Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 2107 → Rev 2108

/branches/dongfang_FC_fixedwing/arduino_atmega328/analog.c
0,0 → 1,400
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <stdlib.h>
 
#include "analog.h"
#include "configuration.h"
#include "attitude.h"
#include "sensors.h"
#include "printf_P.h"
#include "isqrt.h"
#include "twimaster.h"
 
// for Delay functions
#include "timer0.h"
 
// For reading and writing acc. meter offsets.
#include "eeprom.h"
 
// For debugOut
#include "output.h"
 
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
 
const char* recal = ", recalibration needed.";
 
volatile uint16_t ADSensorInputs[8];
 
 
/*
* These 4 exported variables are zero-offset. The "PID" ones are used
* in the attitude control as rotation rates. The "ATT" ones are for
* integration to angles.
*/
int16_t gyro_PID[3];
int16_t gyro_ATT[3];
int16_t gyroD[3];
int16_t gyroDWindow[3][GYRO_D_WINDOW_LENGTH];
uint8_t gyroDWindowIdx = 0;
 
/*
* Airspeed
*/
uint32_t airpressure;
uint16_t airspeedVelocity = 0;
int16_t airpressureWindow[AIRPRESSURE_WINDOW_LENGTH];
uint8_t airpressureWindowIdx = 0;
 
/*
* Offset values. These are the raw gyro and acc. meter sums when the copter is
* standing still. They are used for adjusting the gyro and acc. meter values
* to be centered on zero.
*/
sensorOffset_t gyroOffset;
uint16_t airpressureOffset;
 
/*
* In the MK coordinate system, nose-down is positive and left-roll is positive.
* If a sensor is used in an orientation where one but not both of the axes has
* an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
* Transform:
* pitch <- pp*pitch + pr*roll
* roll <- rp*pitch + rr*roll
* Not reversed, GYRO_QUADRANT:
* 0: pp=1, pr=0, rp=0, rr=1 // 0 degrees
* 1: pp=1, pr=-1,rp=1, rr=1 // +45 degrees
* 2: pp=0, pr=-1,rp=1, rr=0 // +90 degrees
* 3: pp=-1,pr=-1,rp=1, rr=1 // +135 degrees
* 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
* 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
* 6: pp=0, pr=1, rp=-1,rr=0 // +270 degrees
* 7: pp=1, pr=1, rp=-1,rr=1 // +315 degrees
* Reversed, GYRO_QUADRANT:
* 0: pp=-1,pr=0, rp=0, rr=1 // 0 degrees with pitch reversed
* 1: pp=-1,pr=-1,rp=-1,rr=1 // +45 degrees with pitch reversed
* 2: pp=0, pr=-1,rp=-1,rr=0 // +90 degrees with pitch reversed
* 3: pp=1, pr=-1,rp=-1,rr=1 // +135 degrees with pitch reversed
* 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
* 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
* 6: pp=0, pr=1, rp=1, rr=0 // +270 degrees with pitch reversed
* 7: pp=-1,pr=1, rp=1, rr=1 // +315 degrees with pitch reversed
*/
 
void rotate(int16_t* result, uint8_t quadrant, uint8_t reversePR, uint8_t reverseYaw) {
static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
// Pitch to Pitch part
int8_t xx = reversePR ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
// Roll to Pitch part
int8_t xy = rotationTab[(quadrant+2)%8];
// Pitch to Roll part
int8_t yx = reversePR ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
// Roll to Roll part
int8_t yy = rotationTab[quadrant];
 
int16_t xIn = result[0];
result[0] = xx*xIn + xy*result[1];
result[1] = yx*xIn + yy*result[1];
if (quadrant & 1) {
// A rotation was used above, where the factors were too large by sqrt(2).
// So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
// A suitable value for n: Sample is 11 bits. After transformation it is the sum
// of 2 11 bit numbers, so 12 bits. We have 4 bits left...
result[0] = (result[0]*11) >> 4;
result[1] = (result[1]*11) >> 4;
}
 
if (reverseYaw)
result[3] =-result[3];
}
 
/*
* Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
* That is divided by 3 below, for a final 10.34 per volt.
* So the initial value of 100 is for 9.7 volts.
*/
uint16_t UBat = 100;
 
/*
* Control and status.
*/
volatile uint8_t sensorDataReady = ALL_DATA_READY;
 
