Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 1951 → Rev 1952

/branches/dongfang_FC_rewrite/analog.c
68,6 → 68,9
// For DebugOut.Digital
#include "output.h"
 
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
 
/*
* For each A/D conversion cycle, each analog channel is sampled a number of times
* (see array channelsForStates), and the results for each channel are summed.
76,6 → 79,7
* reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
* the offsets with the DAC.
*/
volatile uint16_t sensorInputs[8];
volatile int16_t rawGyroSum[3];
volatile int16_t acc[3];
volatile int16_t filteredAcc[2] = { 0,0 };
203,18 → 207,18
// Disable digital input buffer for analog adc_channel pins
DIDR0 = 0xFF;
// external reference, adjust data to the right
ADMUX &= ~((1 << REFS1) | (1 << REFS0) | (1 << ADLAR));
ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
// set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
//Set ADC Control and Status Register A
//Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
ADCSRA = (0 << ADEN) | (0 << ADSC) | (0 << ADATE) | (1 << ADPS2) | (1
<< ADPS1) | (1 << ADPS0) | (0 << ADIE);
ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
//Set ADC Control and Status Register B
//Trigger Source to Free Running Mode
ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0));
// Start AD conversion
analog_start();
ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
 
startAnalogConversionCycle();
 
// restore global interrupt flags
SREG = sreg;
}
240,291 → 244,269
return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
}
 
void startAnalogConversionCycle(void) {
// Stop the sampling. Cycle is over.
for (uint8_t i = 0; i < 8; i++) {
sensorInputs[i] = 0;
}
ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
startADC();
}
 
/*****************************************************
* Interrupt Service Routine for ADC
* Runs at 312.5 kHz or 3.2 µs. When all states are
* processed the interrupt is disabled and further
* AD conversions are stopped.
* processed further conversions are stopped.
*****************************************************/
ISR(ADC_vect) {
static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
static uint16_t sensorInputs[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
static uint16_t pressureAutorangingWait = 25;
uint16_t rawAirPressure;
uint8_t i, axis;
int16_t newrange;
static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
sensorInputs[ad_channel] += ADC;
// set up for next state.
state++;
if (state < 18) {
ad_channel = pgm_read_byte(&channelsForStates[state]);
// set adc muxer to next ad_channel
ADMUX = (ADMUX & 0xE0) | ad_channel;
// after full cycle stop further interrupts
startADC();
} else {
state = 0;
ADCycleCount++;
analogDataReady = 1;
// do not restart ADC converter.
}
}
 
// for various filters...
int16_t tempOffsetGyro, tempGyro;
void analog_updateGyros(void) {
// for various filters...
int16_t tempOffsetGyro, tempGyro;
for (uint8_t axis=0; axis<2; axis++) {
tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
// DebugOut.Analog[6 + 3 * axis ] = tempGyro;
/*
* Process the gyro data for the PID controller.
*/
// 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
// gyro with a wider range, and helps counter saturation at full control.
if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
if (tempGyro < SENSOR_MIN_PITCHROLL) {
DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
} else if (tempGyro > SENSOR_MAX_PITCHROLL) {
DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
+ SENSOR_MAX_PITCHROLL;
} else {
DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT;
}
}
// 2) Apply sign and offset, scale before filtering.
if (GYRO_REVERSED[axis]) {
tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
} else {
tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
}
// 3) Scale and filter.
tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro) / GYROS_PID_FILTER;
// 4) Measure noise.
measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
// 5) Differential measurement.
gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro - gyro_PID[axis])) / GYROS_D_FILTER;
// 6) Done.
gyro_PID[axis] = tempOffsetGyro;
/*
* Now process the data for attitude angles.
*/
tempGyro = rawGyroSum[axis];
// 1) Apply sign and offset, scale before filtering.
if (GYRO_REVERSED[axis]) {
tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
} else {
tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
}
// 2) Filter.
gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro) / GYROS_ATT_FILTER;
}
// Yaw gyro.
rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
if (GYRO_REVERSED[YAW])
yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
else
yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
}
 
