Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 1 → Rev HEAD

/branches/V0.68d CRK HexaLotte/fc.c
0,0 → 1,1311
/*#######################################################################################
Flight Control
#######################################################################################*/
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) 04.2007 Holger Buss
// + Nur für den privaten Gebrauch
// + www.MikroKopter.com
//ʲôÒÀÏ¡
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
// + bzgl. der Nutzungsbedingungen aufzunehmen.
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
// + Verkauf von Luftbildaufnahmen, usw.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
// + eindeutig als Ursprung verlinkt werden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
// + Benutzung auf eigene Gefahr
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + mit unserer Zustimmung zulässig
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + this list of conditions and the following disclaimer.
// + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
// + from this software without specific prior written permission.
// + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// + for non-commercial use (directly or indirectly)
// + Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// + with our written permission
// + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
// + clearly linked as origin
// + * porting to systems other than hardware from www.mikrokopter.de is not allowed
// + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// + POSSIBILITY OF SUCH DAMAGE.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include <stdlib.h>
#include <avr/io.h>
 
#include "main.h"
#include "eeprom.h"
#include "timer0.h"
#include "_Settings.h"
#include "analog.h"
#include "fc.h"
#include "gps.h"
#include "uart.h"
#include "rc.h"
#include "twimaster.h"
#ifdef USE_MM3
#include "mm3.h"
#endif
#ifdef USE_CMPS03
#include "cmps03.h"
#endif
#include "led.h"
 
volatile uint16_t I2CTimeout = 100;
// gyro readings
volatile int16_t Reading_GyroPitch, Reading_GyroRoll, Reading_GyroYaw;
// gyro neutral readings
volatile int16_t AdNeutralPitch = 0, AdNeutralRoll = 0, AdNeutralYaw = 0;
volatile int16_t StartNeutralRoll = 0, StartNeutralPitch = 0;
// mean accelerations
volatile int16_t Mean_AccPitch, Mean_AccRoll, Mean_AccTop;
 
// neutral acceleration readings
volatile int16_t NeutralAccX=0, NeutralAccY=0;
volatile float NeutralAccZ = 0;
 
// attitude gyro integrals
volatile int32_t IntegralPitch = 0,IntegralPitch2 = 0;
volatile int32_t IntegralRoll = 0,IntegralRoll2 = 0;
volatile int32_t IntegralYaw = 0;
volatile int32_t Reading_IntegralGyroPitch = 0, Reading_IntegralGyroPitch2 = 0;
volatile int32_t Reading_IntegralGyroRoll = 0, Reading_IntegralGyroRoll2 = 0;
volatile int32_t Reading_IntegralGyroYaw = 0;
volatile int32_t MeanIntegralPitch;
volatile int32_t MeanIntegralRoll;
 
// attitude acceleration integrals
volatile int32_t IntegralAccPitch = 0, IntegralAccRoll = 0;
volatile int32_t Reading_Integral_Top = 0;
 
// compass course
volatile int16_t CompassHeading = -1; // negative angle indicates invalid data.
volatile int16_t CompassCourse = -1;
volatile int16_t CompassOffCourse = 0;
 
// flags
uint8_t MotorsOn = 0;
uint8_t EmergencyLanding = 0;
 
int32_t TurnOver180Pitch = 250000L, TurnOver180Roll = 250000L;
 
float Gyro_P_Factor;
float Gyro_I_Factor;
 
volatile int16_t DiffPitch, DiffRoll;
 
int16_t Poti1 = 0, Poti2 = 0, Poti3 = 0, Poti4 = 0, Poti5 = 0, Poti6 = 0, Poti7 = 0, Poti8 = 0;
 
// setpoints for motors
volatile uint8_t Motor_FrontLeft, Motor_FrontRight, Motor_RearLeft, Motor_RearRight, Motor_Right, Motor_Left;
 
// stick values derived by rc channels readings
int16_t StickPitch = 0, StickRoll = 0, StickYaw = 0, StickThrust = 0;
int16_t MaxStickPitch = 0, MaxStickRoll = 0;
// stick values derived by uart inputs
int16_t ExternStickPitch = 0, ExternStickRoll = 0, ExternStickYaw = 0, ExternHeightValue = -20;
 
 
 
 
int16_t ReadingHeight = 0;
int16_t SetPointHeight = 0;
 
int16_t AttitudeCorrectionRoll = 0, AttitudeCorrectionPitch = 0;
 
float Ki = FACTOR_I;
 
uint8_t Looping_Pitch = 0, Looping_Roll = 0;
uint8_t Looping_Left = 0, Looping_Right = 0, Looping_Down = 0, Looping_Top = 0;
 
 
fc_param_t FCParam = {48,251,16,58,64,150,150,2,10,0,0,0,0,0,0,0,0,100,70,0,0,100};
 
 
/************************************************************************/
/* Creates numbeeps beeps at the speaker */
/************************************************************************/
void Beep(uint8_t numbeeps)
{
while(numbeeps--)
{
if(MotorsOn) return; //auf keinen Fall im Flug!
BeepTime = 100; // 0.1 second
Delay_ms(250); // blocks 250 ms as pause to next beep,
// this will block the flight control loop,
// therefore do not use this funktion if motors are running
}
}
 
/************************************************************************/
/* Neutral Readings */
/************************************************************************/
void SetNeutral(void)
{
NeutralAccX = 0;
NeutralAccY = 0;
NeutralAccZ = 0;
AdNeutralPitch = 0;
AdNeutralRoll = 0;
AdNeutralYaw = 0;
FCParam.Yaw_PosFeedback = 0;
FCParam.Yaw_NegFeedback = 0;
CalibMean();
Delay_ms_Mess(100);
CalibMean();
if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL)) // Height Control activated?
{
if((ReadingAirPressure > 950) || (ReadingAirPressure < 750)) SearchAirPressureOffset();
}
AdNeutralPitch = AdValueGyrPitch;
AdNeutralRoll = AdValueGyrRoll;
AdNeutralYaw = AdValueGyrYaw;
StartNeutralRoll = AdNeutralRoll;
StartNeutralPitch = AdNeutralPitch;
if(GetParamWord(PID_ACC_PITCH) > 1023)
{
NeutralAccY = abs(Mean_AccRoll) / ACC_AMPLIFY;
NeutralAccX = abs(Mean_AccPitch) / ACC_AMPLIFY;
NeutralAccZ = Current_AccZ;
}
else
{
NeutralAccX = (int16_t)GetParamWord(PID_ACC_PITCH);
NeutralAccY = (int16_t)GetParamWord(PID_ACC_ROLL);
NeutralAccZ = (int16_t)GetParamWord(PID_ACC_Z);
}
Reading_IntegralGyroPitch = 0;
Reading_IntegralGyroPitch2 = 0;
Reading_IntegralGyroRoll = 0;
Reading_IntegralGyroRoll2 = 0;
Reading_IntegralGyroYaw = 0;
Reading_GyroPitch = 0;
Reading_GyroRoll = 0;
Reading_GyroYaw = 0;
StartAirPressure = AirPressure;
HeightD = 0;
Reading_Integral_Top = 0;
CompassCourse = CompassHeading;
BeepTime = 50;
TurnOver180Pitch = (int32_t) ParamSet.AngleTurnOverPitch * 2500L;
TurnOver180Roll = (int32_t) ParamSet.AngleTurnOverRoll * 2500L;
ExternHeightValue = 0;
GPS_Neutral();
}
 