/*
* Experiment: Measuring vibration-induced sensor noise.
*/
uint16_t gyroNoisePeak[3];
 
volatile uint8_t adState;
volatile uint8_t adChannel;
 
// ADC channels
#define AD_UBAT 6
#define AD_AIRPRESSURE 7
 
/*
* Table of AD converter inputs for each state.
* The number of samples summed for each channel is equal to
* the number of times the channel appears in the array.
* The max. number of samples that can be taken in 2 ms is:
* 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
* loop needs a little time between reading AD values and
* re-enabling ADC, the real limit is (how much?) lower.
* The acc. sensor is sampled even if not used - or installed
* at all. The cost is not significant.
*/
 
const uint8_t channelsForStates[] PROGMEM = {
AD_AIRPRESSURE,
AD_UBAT,
AD_AIRPRESSURE,
AD_AIRPRESSURE,
AD_AIRPRESSURE,
};
 
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
 
void analog_init(void) {
uint8_t sreg = SREG;
// disable all interrupts before reconfiguration
cli();
 
// ADC0 ... ADC7 is connected to PortA pin 0 ... 7
// DDRA = 0x00;
// PORTA = 0x00;
// Digital Input Disable Register 0
// Disable digital input buffer for analog adc_channel pins
// DIDR0 = 0xFF;
// external reference, adjust data to the right
ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
// set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
ADMUX = (ADMUX & 0xE0);
//Set ADC Control and Status Register A
//Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
//Set ADC Control and Status Register B
//Trigger Source to Free Running Mode
ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
 
startAnalogConversionCycle();
 
// restore global interrupt flags
SREG = sreg;
}
 
/*
* Here the axes of the sensor can be shuffled around.
*/
uint16_t rawGyroValue(uint8_t axis) {
return IMU3200SensorInputs[axis+1]; // skip temperature mesaurement in any case..
}
 
/*
uint16_t rawAccValue(uint8_t axis) {
return sensorInputs[AD_ACC_PITCH-axis];
}
*/
 
void measureNoise(const int16_t sensor,
volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
if (sensor > (int16_t) (*noiseMeasurement)) {
*noiseMeasurement = sensor;
} else if (-sensor > (int16_t) (*noiseMeasurement)) {
*noiseMeasurement = -sensor;
} else if (*noiseMeasurement > damping) {
*noiseMeasurement -= damping;
} else {
*noiseMeasurement = 0;
}
}
 
void startAnalogConversionCycle(void) {
sensorDataReady = 0;
 
// Stop the sampling. Cycle is over.
for (uint8_t i = 0; i<8; i++) {
ADSensorInputs[i] = 0;
}
 
adState = 0;
adChannel = AD_AIRPRESSURE;
ADMUX = (ADMUX & 0xE0) | adChannel;
startADC();
twimaster_startCycle();
}
 
/*****************************************************
* Interrupt Service Routine for ADC
* Runs at 312.5 kHz or 3.2 �s. When all states are
* processed further conversions are stopped.
*****************************************************/
ISR(ADC_vect) {
ADSensorInputs[adChannel] += ADC;
// set up for next state.
adState++;
if (adState < sizeof(channelsForStates)) {
adChannel = pgm_read_byte(&channelsForStates[adState]);
// set adc muxer to next adChannel
ADMUX = (ADMUX & 0xE0) | adChannel;
// after full cycle stop further interrupts
startADC();
} else {
sensorDataReady |= ADC_DATA_READY;
// do not restart ADC converter.
}
}
 
void analog_updateGyros(void) {
// for various filters...
int16_t tempOffsetGyro[3], tempGyro;
for (uint8_t axis=0; axis<3; axis++) {
tempGyro = rawGyroValue(axis);
/*
* Process the gyro data for the PID controller.
*/
// Saturation prevention was removed. No airplane rotates more than 2000 deg/s.
 