sensorInputs[ad_channel] += ADC;
void analog_updateAccelerometers(void) {
// Pitch and roll axis accelerations.
for (uint8_t axis=0; axis<2; axis++) {
if (ACC_REVERSED[axis])
acc[axis] = accOffset[axis] - sensorInputs[AD_ACC_PITCH-axis];
else
acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset[axis];
filteredAcc[axis] = (filteredAcc[axis] * (ACC_FILTER - 1) + acc[axis]) / ACC_FILTER;
/*
stronglyFilteredAcc[PITCH] =
(stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
*/
measureNoise(acc[axis], &accNoisePeak[axis], 1);
}
// Z acc.
if (ACC_REVERSED[Z])
acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
else
acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
 
/*
* Actually we don't need this "switch". We could do all the sampling into the
* sensorInputs array first, and all the processing after the last sample.
*/
switch (state++) {
/*
stronglyFilteredAcc[Z] =
(stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
*/
}
 
case 8: // Z acc
if (ACC_REVERSED[Z])
acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
else
acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
 
/*
stronglyFilteredAcc[Z] =
(stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
*/
 
break;
 
case 11: // yaw gyro
rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
if (GYRO_REVERSED[YAW])
yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
else
yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
break;
 
case 12: // pitch axis acc.
if (ACC_REVERSED[PITCH])
acc[PITCH] = accOffset[PITCH] - sensorInputs[AD_ACC_PITCH];
else
acc[PITCH] = sensorInputs[AD_ACC_PITCH] - accOffset[PITCH];
 
filteredAcc[PITCH] =
(filteredAcc[PITCH] * (ACC_FILTER - 1) + acc[PITCH]) / ACC_FILTER;
 
/*
stronglyFilteredAcc[PITCH] =
(stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
*/
 
measureNoise(acc[PITCH], &accNoisePeak[PITCH], 1);
break;
 
case 13: // roll axis acc.
if (ACC_REVERSED[ROLL])
acc[ROLL] = accOffset[ROLL] - sensorInputs[AD_ACC_ROLL];
else
acc[ROLL] = sensorInputs[AD_ACC_ROLL] - accOffset[ROLL];
filteredAcc[ROLL] =
(filteredAcc[ROLL] * (ACC_FILTER - 1) + acc[ROLL]) / ACC_FILTER;
 
/*
stronglyFilteredAcc[ROLL] =
(stronglyFilteredAcc[ROLL] * 99 + acc[ROLL] * 10) / 100;
*/
 
measureNoise(acc[ROLL], &accNoisePeak[ROLL], 1);
break;
 
case 14: // air pressure
if (pressureAutorangingWait) {
//A range switch was done recently. Wait for steadying.
pressureAutorangingWait--;
DebugOut.Analog[27] = (uint16_t) OCR0A;
DebugOut.Analog[31] = simpleAirPressure;
break;
}
 
rawAirPressure = sensorInputs[AD_AIRPRESSURE];
if (rawAirPressure < MIN_RAWPRESSURE) {
// value is too low, so decrease voltage on the op amp minus input, making the value higher.
newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
if (newrange > MIN_RANGES_EXTRAPOLATION) {
pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
OCR0A = newrange;
} else {
if (OCR0A) {
OCR0A--;
pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
}
}
} else if (rawAirPressure > MAX_RAWPRESSURE) {
// value is too high, so increase voltage on the op amp minus input, making the value lower.
// If near the end, make a limited increase
newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
if (newrange < MAX_RANGES_EXTRAPOLATION) {
pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
OCR0A = newrange;
} else {
if (OCR0A < 254) {
OCR0A++;
pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
}
}
}
 
