += ACRate[axis];
if (attitude[axis] > PITCHROLLOVER180) {
attitude[axis] -= PITCHROLLOVER360;
} else if (attitude[axis] <= -PITCHROLLOVER180) {
attitude[axis] += PITCHROLLOVER360;
}
}
}
 
void correctIntegralsByAcc0thOrder_old(void) {
uint8_t axis;
int32_t temp;
 
uint8_t ca = controlActivity >> 8;
uint8_t highControlActivity = (ca > staticParams.maxControlActivity);
 
if (highControlActivity) {
debugOut.digital[1] |= DEBUG_ACC0THORDER;
} else {
debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
}
 
if (accVector <= staticParams.maxAccVector) {
debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
 
uint8_t permilleAcc = staticParams.zerothOrderCorrection / 8;
int32_t accDerived;
 
/*
if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
permilleAcc /= 2;
debugFullWeight = 0;
}
 
if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
permilleAcc /= 2;
debugFullWeight = 0;
*/
 
if (highControlActivity) { // reduce effect during stick control activity
permilleAcc /= 4;
if (controlActivity > staticParams.maxControlActivity * 2) { // reduce effect during stick control activity
permilleAcc /= 4;
}
}
 
/*
* Add to each sum: The amount by which the angle is changed just below.
*/
for (axis = PITCH; axis <= ROLL; axis++) {
accDerived = getAngleEstimateFromAcc(axis);
//debugOut.analog[9 + axis] = accDerived / (GYRO_DEG_FACTOR_PITCHROLL / 10);
// 1000 * the correction amount that will be added to the gyro angle in next line.
temp = attitude[axis];
attitude[axis] = ((int32_t) (1000L - permilleAcc) * temp
+ (int32_t) permilleAcc * accDerived) / 1000L;
correctionSum[axis] += attitude[axis] - temp;
}
} else {
// experiment: Kill drift compensation updates when not flying smooth.
// correctionSum[PITCH] = correctionSum[ROLL] = 0;
debugOut.digital[0] |= DEBUG_ACC0THORDER;
}
}
 
 
/************************************************************************
* A kind of 0'th order integral correction, that corrects the integrals
* directly. This is the "gyroAccFactor" stuff in the original code.
* There is (there) also a drift compensation
* - it corrects the differential of the integral = the gyro offsets.
* That should only be necessary with drifty gyros like ENC-03.
************************************************************************/
#define LOG_DIVIDER 12
#define DIVIDER (1L << LOG_DIVIDER)
void correctIntegralsByAcc0thOrder_new(void) {
// TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
// are less than ....., or reintroduce Kalman.
// Well actually the Z axis acc. check is not so silly.
uint8_t axis;
int32_t temp;
 
// for debug LEDs, to be removed with that.
static uint8_t controlActivityFlash=1;
static uint8_t accFlash=1;
#define CF_MAX 10
// [1..n[=off [n..10]=on
// 1 -->1=on, 2=on, ..., 10=on
// 2 -->1=off,2=on, ..., 10=on
// 10-->1=off,2=off,..., 10=on
// 11-->1=off,2=off,..., 10=off
uint16_t ca = controlActivity >> 6;
uint8_t controlActivityWeighted = ca / staticParams.zerothOrderCorrectionControlTolerance;
if (!controlActivityWeighted) controlActivityWeighted = 1;
uint8_t accVectorWeighted = accVector / staticParams.zerothOrderCorrectionAccTolerance;
if (!accVectorWeighted) accVectorWeighted = 1;
 
uint8_t accPart = staticParams.zerothOrderCorrection;
int32_t accDerived;
 
debugOut.analog[14] = controlActivity;
debugOut.analog[15] = accVector;
 
debugOut.analog[20] = controlActivityWeighted;
debugOut.analog[21] = accVectorWeighted;
debugOut.analog[24] = accVector;
 
accPart /= controlActivityWeighted;
accPart /= accVectorWeighted;
 
if (controlActivityFlash < controlActivityWeighted) {
debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
} else {
debugOut.digital[0] |= DEBUG_ACC0THORDER;
}
if (++controlActivityFlash > CF_MAX+1) controlActivityFlash=1;
 
if (accFlash < accVectorWeighted) {
debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
} else {
debugOut.digital[1] |= DEBUG_ACC0THORDER;
}
if (++accFlash > CF_MAX+1) accFlash=1;
 