// 2) Apply sign and offset, scale before filtering.
tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]);
}
 
// 2.1: Transform axes.
rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW);
 
for (uint8_t axis=0; axis<3; axis++) {
// 3) Filter.
tempOffsetGyro[axis] = (gyro_PID[axis] * (IMUConfig.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / IMUConfig.gyroPIDFilterConstant;
 
// 4) Measure noise.
measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
 
// 5) Differential measurement.
// TODO: Examine effects of overruns here, they are quite possible.
int16_t diff = tempOffsetGyro[axis] - gyro_PID[axis];
gyroD[axis] -= gyroDWindow[axis][gyroDWindowIdx];
gyroD[axis] += diff;
gyroDWindow[axis][gyroDWindowIdx] = diff;
 
// 6) Done.
gyro_PID[axis] = tempOffsetGyro[axis];
 
// Prepare tempOffsetGyro for next calculation below...
tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]);
}
 
/*
* Now process the data for attitude angles.
*/
rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW);
 
// dampenGyroActivity();
gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
gyro_ATT[YAW] = tempOffsetGyro[YAW];
 
if (++gyroDWindowIdx >= IMUConfig.gyroDWindowLength) {
gyroDWindowIdx = 0;
}
}
 
// probably wanna aim at 1/10 m/s/unit.
#define LOG_AIRSPEED_FACTOR 2
 
void analog_updateAirspeed(void) {
uint16_t rawAirpressure = ADSensorInputs[AD_AIRPRESSURE];
int16_t temp = rawAirpressure - airpressureOffset;
airpressure -= airpressureWindow[airpressureWindowIdx];
airpressure += temp;
airpressureWindow[airpressureWindowIdx] = temp;
airpressureWindowIdx++;
if (airpressureWindowIdx == AIRPRESSURE_WINDOW_LENGTH) {
airpressureWindowIdx = 0;
}
 
if (temp<0) temp = 0;
airspeedVelocity = (staticParams.airspeedCorrection * isqrt32(airpressure)) >> LOG_AIRSPEED_FACTOR;
isFlying = (airspeedVelocity >= staticParams.isFlyingThreshold);
}
 
void analog_updateBatteryVoltage(void) {
// Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
// This is divided by 3 --> 10.34 counts per volt.
UBat = (3 * UBat + ADSensorInputs[AD_UBAT] / 3) / 4;
}
 
void analog_update(void) {
analog_updateGyros();
// analog_updateAccelerometers();
analog_updateAirspeed();
analog_updateBatteryVoltage();
#ifdef USE_MK3MAG
magneticHeading = volatileMagneticHeading;
#endif
}
 
void analog_setNeutral() {
twimaster_setNeutral();
 
if (gyroOffset_readFromEEProm()) {
printf("gyro offsets invalid%s",recal);
gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING;
gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING;
}
 
// Noise is relative to offset. So, reset noise measurements when changing offsets.
for (uint8_t i=PITCH; i<=YAW; i++) {
gyroNoisePeak[i] = 0;
gyroD[i] = 0;
for (uint8_t j=0; j<GYRO_D_WINDOW_LENGTH; j++) {
gyroDWindow[i][j] = 0;
}
}
 
for (uint8_t i=0; i<AIRPRESSURE_WINDOW_LENGTH; i++) {
airpressureWindow[i] = 0;
}
 
// Setting offset values has an influence in the analog.c ISR
// Therefore run measurement for 100ms to achive stable readings
delay_ms_with_adc_measurement(100, 0);
 
// gyroActivity = 0;
}
 
void analog_calibrate(void) {
#define OFFSET_CYCLES 64
uint8_t i, axis;
int32_t offsets[4] = { 0, 0, 0, 0};
// determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
for (i = 0; i < OFFSET_CYCLES; i++) {
delay_ms_with_adc_measurement(10, 1);
for (axis = PITCH; axis <= YAW; axis++) {
offsets[axis] += rawGyroValue(axis);
}
offsets[3] += ADSensorInputs[AD_AIRPRESSURE];
}
for (axis = PITCH; axis <= YAW; axis++) {
gyroOffset.offsets[axis] = (offsets[axis] + OFFSET_CYCLES / 2) / OFFSET_CYCLES;
int16_t min = (512-200) * GYRO_OVERSAMPLING;
int16_t max = (512+200) * GYRO_OVERSAMPLING;
if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
}
 
airpressureOffset = (offsets[3] + OFFSET_CYCLES / 2) / OFFSET_CYCLES;
int16_t min = 200;
int16_t max = (1024-200) * 2;
if(airpressureOffset < min || airpressureOffset > max)
versionInfo.hardwareErrors[0] |= FC_ERROR0_PRESSURE;
 
gyroOffset_writeToEEProm();
 
startAnalogConversionCycle();
}