Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 2107 → Rev 2108

/branches/dongfang_FC_fixedwing/arduino_atmega328/flight.c
0,0 → 1,231
#include <stdlib.h>
#include <avr/io.h>
#include "eeprom.h"
#include "flight.h"
#include "output.h"
 
// Necessary for external control and motor test
#include "uart0.h"
#include "timer2.h"
#include "analog.h"
#include "attitude.h"
#include "controlMixer.h"
#include "configuration.h"
 
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
 
/*
* target-directions integrals.
*/
int32_t target[3];
 
/*
* Error integrals.
*/
int32_t error[3];
 
uint8_t reverse[3];
int32_t maxError[3];
int32_t IPart[3] = { 0, 0, 0 };
PID_t airspeedPID[3];
 
int16_t controlServos[NUM_CONTROL_SERVOS];
 
/************************************************************************/
/* Neutral Readings */
/************************************************************************/
#define CONTROL_CONFIG_SCALE 10
 
void flight_setGround(void) {
IPart[PITCH] = IPart[ROLL] = IPart[YAW] = 0;
target[PITCH] = attitude[PITCH];
target[ROLL] = attitude[ROLL];
target[YAW] = attitude[YAW];
}
 
void flight_updateFlightParametersToFlightMode(void) {
debugOut.analog[16] = currentFlightMode;
reverse[PITCH] = staticParams.controlServosReverse & CONTROL_SERVO_REVERSE_ELEVATOR;
reverse[ROLL] = staticParams.controlServosReverse & CONTROL_SERVO_REVERSE_AILERONS;
reverse[YAW] = staticParams.controlServosReverse & CONTROL_SERVO_REVERSE_RUDDER;
 
// At a switch to angles, we want to kill errors first.
// This should be triggered only once per mode change!
if (currentFlightMode == FLIGHT_MODE_ANGLES) {
target[PITCH] = attitude[PITCH];
target[ROLL] = attitude[ROLL];
target[YAW] = attitude[YAW];
}
 
for (uint8_t axis=0; axis<3; axis++) {
maxError[axis] = (int32_t)staticParams.gyroPID[axis].iMax * GYRO_DEG_FACTOR;
}
}
 
// Normal at airspeed = 10.
uint8_t calcAirspeedPID(uint8_t pid) {
if (staticParams.bitConfig & CFG_USE_AIRSPEED_PID) {
return pid;
}
 
uint16_t result = (pid * 10) / airspeedVelocity;
 
if (result > 240 || airspeedVelocity == 0) {
result = 240;
}
 
return result;
}
 
void setAirspeedPIDs(void) {
for (uint8_t axis = 0; axis<3; axis++) {
airspeedPID[axis].P = calcAirspeedPID(dynamicParams.gyroPID[axis].P);
airspeedPID[axis].I = calcAirspeedPID(dynamicParams.gyroPID[axis].I); // Should this be???
airspeedPID[axis].D = dynamicParams.gyroPID[axis].D;
}
}
 
/************************************************************************/
/* Main Flight Control */
/************************************************************************/
void flight_control(void) {
// Mixer Fractions that are combined for Motor Control
int16_t term[4];
 
// PID controller variables
int16_t PDPart[3];
 
static int8_t debugDataTimer = 1;
 
// High resolution motor values for smoothing of PID motor outputs
// static int16_t outputFilters[MAX_OUTPUTS];
 
uint8_t axis;
 
setAirspeedPIDs();
 
term[CONTROL_THROTTLE] = controls[CONTROL_THROTTLE];
 
// These params are just left the same in all modes. In MANUAL and RATE the results are ignored anyway.
target[PITCH] += (controls[CONTROL_ELEVATOR] * staticParams.stickIElevator) >> 6;
target[ROLL] += (controls[CONTROL_AILERONS] * staticParams.stickIAilerons) >> 6;
target[YAW] += (controls[CONTROL_RUDDER] * staticParams.stickIRudder) >> 6;
 
for (axis = PITCH; axis <= YAW; axis++) {
if (target[axis] > OVER180) {
target[axis] -= OVER360;
} else if (target[axis] <= -OVER180) {
target[axis] += OVER360;
}
 
if (reverse[axis])
error[axis] = attitude[axis] + target[axis];
else
error[axis] = attitude[axis] - target[axis];
 
if (error[axis] > maxError[axis]) {
error[axis] = maxError[axis];
} else if (error[axis] < -maxError[axis]) {
error[axis] =- maxError[axis];
}
 
