Subversion Repositories NaviCtrl

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
242 killagreg 1
/*#######################################################################################*/
2
/* !!! THIS IS NOT FREE SOFTWARE !!!                                                     */
3
/*#######################################################################################*/
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// + Copyright (c) 2010 Ingo Busker, Holger Buss
6
// + Nur für den privaten Gebrauch / NON-COMMERCIAL USE ONLY
7
// + FOR NON COMMERCIAL USE ONLY
8
// + www.MikroKopter.com
9
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
10
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
11
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
12
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
13
// + bzgl. der Nutzungsbedingungen aufzunehmen.
14
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
15
// + Verkauf von Luftbildaufnahmen, usw.
16
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
17
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
18
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
21
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
22
// + eindeutig als Ursprung verlinkt werden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
25
// + Benutzung auf eigene Gefahr
26
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
27
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// + Die Portierung oder Nutzung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
29
// + mit unserer Zustimmung zulässig
30
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
31
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
32
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
33
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
34
// + this list of conditions and the following disclaimer.
35
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
36
// +     from this software without specific prior written permission.
37
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permitted
38
// +     for non-commercial use (directly or indirectly)
39
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
40
// +     with our written permission
41
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
42
// +     clearly linked as origin
43
// +   * porting the sources to other systems or using the software on other systems (except hardware from www.mikrokopter.de) is not allowed
44
//
45
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
46
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
49
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
50
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
51
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
52
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
53
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
54
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
55
// +  POSSIBILITY OF SUCH DAMAGE.
56
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
254 killagreg 57
#include <math.h>
242 killagreg 58
#include <string.h>
59
#include "91x_lib.h"
253 killagreg 60
#include "ncmag.h"
242 killagreg 61
#include "i2c.h"
62
#include "timer1.h"
63
#include "led.h"
64
#include "spi_slave.h"
65
#include "uart1.h"
254 killagreg 66
#include "eeprom.h"
256 killagreg 67
#include "mymath.h"
242 killagreg 68
 
253 killagreg 69
u8 NCMAG_Present = 0;
254 killagreg 70
u8 NCMAG_IsCalibrated = 0;
242 killagreg 71
 
253 killagreg 72
#define MAG_TYPE_NONE           0
73
#define MAG_TYPE_HMC5843        1
74
#define MAG_TYPE_LSM303DLH      2
254 killagreg 75
u8 NCMAG_MagType = MAG_TYPE_NONE;
242 killagreg 76
 
254 killagreg 77
#define CALIBRATION_VERSION 1
78
#define EEPROM_ADR_MAG_CALIBRATION 50
79
 
256 killagreg 80
#define NCMAG_MIN_RAWVALUE -2047
81
#define NCMAG_MAX_RAWVALUE  2047
82
#define NCMAG_INVALID_DATA -4096
83
 
254 killagreg 84
typedef struct
85
{
86
        s16 Range;
87
        s16 Offset;
256 killagreg 88
} __attribute__((packed)) Scaling_t;
254 killagreg 89
 
90
typedef struct
91
{
92
        Scaling_t MagX;
93
        Scaling_t MagY;
94
        Scaling_t MagZ;
95
        u8 Version;
96
        u8 crc;
256 killagreg 97
} __attribute__((packed)) Calibration_t;
254 killagreg 98
 
99
Calibration_t Calibration;              // calibration data in RAM 
100
 
253 killagreg 101
// i2c MAG interface
102
#define MAG_SLAVE_ADDRESS       0x3C    // i2C slave address mag. sensor registers
242 killagreg 103
 
253 killagreg 104
// register mapping
105
#define REG_MAG_CRA                     0x00
106
#define REG_MAG_CRB                     0x01
107
#define REG_MAG_MODE            0x02
108
#define REG_MAG_DATAX_MSB       0x03
109
#define REG_MAG_DATAX_LSB       0x04
110
#define REG_MAG_DATAY_MSB       0x05
111
#define REG_MAG_DATAY_LSB       0x06
112
#define REG_MAG_DATAZ_MSB       0x07
113
#define REG_MAG_DATAZ_LSB       0x08
114
#define REG_MAG_STATUS          0x09
115
#define REG_MAG_IDA                     0x0A
116
#define REG_MAG_IDB                     0x0B
117
#define REG_MAG_IDC                     0x0C
242 killagreg 118
 