/*
* Add to each sum: The amount by which the angle is changed just below.
*/
for (axis = PITCH; axis <= ROLL; axis++) {
accDerived = getAngleEstimateFromAcc(axis);
//debugOut.analog[9 + axis] = accDerived / (GYRO_DEG_FACTOR_PITCHROLL / 10);
// 1000 * the correction amount that will be added to the gyro angle in next line.
temp = attitude[axis];
attitude[axis] = ((int32_t) (DIVIDER - accPart) * temp + (int32_t)accPart * accDerived) >> LOG_DIVIDER;
correctionSum[axis] += attitude[axis] - temp;
}
}
 
/************************************************************************
* This is an attempt to correct not the error in the angle integrals
* (that happens in correctIntegralsByAcc0thOrder above) but rather the
* cause of it: Gyro drift, vibration and rounding errors.
* All the corrections made in correctIntegralsByAcc0thOrder over
* DRIFTCORRECTION_TIME cycles are summed up. This number is
* then divided by DRIFTCORRECTION_TIME to get the approx.
* correction that should have been applied to each iteration to fix
* the error. This is then added to the dynamic offsets.
************************************************************************/
// 2 times / sec. = 488/2
#define DRIFTCORRECTION_TIME 256L
void driftCorrection(void) {
static int16_t timer = DRIFTCORRECTION_TIME;
int16_t deltaCorrection;
int16_t round;
uint8_t axis;
 
if (!--timer) {
timer = DRIFTCORRECTION_TIME;
for (axis = PITCH; axis <= ROLL; axis++) {
// Take the sum of corrections applied, add it to delta
if (correctionSum[axis] >= 0)
round = DRIFTCORRECTION_TIME / 2;
else
round = -DRIFTCORRECTION_TIME / 2;
deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
// Add the delta to the compensation. So positive delta means, gyro should have higher value.
driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
// DebugOut.Analog[11 + axis] = correctionSum[axis];
// DebugOut.Analog[16 + axis] = correctionSum[axis];
// debugOut.analog[28 + axis] = driftComp[axis];
correctionSum[axis] = 0;
}
}
}
 
void calculateAccVector(void) {
int16_t temp;
temp = filteredAcc[0] >> 3;
accVector = temp * temp;
temp = filteredAcc[1] >> 3;
accVector += temp * temp;
temp = filteredAcc[2] >> 3;
accVector += temp * temp;
}
 
#ifdef USE_MK3MAG
void attitude_resetHeadingToMagnetic(void) {
if (commands_isCalibratingCompass())
return;
 
// Compass is off, skip.
if (!(staticParams.bitConfig & CFG_COMPASS_ENABLED))
return;
 
// Compass is invalid, skip.
if (magneticHeading < 0)
return;
 
heading = (int32_t) magneticHeading * GYRO_DEG_FACTOR_YAW;
//targetHeading = heading;
headingError = 0;
}
 
void correctHeadingToMagnetic(void) {
int32_t error;
 
if (commands_isCalibratingCompass()) {
//debugOut.analog[30] = -1;
return;
}
 
// Compass is off, skip.
// Naaah this is assumed.
// if (!(staticParams.bitConfig & CFG_COMPASS_ACTIVE))
// return;
 
// Compass is invalid, skip.
if (magneticHeading < 0) {
//debugOut.analog[30] = -2;
return;
}
 