/************************************************************************/
/* Averaging Measurement Readings */
/************************************************************************/
void Mean(void)
{
static int32_t tmpl,tmpl2;
 
// Get offset corrected gyro readings (~ to angular velocity)
Reading_GyroYaw = AdNeutralYaw - AdValueGyrYaw;
Reading_GyroRoll = AdValueGyrRoll - AdNeutralRoll;
Reading_GyroPitch = AdValueGyrPitch - AdNeutralPitch;
 
DebugOut.Analog[26] = Reading_GyroPitch;
DebugOut.Analog[28] = Reading_GyroRoll;
 
// Acceleration Sensor
// sliding average sensor readings
Mean_AccPitch = ((int32_t)Mean_AccPitch * 1 + ((ACC_AMPLIFY * (int32_t)AdValueAccPitch))) / 2L;
Mean_AccRoll = ((int32_t)Mean_AccRoll * 1 + ((ACC_AMPLIFY * (int32_t)AdValueAccRoll))) / 2L;
Mean_AccTop = ((int32_t)Mean_AccTop * 1 + ((int32_t)AdValueAccTop)) / 2L;
 
// sum sensor readings for later averaging
IntegralAccPitch += ACC_AMPLIFY * AdValueAccPitch;
IntegralAccRoll += ACC_AMPLIFY * AdValueAccRoll;
 
// Yaw
// calculate yaw gyro intergral (~ to rotation angle)
Reading_IntegralGyroYaw += Reading_GyroYaw;
// Coupling fraction
if(!Looping_Pitch && !Looping_Roll && (ParamSet.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE))
{
tmpl = Reading_IntegralGyroPitch / 4096L;
tmpl *= Reading_GyroYaw;
tmpl *= FCParam.Yaw_PosFeedback; //125
tmpl /= 2048L;
tmpl2 = Reading_IntegralGyroRoll / 4096L;
tmpl2 *= Reading_GyroYaw;
tmpl2 *= FCParam.Yaw_PosFeedback;
tmpl2 /= 2048L;
}
else tmpl = tmpl2 = 0;
 
// Roll
Reading_GyroRoll += tmpl;
Reading_GyroRoll += (tmpl2 * FCParam.Yaw_NegFeedback) / 512L;
Reading_IntegralGyroRoll2 += Reading_GyroRoll;
Reading_IntegralGyroRoll += Reading_GyroRoll - AttitudeCorrectionRoll;
if(Reading_IntegralGyroRoll > TurnOver180Roll)
{
Reading_IntegralGyroRoll = -(TurnOver180Roll - 10000L);
Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
}
if(Reading_IntegralGyroRoll < -TurnOver180Roll)
{
Reading_IntegralGyroRoll = (TurnOver180Roll - 10000L);
Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
}
if(AdValueGyrRoll < 15) Reading_GyroRoll = -1000;
if(AdValueGyrRoll < 7) Reading_GyroRoll = -2000;
if(BoardRelease == 10)
{
if(AdValueGyrRoll > 1010) Reading_GyroRoll = +1000;
if(AdValueGyrRoll > 1017) Reading_GyroRoll = +2000;
}
else
{
if(AdValueGyrRoll > 2020) Reading_GyroRoll = +1000;
if(AdValueGyrRoll > 2034) Reading_GyroRoll = +2000;
}
// Pitch
Reading_GyroPitch -= tmpl2;
Reading_GyroPitch -= (tmpl*FCParam.Yaw_NegFeedback) / 512L;
Reading_IntegralGyroPitch2 += Reading_GyroPitch;
Reading_IntegralGyroPitch += Reading_GyroPitch - AttitudeCorrectionPitch;
if(Reading_IntegralGyroPitch > TurnOver180Pitch)
{
Reading_IntegralGyroPitch = -(TurnOver180Pitch - 10000L);
Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
}
if(Reading_IntegralGyroPitch < -TurnOver180Pitch)
{
Reading_IntegralGyroPitch = (TurnOver180Pitch - 10000L);
Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
}
if(AdValueGyrPitch < 15) Reading_GyroPitch = -1000;
if(AdValueGyrPitch < 7) Reading_GyroPitch = -2000;
if(BoardRelease == 10)
{
if(AdValueGyrPitch > 1010) Reading_GyroPitch = +1000;
if(AdValueGyrPitch > 1017) Reading_GyroPitch = +2000;
}
else
{
if(AdValueGyrPitch > 2020) Reading_GyroPitch = +1000;
if(AdValueGyrPitch > 2034) Reading_GyroPitch = +2000;
}
 
// start ADC again to capture measurement values for the next loop
ADC_Enable();
 
IntegralYaw = Reading_IntegralGyroYaw;
IntegralPitch = Reading_IntegralGyroPitch;
IntegralRoll = Reading_IntegralGyroRoll;
IntegralPitch2 = Reading_IntegralGyroPitch2;
IntegralRoll2 = Reading_IntegralGyroRoll2;
 
if((ParamSet.GlobalConfig & CFG_ROTARY_RATE_LIMITER) && !Looping_Pitch && !Looping_Roll)
{
if(Reading_GyroPitch > 200) Reading_GyroPitch += 4 * (Reading_GyroPitch - 200);
else if(Reading_GyroPitch < -200) Reading_GyroPitch += 4 * (Reading_GyroPitch + 200);
if(Reading_GyroRoll > 200) Reading_GyroRoll += 4 * (Reading_GyroRoll - 200);
else if(Reading_GyroRoll < -200) Reading_GyroRoll += 4 * (Reading_GyroRoll + 200);
}
}
 
/************************************************************************/
/* Averaging Measurement Readings for Calibration */
/************************************************************************/
void CalibMean(void)
{
// stop ADC to avoid changing values during calculation
ADC_Disable();
 
Reading_GyroPitch = AdValueGyrPitch;
Reading_GyroRoll = AdValueGyrRoll;
Reading_GyroYaw = AdValueGyrYaw;
 
Mean_AccPitch = ACC_AMPLIFY * (int32_t)AdValueAccPitch;
Mean_AccRoll = ACC_AMPLIFY * (int32_t)AdValueAccRoll;
Mean_AccTop = (int32_t)AdValueAccTop;
// start ADC (enables internal trigger so that the ISR in analog.c
// updates the readings once)
ADC_Enable();
 