253 killagreg 119
// bit mask for configuration mode
120
#define CRA_MODE_MASK           0x03
121
#define CRA_MODE_NORMAL         0x00    //default
122
#define CRA_MODE_POSBIAS        0x01
123
#define CRA_MODE_NEGBIAS        0x02
124
#define CRA_MODE_SELFTEST       0x03
242 killagreg 125
 
253 killagreg 126
// bit mask for measurement mode
127
#define MODE_MASK                       0xFF
128
#define MODE_CONTINUOUS         0x00
129
#define MODE_SINGLE                     0x01    // default
130
#define MODE_IDLE                       0x02
131
#define MODE_SLEEP                      0x03
132
 
242 killagreg 133
// bit mask for rate
253 killagreg 134
#define CRA_RATE_MASK           0x1C
135
 
136
// bit mask for gain
137
#define CRB_GAIN_MASK           0xE0
138
 
139
// ids
140
#define MAG_IDA         0x48
141
#define MAG_IDB         0x34
142
#define MAG_IDC         0x33
143
 
144
// the special HMC5843 interface
145
// bit mask for rate
242 killagreg 146
#define HMC5843_CRA_RATE_0_5HZ          0x00
147
#define HMC5843_CRA_RATE_1HZ            0x04
148
#define HMC5843_CRA_RATE_2HZ            0x08
149
#define HMC5843_CRA_RATE_5HZ            0x0C
150
#define HMC5843_CRA_RATE_10HZ           0x10    //default
151
#define HMC5843_CRA_RATE_20HZ           0x14
152
#define HMC5843_CRA_RATE_50HZ           0x18
153
// bit mask for gain
154
#define HMC5843_CRB_GAIN_07GA           0x00
155
#define HMC5843_CRB_GAIN_10GA           0x20    //default
156
#define HMC5843_CRB_GAIN_15GA           0x40
157
#define HMC5843_CRB_GAIN_20GA           0x60
158
#define HMC5843_CRB_GAIN_32GA           0x80
159
#define HMC5843_CRB_GAIN_38GA           0xA0
160
#define HMC5843_CRB_GAIN_45GA           0xC0
161
#define HMC5843_CRB_GAIN_65GA           0xE0
253 killagreg 162
// self test value
163
#define HMC5843_TEST_XSCALE             715
164
#define HMC5843_TEST_YSCALE             715
165
#define HMC5843_TEST_ZSCALE             715
242 killagreg 166
 
167
 
253 killagreg 168
// the special LSM302DLH interface
169
// bit mask for rate
170
#define LSM303DLH_CRA_RATE_0_75HZ       0x00
171
#define LSM303DLH_CRA_RATE_1_5HZ        0x04
172
#define LSM303DLH_CRA_RATE_3_0HZ        0x08
173
#define LSM303DLH_CRA_RATE_7_5HZ        0x0C
174
#define LSM303DLH_CRA_RATE_15HZ         0x10    //default
175
#define LSM303DLH_CRA_RATE_30HZ         0x14
176
#define LSM303DLH_CRA_RATE_75HZ         0x18
177
// bit mask for gain
178
#define LSM303DLH_CRB_GAIN_XXGA         0x00
179
#define LSM303DLH_CRB_GAIN_13GA         0x20    //default
180
#define LSM303DLH_CRB_GAIN_19GA         0x40
181
#define LSM303DLH_CRB_GAIN_25GA         0x60
182
#define LSM303DLH_CRB_GAIN_40GA         0x80
183
#define LSM303DLH_CRB_GAIN_47GA         0xA0
184
#define LSM303DLH_CRB_GAIN_56GA         0xC0
185
#define LSM303DLH_CRB_GAIN_81GA         0xE0
186
// self test value
187
#define LSM303DLH_TEST_XSCALE   655
188
#define LSM303DLH_TEST_YSCALE   655
189
#define LSM303DLH_TEST_ZSCALE   630
190
 