// Spinning fast, skip
if (abs(yawRate) > 128) {
// debugOut.analog[30] = -3;
return;
}
 
// Otherwise invalidated, skip
if (ignoreCompassTimer) {
ignoreCompassTimer--;
//debugOut.analog[30] = -4;
return;
}
 
//debugOut.analog[30] = magneticHeading;
 
// TODO: Find computational cost of this.
error = ((int32_t)magneticHeading*GYRO_DEG_FACTOR_YAW - heading);
if (error <= -YAWOVER180) error += YAWOVER360;
else if (error > YAWOVER180) error -= YAWOVER360;
 
// We only correct errors larger than the resolution of the compass, or else we would keep rounding the
// better resolution of the gyros to the worse resolution of the compass all the time.
// The correction should really only serve to compensate for gyro drift.
if(abs(error) < GYRO_DEG_FACTOR_YAW) return;
 
int32_t correction = (error * staticParams.compassYawCorrection) >> 8;
//debugOut.analog[30] = correction;
 
debugOut.digital[0] &= ~DEBUG_COMPASS;
debugOut.digital[1] &= ~DEBUG_COMPASS;
 
if (correction > 0) {
debugOut.digital[0] ^= DEBUG_COMPASS;
} else if (correction < 0) {
debugOut.digital[1] ^= DEBUG_COMPASS;
}
 
// The correction is added both to current heading (the direction in which the copter thinks it is pointing)
// and to the heading error (the angle of yaw that the copter is off the set heading).
heading += correction;
headingError += correction;
intervalWrap(&heading, YAWOVER360);
 
// If we want a transparent flight wrt. compass correction (meaning the copter does not change attitude all
// when the compass corrects the heading - it only corrects numbers!) we want to add:
// This will however cause drift to remain uncorrected!
// headingError += correction;
//debugOut.analog[29] = 0;
}
#endif
 
/************************************************************************
* Main procedure.
************************************************************************/
void calculateFlightAttitude(void) {
getAnalogData();
calculateAccVector();
integrate();
 
#ifdef ATTITUDE_USE_ACC_SENSORS
if (staticParams.maxControlActivity) {
correctIntegralsByAcc0thOrder_old();
} else {
correctIntegralsByAcc0thOrder_new();
}
driftCorrection();
#endif
 
// We are done reading variables from the analog module.
// Interrupt-driven sensor reading may restart.
startAnalogConversionCycle();
 
#ifdef USE_MK3MAG
if (staticParams.bitConfig & (CFG_COMPASS_ENABLED | CFG_GPS_ENABLED)) {
correctHeadingToMagnetic();
}
#endif
}
 
/*
* This is part of an experiment to measure average sensor offsets caused by motor vibration,
* and to compensate them away. It brings about some improvement, but no miracles.
* As long as the left stick is kept in the start-motors position, the dynamic compensation
* will measure the effect of vibration, to use for later compensation. So, one should keep
* the stick in the start-motors position for a few seconds, till all motors run (at the wrong
* speed unfortunately... must find a better way)
*/
/*
void attitude_startDynamicCalibration(void) {
dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
}
 
void attitude_continueDynamicCalibration(void) {
// measure dynamic offset now...
dynamicCalPitch += hiResPitchGyro;
dynamicCalRoll += hiResRollGyro;
dynamicCalYaw += rawYawGyroSum;
dynamicCalCount++;
 
// Param6: Manual mode. The offsets are taken from Param7 and Param8.
if (dynamicParams.UserParam6 || 1) { // currently always enabled.
// manual mode
driftCompPitch = dynamicParams.UserParam7 - 128;
driftCompRoll = dynamicParams.UserParam8 - 128;
} else {
// use the sampled value (does not seem to work so well....)
driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
driftCompYaw = -dynamicCalYaw / dynamicCalCount;
}
 
// keep resetting these meanwhile, to avoid accumulating errors.
setStaticAttitudeIntegrals();
yawAngle = 0;
}
*/