TurnOver180Pitch = (int32_t) ParamSet.AngleTurnOverPitch * 2500L;
TurnOver180Roll = (int32_t) ParamSet.AngleTurnOverRoll * 2500L;
}
 
/************************************************************************/
/* Transmit Motor Data via I2C */
/************************************************************************/
void SendMotorData(void)
{
if(MOTOR_OFF || !MotorsOn)
{
Motor_RearLeft = 0;
Motor_RearRight = 0;
Motor_FrontLeft = 0;
Motor_FrontRight = 0;
Motor_Right = 0;
Motor_Left = 0;
if(MotorTest[0]) Motor_FrontLeft = Motor_FrontRight = MotorTest[0];
if(MotorTest[1]) Motor_RearLeft = Motor_RearRight = MotorTest[1];
if(MotorTest[2]) Motor_Left = MotorTest[2];
if(MotorTest[3]) Motor_Right = MotorTest[3];
}
 
DebugOut.Analog[12] = Motor_FrontLeft;
DebugOut.Analog[13] = Motor_RearRight;
DebugOut.Analog[14] = Motor_FrontRight;
DebugOut.Analog[15] = Motor_RearLeft;
DebugOut.Analog[16] = Motor_Left;
DebugOut.Analog[17] = Motor_Right;
//Start I2C Interrupt Mode
twi_state = 0;
motor = 0;
I2C_Start();
}
 
 
 
/************************************************************************/
/* Maps the parameter to poti values */
/************************************************************************/
void ParameterMapping(void)
{
if(RC_Quality > 160) // do the mapping of RC-Potis only if the rc-signal is ok
// else the last updated values are used
{
//update poti values by rc-signals
#define CHK_POTI(b,a,min,max) { if(a > 250) { if(a == 251) b = Poti1; else if(a == 252) b = Poti2; else if(a == 253) b = Poti3; else if(a == 254) b = Poti4;} else b = a; if(b <= min) b = min; else if(b >= max) b = max;}
CHK_POTI(FCParam.MaxHeight,ParamSet.MaxHeight,0,255);
CHK_POTI(FCParam.Height_D,ParamSet.Height_D,0,100);
CHK_POTI(FCParam.Height_P,ParamSet.Height_P,0,100);
CHK_POTI(FCParam.Height_ACC_Effect,ParamSet.Height_ACC_Effect,0,255);
CHK_POTI(FCParam.CompassYawEffect,ParamSet.CompassYawEffect,0,255);
CHK_POTI(FCParam.Gyro_P,ParamSet.Gyro_P,10,255);
CHK_POTI(FCParam.Gyro_I,ParamSet.Gyro_I,0,255);
CHK_POTI(FCParam.I_Factor,ParamSet.I_Factor,0,255);
CHK_POTI(FCParam.UserParam1,ParamSet.UserParam1,0,255);
CHK_POTI(FCParam.UserParam2,ParamSet.UserParam2,0,255);
CHK_POTI(FCParam.UserParam3,ParamSet.UserParam3,0,255);
CHK_POTI(FCParam.UserParam4,ParamSet.UserParam4,0,255);
CHK_POTI(FCParam.UserParam5,ParamSet.UserParam5,0,255);
CHK_POTI(FCParam.UserParam6,ParamSet.UserParam6,0,255);
CHK_POTI(FCParam.UserParam7,ParamSet.UserParam7,0,255);
CHK_POTI(FCParam.UserParam8,ParamSet.UserParam8,0,255);
CHK_POTI(FCParam.ServoPitchControl,ParamSet.ServoPitchControl,0,255);
CHK_POTI(FCParam.LoopThrustLimit,ParamSet.LoopThrustLimit,0,255);
CHK_POTI(FCParam.Yaw_PosFeedback,ParamSet.Yaw_PosFeedback,0,255);
CHK_POTI(FCParam.Yaw_NegFeedback,ParamSet.Yaw_NegFeedback,0,255);
CHK_POTI(FCParam.DynamicStability,ParamSet.DynamicStability,0,255);
Ki = (float) FCParam.I_Factor * FACTOR_I;
}
}
 
 
/************************************************************************/
/* MotorControl */
/************************************************************************/
void MotorControl(void)
{
int16_t MotorValue, pd_result, h, tmp_int;
int16_t YawMixFraction, ThrustMixFraction, PitchMixFraction, RollMixFraction;
static int32_t SumPitch = 0, SumRoll = 0;
static int32_t SetPointYaw = 0;
static int32_t IntegralErrorPitch = 0;
static int32_t IntegralErrorRoll = 0;
static uint16_t RcLostTimer;
static uint8_t delay_neutral = 0, delay_startmotors = 0, delay_stopmotors = 0;
static uint16_t Model_Is_Flying = 0;
static uint8_t HeightControlActive = 0;
static int16_t HeightControlThrust = 0;
static int8_t TimerDebugOut = 0;
static uint16_t UpdateCompassCourse = 0;
static int32_t CorrectionPitch, CorrectionRoll;
 
Mean();
GRN_ON;
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// determine thrust value
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
ThrustMixFraction = StickThrust;
if(ThrustMixFraction < 0) ThrustMixFraction = 0;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// RC-signal is bad
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(RC_Quality < 120) // the rc-frame signal is not reveived or noisy
{
if(!PcAccess) // if also no PC-Access via UART
{
if(BeepModulation == 0xFFFF)
{
BeepTime = 15000; // 1.5 seconds
BeepModulation = 0x0C00;
}
}
if(RcLostTimer) RcLostTimer--; // decremtent timer after rc sigal lost
else // rc lost countdown finished
{
MotorsOn = 0; // stop all motors
EmergencyLanding = 0; // emergency landing is over
}
ROT_ON; // set red led
if(Model_Is_Flying > 2000) // wahrscheinlich in der Luft --> langsam absenken
{
ThrustMixFraction = ParamSet.EmergencyThrust; // set emergency thrust
EmergencyLanding = 1; // enable emergency landing
// set neutral rc inputs
PPM_diff[ParamSet.ChannelAssignment[CH_PITCH]] = 0;
PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] = 0;
PPM_diff[ParamSet.ChannelAssignment[CH_YAW]] = 0;
PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] = 0;
PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] = 0;
PPM_in[ParamSet.ChannelAssignment[CH_YAW]] = 0;
}
else MotorsOn = 0; // switch of all motors
} // eof RC_Quality < 120
else
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// RC-signal is good
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(RC_Quality > 150)
{
EmergencyLanding = 0; // switch off emergency landing if RC-signal is okay
// reset emergency timer
RcLostTimer = ParamSet.EmergencyThrustDuration * 50;
if(ThrustMixFraction > 40)
{
if(Model_Is_Flying < 0xFFFF) Model_Is_Flying++;
}
if((Model_Is_Flying < 200) || (ThrustMixFraction < 40))
{
SumPitch = 0;
SumRoll = 0;
Reading_IntegralGyroYaw = 0;
}
 