191
// the i2c ACC interface
192
#define ACC_SLAVE_ADDRESS               0x30    // i2c slave for acc. sensor registers
193
// register mapping
194
#define REG_ACC_CTRL1                   0x20
195
#define REG_ACC_CTRL2                   0x21
196
#define REG_ACC_CTRL3                   0x22
197
#define REG_ACC_CTRL4                   0x23
198
#define REG_ACC_CTRL5                   0x24
199
#define REG_ACC_HP_FILTER_RESET 0x25
200
#define REG_ACC_REFERENCE               0x26
201
#define REG_ACC_STATUS                  0x27
202
#define REG_ACC_X_LSB                   0x28
203
#define REG_ACC_X_MSB                   0x29
204
#define REG_ACC_Y_LSB                   0x2A
205
#define REG_ACC_Y_MSB                   0x2B
206
#define REG_ACC_Z_LSB                   0x2C
207
#define REG_ACC_Z_MSB                   0x2D
208
 
209
 
210
 
242 killagreg 211
typedef struct
212
{
253 killagreg 213
        u8 A;
214
        u8 B;
215
        u8 C;
216
} __attribute__((packed)) Identification_t;
242 killagreg 217
 
253 killagreg 218
volatile Identification_t NCMAG_Identification;
242 killagreg 219
 
253 killagreg 220
typedef struct
221
{
222
        u8 cra;
223
        u8 crb;
224
        u8 mode;
225
} __attribute__((packed)) MagConfig_t;
242 killagreg 226
 
253 killagreg 227
volatile MagConfig_t MagConfig;
242 killagreg 228
 
253 killagreg 229
typedef struct
230
{
231
        u8 ctrl_1;
232
        u8 ctrl_2;
233
        u8 ctrl_3;
234
        u8 ctrl_4;
235
        u8 ctrl_5;
236
} __attribute__((packed)) AccConfig_t;
237
 
238
volatile AccConfig_t AccConfig;
239
 
254 killagreg 240
volatile s16vec_t AccRawVector;
241
volatile s16vec_t MagRawVector;
253 killagreg 242
 
243
 
254 killagreg 244
u8 NCMag_CalibrationWrite(void)
245
{
246
        u8 i, crc = 0xAA;
247
        EEPROM_Result_t eres;
248
        u8 *pBuff = (u8*)&Calibration;
249
 
250
        Calibration.Version = CALIBRATION_VERSION;
256 killagreg 251
        for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 252
        {
253
                crc += pBuff[i];        
254
        }
255
        Calibration.crc = ~crc;
256
        eres = EEPROM_WriteBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration));
257
        if(EEPROM_SUCCESS == eres) i = 1;
258
        else i = 0;
259
        return(i);     
260
}
261
 
262
u8 NCMag_CalibrationRead(void)
263
{
264
        u8 i, crc = 0xAA;
265
        u8 *pBuff = (u8*)&Calibration;
266
 
267
        if(EEPROM_SUCCESS == EEPROM_ReadBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration)))
268
        {
256 killagreg 269
                for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 270
                {
271
                        crc += pBuff[i];        
272
                }
273
                crc = ~crc;
274
                if(Calibration.crc != crc) return(0); // crc mismatch
257 killagreg 275
                if(Calibration.Version == CALIBRATION_VERSION) return(1);
254 killagreg 276
        }
277
        return(0);
278
}
279
 
280
 
281
void NCMAG_Calibrate(void)
282
{
283
        static s16 Xmin = 0, Xmax = 0, Ymin = 0, Ymax = 0, Zmin = 0, Zmax = 0;
256 killagreg 284
        static s16 X = 0, Y = 0, Z = 0;
254 killagreg 285
        static u8 OldCalState = 0;     
286
 
256 killagreg 287
        X = (4*X + MagRawVector.X + 3)/5;
288
        Y = (4*Y + MagRawVector.Y + 3)/5;
289
        Z = (4*Z + MagRawVector.Z + 3)/5;
290
 
254 killagreg 291
        switch(Compass_CalState)
292
        {
293
                case 1:
294
                        // 1st step of calibration
295
                        // initialize ranges
296
                        // used to change the orientation of the NC in the horizontal plane
297
                        Xmin =  10000;
298
                        Xmax = -10000;
299
                        Ymin =  10000;
300
                        Ymax = -10000;
301
                        Zmin =  10000;
302
                        Zmax = -10000;
303
                        break;
304
 