#define LOG_P_SCALE 6
#define LOG_I_SCALE 6
#define LOG_D_SCALE 4
 
/************************************************************************/
/* Calculate control feedback from angle (gyro integral) */
/* and angular velocity (gyro signal) */
/************************************************************************/
if (currentFlightMode == FLIGHT_MODE_ANGLES || currentFlightMode
== FLIGHT_MODE_RATE) {
PDPart[axis] = (((int32_t) gyro_PID[axis]
* (int16_t) airspeedPID[axis].P) >> LOG_P_SCALE)
+ ((gyroD[axis] * (int16_t) airspeedPID[axis].D)
>> LOG_D_SCALE);
if (reverse[axis])
PDPart[axis] = -PDPart[axis];
} else {
PDPart[axis] = 0;
}
 
if (currentFlightMode == FLIGHT_MODE_ANGLES) {
int16_t anglePart = (int32_t)(
error[axis] * (int32_t) airspeedPID[axis].I)
>> LOG_I_SCALE;
if (reverse[axis])
PDPart[axis] += anglePart;
else
PDPart[axis] -= anglePart;
}
// Add I parts here... these are integrated errors.
// When an error wraps, actually its I part should be negated or something...
 
term[axis] = controls[axis] + PDPart[axis] + IPart[axis];
}
 
debugOut.analog[12] = term[PITCH];
debugOut.analog[13] = term[ROLL];
debugOut.analog[14] = term[YAW];
debugOut.analog[15] = term[THROTTLE];
 
for (uint8_t i = 0; i < NUM_CONTROL_SERVOS; i++) {
int16_t tmp;
if (servoTestActive) {
controlServos[i] = ((int16_t) servoTest[i] - 128) * 4;
} else {
// Follow the normal order of servos: Ailerons, elevator, throttle, rudder.
switch (i) {
case 0:
tmp = term[ROLL];
break;
case 1:
tmp = term[PITCH];
break;
case 2:
tmp = term[THROTTLE];
break;
case 3:
tmp = term[YAW];
break;
default:
tmp = 0;
}
// These are all signed and in the same units as the RC stuff in rc.c.
controlServos[i] = tmp;
}
}
 
calculateControlServoValues();
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Debugging
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if (!(--debugDataTimer)) {
debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
debugOut.analog[0] = gyro_PID[PITCH]; // in 0.1 deg
debugOut.analog[1] = gyro_PID[ROLL]; // in 0.1 deg
debugOut.analog[2] = gyro_PID[YAW];
 
debugOut.analog[3] = attitude[PITCH] / (GYRO_DEG_FACTOR / 10); // in 0.1 deg
debugOut.analog[4] = attitude[ROLL] / (GYRO_DEG_FACTOR / 10); // in 0.1 deg
debugOut.analog[5] = attitude[YAW] / (GYRO_DEG_FACTOR / 10);
 
debugOut.analog[6] = target[PITCH] / (GYRO_DEG_FACTOR / 10); // in 0.1 deg
debugOut.analog[7] = target[ROLL] / (GYRO_DEG_FACTOR / 10); // in 0.1 deg
debugOut.analog[8] = target[YAW] / (GYRO_DEG_FACTOR / 10);
 
debugOut.analog[9] = error[PITCH] / (GYRO_DEG_FACTOR / 10); // in 0.1 deg
debugOut.analog[10] = error[ROLL] / (GYRO_DEG_FACTOR / 10); // in 0.1 deg
debugOut.analog[11] = error[YAW] / (GYRO_DEG_FACTOR / 10);
 
debugOut.analog[12] = term[PITCH];
debugOut.analog[13] = term[ROLL];
debugOut.analog[14] = term[YAW];
 
//DebugOut.Analog[18] = (10 * controlIntegrals[CONTROL_ELEVATOR]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
//DebugOut.Analog[19] = (10 * controlIntegrals[CONTROL_AILERONS]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
//debugOut.analog[22] = (10 * IPart[PITCH]) / GYRO_DEG_FACTOR; // in 0.1 deg
//debugOut.analog[23] = (10 * IPart[ROLL]) / GYRO_DEG_FACTOR; // in 0.1 deg
}
}