if(Poti1 < PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110) Poti1++; else if(Poti1 > PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110 && Poti1) Poti1--;
if(Poti2 < PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110) Poti2++; else if(Poti2 > PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110 && Poti2) Poti2--;
if(Poti3 < PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110) Poti3++; else if(Poti3 > PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110 && Poti3) Poti3--;
if(Poti4 < PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110) Poti4++; else if(Poti4 > PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110 && Poti4) Poti4--;
//PPM24-Extension
if(Poti5 < PPM_in[9] + 110) Poti5++; else if(Poti5 > PPM_in[9] + 110 && Poti5) Poti5--;
if(Poti6 < PPM_in[10] + 110) Poti6++; else if(Poti6 > PPM_in[10] + 110 && Poti6) Poti6--;
if(Poti7 < PPM_in[11] + 110) Poti7++; else if(Poti7 > PPM_in[11] + 110 && Poti7) Poti7--;
if(Poti8 < PPM_in[12] + 110) Poti8++; else if(Poti8 > PPM_in[12] + 110 && Poti8) Poti8--;
//limit poti values
if(Poti1 < 0) Poti1 = 0; else if(Poti1 > 255) Poti1 = 255;
if(Poti2 < 0) Poti2 = 0; else if(Poti2 > 255) Poti2 = 255;
if(Poti3 < 0) Poti3 = 0; else if(Poti3 > 255) Poti3 = 255;
if(Poti4 < 0) Poti4 = 0; else if(Poti4 > 255) Poti4 = 255;
//PPM24-Extension
if(Poti5 < 0) Poti5 = 0; else if(Poti5 > 255) Poti5 = 255;
if(Poti6 < 0) Poti6 = 0; else if(Poti6 > 255) Poti6 = 255;
if(Poti7 < 0) Poti7 = 0; else if(Poti7 > 255) Poti7 = 255;
if(Poti8 < 0) Poti8 = 0; else if(Poti8 > 255) Poti8 = 255;
 
// if motors are off and the thrust stick is in the upper position
if((PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] > 80) && MotorsOn == 0)
{
// and if the yaw stick is in the leftmost position
if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75)
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// calibrate the neutral readings of all attitude sensors
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
{
if(++delay_neutral > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
{
delay_neutral = 0;
GRN_OFF;
Model_Is_Flying = 0;
// check roll/pitch stick position
// if pitch stick is topmost or roll stick is leftmost --> change parameter setting
// according to roll/pitch stick position
if(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70 || abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > 70)
{
uint8_t setting = 1; // default
// _________
// |2 3 4|
// | |
// |1 5|
// | |
// |_________|
//
// roll stick leftmost and pitch stick centered --> setting 1
if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < 70) setting = 1;
// roll stick leftmost and pitch stick topmost --> setting 2
if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 2;
// roll stick centered an pitch stick topmost --> setting 3
if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 3;
// roll stick rightmost and pitch stick topmost --> setting 4
if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 4;
// roll stick rightmost and pitch stick centered --> setting 5
if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < 70) setting = 5;
// update active parameter set in eeprom
SetActiveParamSet(setting);
}
ParamSet_ReadFromEEProm(GetActiveParamSet());
SetNeutral();
Beep(GetActiveParamSet());
}
}
// and if the yaw stick is in the rightmost position
// save the ACC neutral setting to eeprom
else if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75)
{
if(++delay_neutral > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
{
delay_neutral = 0;
GRN_OFF;
SetParamWord(PID_ACC_PITCH, 0xFFFF); // make value invalid
Model_Is_Flying = 0;
SetNeutral();
// Save ACC neutral settings to eeprom
SetParamWord(PID_ACC_PITCH, (uint16_t)NeutralAccX);
SetParamWord(PID_ACC_ROLL, (uint16_t)NeutralAccY);
SetParamWord(PID_ACC_Z, (uint16_t)NeutralAccZ);
Beep(GetActiveParamSet());
}
}
else delay_neutral = 0;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// thrust stick is down
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] < -85)
{
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// and yaw stick is rightmost --> start motors
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75)
{
if(++delay_startmotors > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
{
delay_startmotors = 200; // do not repeat if once executed
Model_Is_Flying = 1;
MotorsOn = 1;
SetPointYaw = 0;
Reading_IntegralGyroYaw = 0;
Reading_IntegralGyroPitch = 0;
Reading_IntegralGyroRoll = 0;
Reading_IntegralGyroPitch2 = IntegralPitch;
Reading_IntegralGyroRoll2 = IntegralRoll;
SumPitch = 0;
SumRoll = 0;
if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
{
GPS_SetHomePosition();
}
}
}
else delay_startmotors = 0; // reset delay timer if sticks are not in this position
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// and yaw stick is leftmost --> stop motors
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75)
{
if(++delay_stopmotors > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
{
delay_stopmotors = 200; // do not repeat if once executed
Model_Is_Flying = 0;
MotorsOn = 0;
if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
{
GPS_ClearHomePosition();
}
}
}
else delay_stopmotors = 0; // reset delay timer if sticks are not in this position
}
// remapping of paameters only if the signal rc-sigbnal conditions are good
} // eof RC_Quality > 150
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// new values from RC
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(!NewPpmData-- || EmergencyLanding) // NewData = 0 means new data from RC
{
int tmp_int;
ParameterMapping(); // remapping params (online poti replacement)
// calculate Stick inputs by rc channels (P) and changing of rc channels (D)
StickPitch = (StickPitch * 3 + PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] * ParamSet.Stick_P) / 4;
StickPitch += PPM_diff[ParamSet.ChannelAssignment[CH_PITCH]] * ParamSet.Stick_D;
StickRoll = (StickRoll * 3 + PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.Stick_P) / 4;
StickRoll += PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.Stick_D;
 
// direct mapping of yaw and thrust
StickYaw = -PPM_in[ParamSet.ChannelAssignment[CH_YAW]];
StickThrust = PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] + 120;// shift to positive numbers
 
// update max stick positions for pitch and roll
if(abs(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]]) > MaxStickPitch)
MaxStickPitch = abs(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]]);
else MaxStickPitch--;
if(abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > MaxStickRoll)
MaxStickRoll = abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]);
else MaxStickRoll--;
 
// update gyro control loop factors
 
Gyro_P_Factor = ((float) FCParam.Gyro_P + 10.0) / 256.0;
Gyro_I_Factor = ((float) FCParam.Gyro_I) / 44000;
 