// Even if the sample is off-range, use it.
simpleAirPressure = getSimplePressure(rawAirPressure);
DebugOut.Analog[27] = (uint16_t) OCR0A;
DebugOut.Analog[31] = simpleAirPressure;
 
if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
// Danger: pressure near lower end of range. If the measurement saturates, the
// copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
+ (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
* rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
} else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
// Danger: pressure near upper end of range. If the measurement saturates, the
// copter may descend uncontrolledly... Simulate a drastic increase in pressure.
DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
+ (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
* rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
} else {
// normal case.
// If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
// The 2 cases above (end of range) are ignored for this.
DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT;
if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
airPressureSum += simpleAirPressure / 2;
else
airPressureSum += simpleAirPressure;
}
 
// 2 samples were added.
pressureMeasurementCount += 2;
if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
+ airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
pressureMeasurementCount = airPressureSum = 0;
}
 
break;
 
case 15:
case 16: // pitch or roll gyro.
axis = state - 16;
tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
// DebugOut.Analog[6 + 3 * axis ] = tempGyro;
/*
* Process the gyro data for the PID controller.
*/
// 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
// gyro with a wider range, and helps counter saturation at full control.
 
if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
if (tempGyro < SENSOR_MIN_PITCHROLL) {
DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
} else if (tempGyro > SENSOR_MAX_PITCHROLL) {
DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
+ SENSOR_MAX_PITCHROLL;
} else {
DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT;
}
}
 
// 2) Apply sign and offset, scale before filtering.
if (GYRO_REVERSED[axis]) {
tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
} else {
tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
}
 
// 3) Scale and filter.
tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro)
/ GYROS_PID_FILTER;
 
// 4) Measure noise.
measureNoise(tempOffsetGyro, &gyroNoisePeak[axis],
GYRO_NOISE_MEASUREMENT_DAMPING);
 
// 5) Differential measurement.
gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro
- gyro_PID[axis])) / GYROS_D_FILTER;
 
// 6) Done.
gyro_PID[axis] = tempOffsetGyro;
 
/*
* Now process the data for attitude angles.
*/
tempGyro = rawGyroSum[axis];
 
// 1) Apply sign and offset, scale before filtering.
if (GYRO_REVERSED[axis]) {
tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
} else {
tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
}
 
// 2) Filter.
gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro)
/ GYROS_ATT_FILTER;
break;
 
case 17:
// Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
// This is divided by 3 --> 10.34 counts per volt.
UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
DebugOut.Analog[11] = UBat;
analogDataReady = 1; // mark
ADCycleCount++;
// Stop the sampling. Cycle is over.
state = 0;
for (i = 0; i < 8; i++) {
sensorInputs[i] = 0;
}
break;
default: {
} // do nothing.
void analog_updateAirPressure(void) {
static uint16_t pressureAutorangingWait = 25;
uint16_t rawAirPressure;
int16_t newrange;
// air pressure
if (pressureAutorangingWait) {
//A range switch was done recently. Wait for steadying.
pressureAutorangingWait--;
DebugOut.Analog[27] = (uint16_t) OCR0A;
DebugOut.Analog[31] = simpleAirPressure;
} else {
rawAirPressure = sensorInputs[AD_AIRPRESSURE];
if (rawAirPressure < MIN_RAWPRESSURE) {
// value is too low, so decrease voltage on the op amp minus input, making the value higher.
newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
if (newrange > MIN_RANGES_EXTRAPOLATION) {
pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
OCR0A = newrange;
} else {
if (OCR0A) {
OCR0A--;
pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
}
}
} else if (rawAirPressure > MAX_RAWPRESSURE) {
// value is too high, so increase voltage on the op amp minus input, making the value lower.
// If near the end, make a limited increase
newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
if (newrange < MAX_RANGES_EXTRAPOLATION) {
pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
OCR0A = newrange;
} else {
if (OCR0A < 254) {
OCR0A++;
pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
}
}
}
// Even if the sample is off-range, use it.
simpleAirPressure = getSimplePressure(rawAirPressure);
DebugOut.Analog[27] = (uint16_t) OCR0A;
DebugOut.Analog[31] = simpleAirPressure;
if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
// Danger: pressure near lower end of range. If the measurement saturates, the
// copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
+ (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
* rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
} else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
// Danger: pressure near upper end of range. If the measurement saturates, the
// copter may descend uncontrolledly... Simulate a drastic increase in pressure.
DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
+ (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
* rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
} else {
// normal case.
// If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
// The 2 cases above (end of range) are ignored for this.
DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT;
if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
airPressureSum += simpleAirPressure / 2;
else
airPressureSum += simpleAirPressure;
}
// 2 samples were added.
pressureMeasurementCount += 2;
if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
+ airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
pressureMeasurementCount = airPressureSum = 0;
}
}
}
 