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Digital Control via DubWise
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
#define KEY_VALUE (FCParam.UserParam1 * 4) // step width
if(DubWiseKeys[1]) BeepTime = 10;
if(DubWiseKeys[1] & DUB_KEY_UP) tmp_int = KEY_VALUE;
else if(DubWiseKeys[1] & DUB_KEY_DOWN) tmp_int = -KEY_VALUE;
else tmp_int = 0;
ExternStickPitch = (ExternStickPitch * 7 + tmp_int) / 8;
if(DubWiseKeys[1] & DUB_KEY_LEFT) tmp_int = KEY_VALUE;
else if(DubWiseKeys[1] & DUB_KEY_RIGHT) tmp_int = -KEY_VALUE;
else tmp_int = 0;
ExternStickRoll = (ExternStickRoll * 7 + tmp_int) / 8;
 
if(DubWiseKeys[0] & 8) ExternStickYaw = 50;else
if(DubWiseKeys[0] & 4) ExternStickYaw =-50;else ExternStickYaw = 0;
if(DubWiseKeys[0] & 2) ExternHeightValue++;
if(DubWiseKeys[0] & 16) ExternHeightValue--;
 
StickPitch += ExternStickPitch / 8;
StickRoll += ExternStickRoll / 8;
StickYaw += ExternStickYaw;
 
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//+ Analog control via serial communication
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
if(ExternControl.Config & 0x01 && FCParam.UserParam1 > 128)
{
StickPitch += (int16_t) ExternControl.Pitch * (int16_t) ParamSet.Stick_P;
StickRoll += (int16_t) ExternControl.Roll * (int16_t) ParamSet.Stick_P;
StickYaw += ExternControl.Yaw;
ExternHeightValue = (int16_t) ExternControl.Height * (int16_t)ParamSet.Height_Gain;
if(ExternControl.Thrust < StickThrust) StickThrust = ExternControl.Thrust;
}
// disable I part of gyro control feedback
if(ParamSet.GlobalConfig & CFG_HEADING_HOLD) Gyro_I_Factor = 0;
// avoid negative scaling factors
if(Gyro_P_Factor < 0) Gyro_P_Factor = 0;
if(Gyro_I_Factor < 0) Gyro_I_Factor = 0;
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Looping?
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_LEFT) Looping_Left = 1;
else
{
if(Looping_Left) // Hysteresis
{
if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) Looping_Left = 0;
}
}
if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < -ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_RIGHT) Looping_Right = 1;
else
{
if(Looping_Right) // Hysteresis
{
if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) Looping_Right = 0;
}
}
 
if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_UP) Looping_Top = 1;
else
{
if(Looping_Top) // Hysteresis
{
if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) Looping_Top = 0;
}
}
if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < -ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_DOWN) Looping_Down = 1;
else
{
if(Looping_Down) // Hysteresis
{
if(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) Looping_Down = 0;
}
}
 
if(Looping_Left || Looping_Right) Looping_Roll = 1; else Looping_Roll = 0;
if(Looping_Top || Looping_Down) {Looping_Pitch = 1; Looping_Roll = 0; Looping_Left = 0; Looping_Right = 0;} else Looping_Pitch = 0;
} // End of new RC-Values or Emergency Landing
 
 
if(Looping_Roll) BeepTime = 100;
if(Looping_Roll || Looping_Pitch)
{
if(ThrustMixFraction > ParamSet.LoopThrustLimit) ThrustMixFraction = ParamSet.LoopThrustLimit;
}
 
 
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//+ LED Control on J16/J17
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
LED1_Time = FCParam.UserParam7;
LED2_Time = FCParam.UserParam8;
LED_Update();
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// in case of emergency landing
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// set all inputs to save values
if(EmergencyLanding)
{
StickYaw = 0;
StickPitch = 0;
StickRoll = 0;
Gyro_P_Factor = 0.5;
Gyro_I_Factor = 0.003;
Looping_Roll = 0;
Looping_Pitch = 0;
MaxStickPitch = 0;
MaxStickRoll = 0;
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Trim Gyro-Integrals to ACC-Signals
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
#define BALANCE_NUMBER 256L
// sum for averaging
MeanIntegralPitch += IntegralPitch;
MeanIntegralRoll += IntegralRoll;
 
if(Looping_Pitch || Looping_Roll) // if looping in any direction
{
// reset averaging for acc and gyro integral as well as gyro integral acc correction
MeasurementCounter = 0;
 
IntegralAccPitch = 0;
IntegralAccRoll = 0;
 
MeanIntegralPitch = 0;
MeanIntegralRoll = 0;
 
Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
 
AttitudeCorrectionPitch = 0;
AttitudeCorrectionRoll = 0;
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(!Looping_Pitch && !Looping_Roll) // if not lopping in any direction
{
int32_t tmp_long, tmp_long2;
// determine the deviation of gyro integral from averaged acceleration sensor
tmp_long = (int32_t)(IntegralPitch / ParamSet.GyroAccFactor - (int32_t)Mean_AccPitch);
tmp_long /= 16;
tmp_long2 = (int32_t)(IntegralRoll / ParamSet.GyroAccFactor - (int32_t)Mean_AccRoll);
tmp_long2 /= 16;
 
if((MaxStickPitch > 15) || (MaxStickRoll > 15)) // reduce effect during stick commands
{
tmp_long /= 3;
tmp_long2 /= 3;
}
if(abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25) // reduce further if yaw stick is active
{
tmp_long /= 3;
tmp_long2 /= 3;
}
 
#define BALANCE 32
// limit correction effect
if(tmp_long > BALANCE) tmp_long = BALANCE;
if(tmp_long < -BALANCE) tmp_long =-BALANCE;
if(tmp_long2 > BALANCE) tmp_long2 = BALANCE;
if(tmp_long2 <-BALANCE) tmp_long2 =-BALANCE;
// correct current readings
Reading_IntegralGyroPitch -= tmp_long;
Reading_IntegralGyroRoll -= tmp_long2;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// MeasurementCounter is incremented in the isr of analog.c
if(MeasurementCounter >= BALANCE_NUMBER) // averaging number has reached
{
static int16_t cnt = 0;
static int8_t last_n_p, last_n_n, last_r_p, last_r_n;
static int32_t MeanIntegralPitch_old, MeanIntegralRoll_old;
 
// if not lopping in any direction (this should be alwais the case,
// because the Measurement counter is reset to 0 if looping in any direction is active.)
if(!Looping_Pitch && !Looping_Roll)
{
// Calculate mean value of the gyro integrals
MeanIntegralPitch /= BALANCE_NUMBER;
MeanIntegralRoll /= BALANCE_NUMBER;
 
// Calculate mean of the acceleration values
IntegralAccPitch = (ParamSet.GyroAccFactor * IntegralAccPitch) / BALANCE_NUMBER;
IntegralAccRoll = (ParamSet.GyroAccFactor * IntegralAccRoll ) / BALANCE_NUMBER;
 
// Pitch ++++++++++++++++++++++++++++++++++++++++++++++++
// Calculate deviation of the averaged gyro integral and the averaged acceleration integral
IntegralErrorPitch = (int32_t)(MeanIntegralPitch - (int32_t)IntegralAccPitch);
CorrectionPitch = IntegralErrorPitch / ParamSet.GyroAccTrim;
AttitudeCorrectionPitch = CorrectionPitch / BALANCE_NUMBER;
// Roll ++++++++++++++++++++++++++++++++++++++++++++++++
// Calculate deviation of the averaged gyro integral and the averaged acceleration integral
IntegralErrorRoll = (int32_t)(MeanIntegralRoll - (int32_t)IntegralAccRoll);
CorrectionRoll = IntegralErrorRoll / ParamSet.GyroAccTrim;
AttitudeCorrectionRoll = CorrectionRoll / BALANCE_NUMBER;
 
if((MaxStickPitch > 15) || (MaxStickRoll > 15) || (abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25))
{
AttitudeCorrectionPitch /= 2;
AttitudeCorrectionRoll /= 2;
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Gyro-Drift ermitteln
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// deviation of gyro pitch integral (IntegralPitch is corrected by averaged acc sensor)
IntegralErrorPitch = IntegralPitch2 - IntegralPitch;
Reading_IntegralGyroPitch2 -= IntegralErrorPitch;
// deviation of gyro pitch integral (IntegralPitch is corrected by averaged acc sensor)
IntegralErrorRoll = IntegralRoll2 - IntegralRoll;
Reading_IntegralGyroRoll2 -= IntegralErrorRoll;
 
 
// DebugOut.Analog[17] = IntegralAccPitch / 26;
DebugOut.Analog[18] = IntegralAccRoll / 26;
DebugOut.Analog[19] = IntegralErrorPitch;// / 26;
DebugOut.Analog[20] = IntegralErrorRoll;// / 26;
DebugOut.Analog[21] = MeanIntegralPitch / 26;
DebugOut.Analog[22] = MeanIntegralRoll / 26;
//DebugOut.Analog[28] = CorrectionPitch;
DebugOut.Analog[29] = CorrectionRoll;
DebugOut.Analog[30] = AttitudeCorrectionRoll * 10;
 
#define ERROR_LIMIT (BALANCE_NUMBER * 4)
#define ERROR_LIMIT2 (BALANCE_NUMBER * 16)
#define MOVEMENT_LIMIT 20000
// Pitch +++++++++++++++++++++++++++++++++++++++++++++++++
cnt = 1;// + labs(IntegralErrorPitch) / 4096;
CorrectionPitch = 0;
if(labs(MeanIntegralPitch_old - MeanIntegralPitch) < MOVEMENT_LIMIT)
{
if(IntegralErrorPitch > ERROR_LIMIT2)
{
if(last_n_p)
{
cnt += labs(IntegralErrorPitch) / ERROR_LIMIT2;
CorrectionPitch = IntegralErrorPitch / 8;
if(CorrectionPitch > 5000) CorrectionPitch = 5000;
AttitudeCorrectionPitch += CorrectionPitch / BALANCE_NUMBER;
}
else last_n_p = 1;
}
else last_n_p = 0;
if(IntegralErrorPitch < -ERROR_LIMIT2)
{
if(last_n_n)
{
cnt += labs(IntegralErrorPitch) / ERROR_LIMIT2;
CorrectionPitch = IntegralErrorPitch / 8;
if(CorrectionPitch < -5000) CorrectionPitch = -5000;
AttitudeCorrectionPitch += CorrectionPitch / BALANCE_NUMBER;
}
else last_n_n = 1;
}
else last_n_n = 0;
}
else cnt = 0;
if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp;
// correct Gyro Offsets
if(IntegralErrorPitch > ERROR_LIMIT) AdNeutralPitch += cnt;
if(IntegralErrorPitch < -ERROR_LIMIT) AdNeutralPitch -= cnt;
 
// Roll +++++++++++++++++++++++++++++++++++++++++++++++++
cnt = 1;// + labs(IntegralErrorPitch) / 4096;
CorrectionRoll = 0;
if(labs(MeanIntegralRoll_old - MeanIntegralRoll) < MOVEMENT_LIMIT)
{
if(IntegralErrorRoll > ERROR_LIMIT2)
{
if(last_r_p)
{
cnt += labs(IntegralErrorRoll) / ERROR_LIMIT2;
CorrectionRoll = IntegralErrorRoll / 8;
if(CorrectionRoll > 5000) CorrectionRoll = 5000;
AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER;
}
else last_r_p = 1;
}
else last_r_p = 0;
if(IntegralErrorRoll < -ERROR_LIMIT2)
{
if(last_r_n)
{
cnt += labs(IntegralErrorRoll) / ERROR_LIMIT2;
CorrectionRoll = IntegralErrorRoll / 8;
if(CorrectionRoll < -5000) CorrectionRoll = -5000;
AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER;
}
else last_r_n = 1;
}
else last_r_n = 0;
}
else cnt = 0;
// correct Gyro Offsets
if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp;
if(IntegralErrorRoll > ERROR_LIMIT) AdNeutralRoll += cnt;
if(IntegralErrorRoll < -ERROR_LIMIT) AdNeutralRoll -= cnt;
 
DebugOut.Analog[27] = CorrectionRoll;
DebugOut.Analog[23] = AdNeutralPitch;//10*(AdNeutralPitch - StartNeutralPitch);
DebugOut.Analog[24] = 10*(AdNeutralRoll - StartNeutralRoll);
}
else // looping is active
{
AttitudeCorrectionRoll = 0;
AttitudeCorrectionPitch = 0;
}
 
// if Gyro_I_Factor == 0 , for example at Heading Hold, ignore attitude correction
if(!Gyro_I_Factor)
{
AttitudeCorrectionRoll = 0;
AttitudeCorrectionPitch = 0;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++
MeanIntegralPitch_old = MeanIntegralPitch;
MeanIntegralRoll_old = MeanIntegralRoll;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++
// reset variables used for averaging
IntegralAccPitch = 0;
IntegralAccRoll = 0;
MeanIntegralPitch = 0;
MeanIntegralRoll = 0;
MeasurementCounter = 0;
} // end of averaging
 