// set up for next state.
ad_channel = pgm_read_byte(&channelsForStates[state]);
// ad_channel = channelsForStates[state];
void analog_updateBatteryVoltage(void) {
// Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
// This is divided by 3 --> 10.34 counts per volt.
UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
DebugOut.Analog[11] = UBat;
}
 
// set adc muxer to next ad_channel
ADMUX = (ADMUX & 0xE0) | ad_channel;
// after full cycle stop further interrupts
if (state)
analog_start();
void analog_update(void) {
analog_updateGyros();
analog_updateAccelerometers();
analog_updateAirPressure();
analog_updateBatteryVoltage();
}
 
void analog_calibrate(void) {
#define GYRO_OFFSET_CYCLES 32
uint8_t i, axis;
int32_t deltaOffsets[3] = { 0, 0, 0 };
 
// Set the filters... to be removed again, once some good settings are found.
GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
 
gyro_calibrate();
 
// determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
delay_ms_Mess(20);
for (axis = PITCH; axis <= YAW; axis++) {
deltaOffsets[axis] += rawGyroSum[axis];
}
}
 
for (axis = PITCH; axis <= YAW; axis++) {
gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
// DebugOut.Analog[20 + axis] = gyroOffset[axis];
}
 
// Noise is relativ to offset. So, reset noise measurements when changing offsets.
gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
 
accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
accOffset[Z] = GetParamWord(PID_ACC_Z);
 
// Rough estimate. Hmm no nothing happens at calibration anyway.
// airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
// pressureMeasurementCount = 0;
 
delay_ms_Mess(100);
uint8_t i, axis;
int32_t deltaOffsets[3] = { 0, 0, 0 };
// Set the filters... to be removed again, once some good settings are found.
GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
gyro_calibrate();
// determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
delay_ms_Mess(20);
for (axis = PITCH; axis <= YAW; axis++) {
deltaOffsets[axis] += rawGyroSum[axis];
}
}
for (axis = PITCH; axis <= YAW; axis++) {
gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
// DebugOut.Analog[20 + axis] = gyroOffset[axis];
}
// Noise is relativ to offset. So, reset noise measurements when changing offsets.
gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
accOffset[Z] = GetParamWord(PID_ACC_Z);
// Rough estimate. Hmm no nothing happens at calibration anyway.
// airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
// pressureMeasurementCount = 0;
delay_ms_Mess(100);
}
 
/*
/branches/dongfang_FC_rewrite/analog.h
241,11 → 241,15
 
void analog_init(void);
 
// clear ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
#define analog_stop() (ADCSRA &= ~((1<<ADEN)|(1<<ADSC)|(1<<ADIE)))
/*
* Start the conversion cycle. It will stop automatically.
*/
void startAnalogConversionCycle(void);
 
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
#define analog_start() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
/*
* Process the sensor data to update the exported variables. Must be called after each measurement cycle and before the data is used.
*/
void analog_update(void) {
 
/*
* "Warm" calibration: Zero-offset gyros.