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Yawing
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(abs(StickYaw) > 20 ) // yaw stick is activated
{
if(!(ParamSet.GlobalConfig & CFG_COMPASS_FIX)) UpdateCompassCourse = 1;
}
// exponential stick sensitivity in yawring rate
tmp_int = (int32_t) ParamSet.Yaw_P * ((int32_t)StickYaw * abs(StickYaw)) / 512L; // expo y = ax + bx²
tmp_int += (ParamSet.Yaw_P * StickYaw) / 4;
SetPointYaw = tmp_int;
// trimm drift of Reading_IntegralGyroYaw with SetPointYaw(StickYaw)
Reading_IntegralGyroYaw -= tmp_int;
// limit the effect
if(Reading_IntegralGyroYaw > 50000) Reading_IntegralGyroYaw = 50000;
if(Reading_IntegralGyroYaw <-50000) Reading_IntegralGyroYaw =-50000;
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Compass
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// compass code is used if Compass option or GPS option is selected
if((ParamSet.GlobalConfig & CFG_COMPASS_ACTIVE) || (ParamSet.GlobalConfig & CFG_GPS_ACTIVE))
{
static uint8_t updCompass = 0;
int16_t w,v;
 
if (!updCompass--)
{
updCompass = 49; // update only at 2ms*50 = 100ms (10Hz)
// get current compass heading (angle between MK head and magnetic north)
#ifdef USE_MM3
CompassHeading = MM3_Heading();
#endif
#ifdef USE_CMPS03
CompassHeading = CMPS03_Heading();
#endif
if (CompassHeading < 0) CompassOffCourse = 0; // disable gyro compass correction on bad compass data
else CompassOffCourse = ((540 + CompassHeading - CompassCourse) % 360) - 180; // calc course deviation
}
 
// get maximum attitude angle
w = abs(IntegralPitch/512);
v = abs(IntegralRoll /512);
if(v > w) w = v;
if (w < 25)
{
if(UpdateCompassCourse)
{
UpdateCompassCourse = 0;
CompassCourse = CompassHeading;
CompassOffCourse = 0;
}
w = (w * FCParam.CompassYawEffect) / 64;
w = FCParam.CompassYawEffect - w;
if(w > 0) Reading_IntegralGyroYaw += (CompassOffCourse * w) / 32;
}
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// GPS
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
{
GPS_I_Factor = FCParam.UserParam2;
GPS_P_Factor = FCParam.UserParam5;
GPS_D_Factor = FCParam.UserParam6;
if(EmergencyLanding) GPS_Main(230); // enables Comming Home
else GPS_Main(Poti3); // behavior controlled by Poti3
}
else
{
GPS_Neutral();
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Debugwerte zuordnen
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(!TimerDebugOut--)
{
TimerDebugOut = 24; // update debug outputs every 25*2ms = 50 ms (20Hz)
DebugOut.Analog[0] = IntegralPitch / ParamSet.GyroAccFactor;
DebugOut.Analog[1] = IntegralRoll / ParamSet.GyroAccFactor;
DebugOut.Analog[2] = Mean_AccPitch;
DebugOut.Analog[3] = Mean_AccRoll;
DebugOut.Analog[4] = Reading_GyroYaw;
DebugOut.Analog[5] = ReadingHeight;
DebugOut.Analog[6] = (Reading_Integral_Top / 512);
DebugOut.Analog[8] = CompassHeading;
DebugOut.Analog[9] = UBat;
DebugOut.Analog[10] = RC_Quality;
//DebugOut.Analog[11] = RC_Quality;
//DebugOut.Analog[16] = Mean_AccTop;
 
/* DebugOut.Analog[16] = motor_rx[0];
DebugOut.Analog[17] = motor_rx[1];
DebugOut.Analog[18] = motor_rx[2];
DebugOut.Analog[19] = motor_rx[3];
DebugOut.Analog[20] = motor_rx[0] + motor_rx[1] + motor_rx[2] + motor_rx[3];
DebugOut.Analog[20] /= 14;
DebugOut.Analog[21] = motor_rx[4];
DebugOut.Analog[22] = motor_rx[5];
DebugOut.Analog[23] = motor_rx[6];
DebugOut.Analog[24] = motor_rx[7];
DebugOut.Analog[25] = motor_rx[4] + motor_rx[5] + motor_rx[6] + motor_rx[7];
 
DebugOut.Analog[9] = Reading_GyroPitch;
DebugOut.Analog[9] = SetPointHeight;
DebugOut.Analog[10] = Reading_IntegralGyroYaw / 128;
 
DebugOut.Analog[10] = FCParam.Gyro_I;
DebugOut.Analog[10] = ParamSet.Gyro_I;
DebugOut.Analog[9] = CompassOffCourse;
DebugOut.Analog[10] = ThrustMixFraction;
DebugOut.Analog[3] = HeightD * 32;
DebugOut.Analog[4] = HeightControlThrust;
*/
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// calculate control feedback from angle (gyro integral) and agular velocity (gyro signal)
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
if(Looping_Pitch) Reading_GyroPitch = Reading_GyroPitch * Gyro_P_Factor;
else Reading_GyroPitch = IntegralPitch * Gyro_I_Factor + Reading_GyroPitch * Gyro_P_Factor;
if(Looping_Roll) Reading_GyroRoll = Reading_GyroRoll * Gyro_P_Factor;
else Reading_GyroRoll = IntegralRoll * Gyro_I_Factor + Reading_GyroRoll * Gyro_P_Factor;
Reading_GyroYaw = Reading_GyroYaw * (2 * Gyro_P_Factor) + IntegralYaw * Gyro_I_Factor / 2;
 
DebugOut.Analog[25] = IntegralRoll * Gyro_I_Factor;
DebugOut.Analog[31] = StickRoll;// / (26*Gyro_I_Factor);
DebugOut.Analog[28] = Reading_GyroRoll;
 
// limit control feedback
#define MAX_SENSOR 2048
if(Reading_GyroPitch > MAX_SENSOR) Reading_GyroPitch = MAX_SENSOR;
if(Reading_GyroPitch < -MAX_SENSOR) Reading_GyroPitch = -MAX_SENSOR;
if(Reading_GyroRoll > MAX_SENSOR) Reading_GyroRoll = MAX_SENSOR;
if(Reading_GyroRoll < -MAX_SENSOR) Reading_GyroRoll = -MAX_SENSOR;
if(Reading_GyroYaw > MAX_SENSOR) Reading_GyroYaw = MAX_SENSOR;
if(Reading_GyroYaw < -MAX_SENSOR) Reading_GyroYaw = -MAX_SENSOR;
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Height Control
// The height control algorithm reduces the thrust but does not increase the thrust.
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// If height control is activated and no emergency landing is active
if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL) && (!EmergencyLanding) )
{
int tmp_int;
// if height control is activated by an rc channel
if(ParamSet.GlobalConfig & CFG_HEIGHT_SWITCH)
{ // check if parameter is less than activation threshold
if(FCParam.MaxHeight < 50)
{
SetPointHeight = ReadingHeight - 20; // update SetPoint with current reading
HeightControlActive = 0; // disable height control
}
else HeightControlActive = 1; // enable height control
}
else // no switchable height control
{
SetPointHeight = ((int16_t) ExternHeightValue + (int16_t) FCParam.MaxHeight) * (int16_t)ParamSet.Height_Gain - 20;
HeightControlActive = 1;
}
// get current height
h = ReadingHeight;
// if current height is above the setpoint reduce thrust
if((h > SetPointHeight) && HeightControlActive)
{
// ThrustMixFraction - HightDeviation * P - HeightChange * D - ACCTop * DACC
// height difference -> P control part
h = ((h - SetPointHeight) * (int16_t) FCParam.Height_P) / 16;
h = ThrustMixFraction - h; // reduce gas
// height gradient --> D control part
h -= (HeightD * FCParam.Height_D) / 8; // D control part
// acceleration sensor effect
tmp_int = ((Reading_Integral_Top / 512) * (int32_t) FCParam.Height_ACC_Effect) / 32;
if(tmp_int > 50) tmp_int = 50;
if(tmp_int < -50) tmp_int = -50;
h -= tmp_int;
// update height control thrust
HeightControlThrust = (HeightControlThrust*15 + h) / 16;
// limit thrust reduction
if(HeightControlThrust < ParamSet.Height_MinThrust)
{
if(ThrustMixFraction >= ParamSet.Height_MinThrust) HeightControlThrust = ParamSet.Height_MinThrust;
// allows landing also if thrust stick is reduced below min thrust on height control
if(ThrustMixFraction < ParamSet.Height_MinThrust) HeightControlThrust = ThrustMixFraction;
}
// limit thrust to stick setting
if(HeightControlThrust > ThrustMixFraction) HeightControlThrust = ThrustMixFraction;
ThrustMixFraction = HeightControlThrust;
}
}
// limit thrust to parameter setting
if(ThrustMixFraction > ParamSet.Trust_Max - 20) ThrustMixFraction = ParamSet.Trust_Max - 20;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Mixer and PI-Controller
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
DebugOut.Analog[7] = ThrustMixFraction;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Yaw-Fraction
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
YawMixFraction = Reading_GyroYaw - SetPointYaw; // yaw controller
 
// limit YawMixFraction
if(YawMixFraction > (ThrustMixFraction / 2)) YawMixFraction = ThrustMixFraction / 2;
if(YawMixFraction < -(ThrustMixFraction / 2)) YawMixFraction = -(ThrustMixFraction / 2);
if(YawMixFraction > ((ParamSet.Trust_Max - ThrustMixFraction))) YawMixFraction = ((ParamSet.Trust_Max - ThrustMixFraction));
if(YawMixFraction < -((ParamSet.Trust_Max - ThrustMixFraction))) YawMixFraction = -((ParamSet.Trust_Max - ThrustMixFraction));
if(ThrustMixFraction < 20) YawMixFraction = 0;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Pitch-Axis
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
DiffPitch = Reading_GyroPitch - (StickPitch - GPS_Pitch); // get difference
if(Gyro_I_Factor) SumPitch += IntegralPitch * Gyro_I_Factor - (StickPitch - GPS_Pitch); // I-part for attitude control
else SumPitch += DiffPitch; // I-part for head holding
if(SumPitch > 16000) SumPitch = 16000;
if(SumPitch < -16000) SumPitch = -16000;
pd_result = DiffPitch + Ki * SumPitch; // PI-controller for pitch
 
tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(ThrustMixFraction + abs(YawMixFraction)/2)) / 64;
if(pd_result > tmp_int) pd_result = tmp_int;
if(pd_result < -tmp_int) pd_result = -tmp_int;
PitchMixFraction = pd_result;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Roll-Axis
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
DiffRoll = Reading_GyroRoll - (StickRoll - GPS_Roll); // get difference
if(Gyro_I_Factor) SumRoll += IntegralRoll * Gyro_I_Factor - (StickRoll - GPS_Roll); // I-part for attitude control
else SumRoll += DiffRoll; // I-part for head holding
if(SumRoll > 16000) SumRoll = 16000;
if(SumRoll < -16000) SumRoll = -16000;
pd_result = DiffRoll + Ki * SumRoll; // PI-controller for roll
tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(ThrustMixFraction + abs(YawMixFraction)/2)) / 64;
if(pd_result > tmp_int) pd_result = tmp_int;
if(pd_result < -tmp_int) pd_result = -tmp_int;
 
RollMixFraction = pd_result;
 
// Calculate Motor Mixes
// Motor FrontLeft
MotorValue = ThrustMixFraction
+ PitchMixFraction
+ RollMixFraction/2
- YawMixFraction; // Mixer
if ((MotorValue < 0)) MotorValue = 0;
else if(MotorValue > ParamSet.Trust_Max) MotorValue = ParamSet.Trust_Max;
if (MotorValue < ParamSet.Trust_Min) MotorValue = ParamSet.Trust_Min;
Motor_FrontLeft = MotorValue;
 
// Motor FrontRight
MotorValue = ThrustMixFraction
+ PitchMixFraction
- RollMixFraction/2
+ YawMixFraction; // Mixer
if ((MotorValue < 0)) MotorValue = 0;
else if(MotorValue > ParamSet.Trust_Max) MotorValue = ParamSet.Trust_Max;
if (MotorValue < ParamSet.Trust_Min) MotorValue = ParamSet.Trust_Min;
Motor_FrontRight = MotorValue;
 
// Motor RearLeft
MotorValue = ThrustMixFraction
- PitchMixFraction
+ RollMixFraction/2
- YawMixFraction; // Mixer
if ((MotorValue < 0)) MotorValue = 0;
else if(MotorValue > ParamSet.Trust_Max) MotorValue = ParamSet.Trust_Max;
if (MotorValue < ParamSet.Trust_Min) MotorValue = ParamSet.Trust_Min;
Motor_RearLeft = MotorValue;
// Motor RearRight
MotorValue = ThrustMixFraction
- PitchMixFraction
- RollMixFraction/2
+ YawMixFraction; // Mixer
if ((MotorValue < 0)) MotorValue = 0;
else if(MotorValue > ParamSet.Trust_Max) MotorValue = ParamSet.Trust_Max;
if (MotorValue < ParamSet.Trust_Min) MotorValue = ParamSet.Trust_Min;
Motor_RearRight= MotorValue;
// Motor Left
MotorValue = ThrustMixFraction
+ RollMixFraction
+ YawMixFraction; // Mixer
if ((MotorValue < 0)) MotorValue = 0;
else if(MotorValue > ParamSet.Trust_Max) MotorValue = ParamSet.Trust_Max;
if (MotorValue < ParamSet.Trust_Min) MotorValue = ParamSet.Trust_Min;
Motor_Left = MotorValue;
 
// Motor Right
MotorValue = ThrustMixFraction
- RollMixFraction
- YawMixFraction; // Mixer
if ((MotorValue < 0)) MotorValue = 0;
else if(MotorValue > ParamSet.Trust_Max) MotorValue = ParamSet.Trust_Max;
if (MotorValue < ParamSet.Trust_Min) MotorValue = ParamSet.Trust_Min;
Motor_Right = MotorValue;
}