305
                case 2: // 2nd step of calibration
306
                        // find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
256 killagreg 307
                        if(X < Xmin) Xmin = X;
308
                        else if(X > Xmax) Xmax = X;
309
                        if(Y < Ymin) Ymin = Y;
310
                        else if(Y > Ymax) Ymax = Y;
254 killagreg 311
                        break;
312
 
313
                case 3: // 3rd step of calibration
314
                        // used to change the orientation of the MK3MAG vertical to the horizontal plane
315
                        break;
316
 
317
                case 4:
318
                        // find Min and Max of the Z-Sensor
256 killagreg 319
                        if(Z < Zmin) Zmin = Z;
320
                        else if(Z > Zmax) Zmax = Z;
254 killagreg 321
                        break;
322
 
323
                case 5:
324
                        // Save values
325
                        if(Compass_CalState != OldCalState) // avoid continously writing of eeprom!
326
                        {
327
                                Calibration.MagX.Range = Xmax - Xmin;
328
                                Calibration.MagX.Offset = (Xmin + Xmax) / 2;
329
                                Calibration.MagY.Range = Ymax - Ymin;
330
                                Calibration.MagY.Offset = (Ymin + Ymax) / 2;
331
                                Calibration.MagZ.Range = Zmax - Zmin;
332
                                Calibration.MagZ.Offset = (Zmin + Zmax) / 2;
256 killagreg 333
                                if((Calibration.MagX.Range > 512) && (Calibration.MagY.Range > 512) && (Calibration.MagZ.Range > 512))
254 killagreg 334
                                {
335
                                        NCMAG_IsCalibrated = NCMag_CalibrationWrite();
336
                                }
337
                                else
338
                                {
339
                                        // restore old calibration data from eeprom
340
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead();
341
                                }
342
                        }
343
                        break;
344
 
345
                default:
346
                        break; 
347
        }
348
        OldCalState = Compass_CalState;
349
}
350
 
242 killagreg 351
// ---------- call back handlers -----------------------------------------
352
 
353
// rx data handler for id info request
253 killagreg 354
void NCMAG_UpdateIdentification(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 355
{       // if number of bytes are matching
253 killagreg 356
        if(RxBufferSize == sizeof(NCMAG_Identification) )
242 killagreg 357
        {
253 killagreg 358
                memcpy((u8 *)&NCMAG_Identification, pRxBuffer, sizeof(NCMAG_Identification));
359
        }
242 killagreg 360
}
254 killagreg 361
// rx data handler for magnetic sensor raw data
253 killagreg 362
void NCMAG_UpdateMagVector(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 363
{       // if number of bytes are matching
364
        if(RxBufferSize == sizeof(MagRawVector) )
243 killagreg 365
        {       // byte order from big to little endian
256 killagreg 366
                s16 raw;
367
                raw = pRxBuffer[0]<<8;
368
                raw+= pRxBuffer[1];
369
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.X = raw;
370
                raw = pRxBuffer[2]<<8;
371
                raw+= pRxBuffer[3];
372
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.Y = raw;
373
                raw = pRxBuffer[4]<<8;
374
                raw+= pRxBuffer[5];
375
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.Z = raw;
242 killagreg 376
        }
254 killagreg 377
        if(Compass_CalState || !NCMAG_IsCalibrated)
378
        {       // direct output the raw data
379
                memcpy((u8*)&MagVector,(u8*)&MagRawVector, sizeof(MagVector));
380
                Compass_Heading = -1;
381
        }
382
        else
383
        {
384
                // update MagVector from MagRaw Vector by Scaling
385
                MagVector.X = (s16)((1024L*(s32)(MagRawVector.X - Calibration.MagX.Offset))/Calibration.MagX.Range);
386
                MagVector.Y = (s16)((1024L*(s32)(MagRawVector.Y - Calibration.MagY.Offset))/Calibration.MagY.Range);
387
                MagVector.Z = (s16)((1024L*(s32)(MagRawVector.Z - Calibration.MagZ.Offset))/Calibration.MagZ.Range);
256 killagreg 388
 
389
                if(UART_VersionInfo.HardwareError[0] & NC_ERROR0_SPI_RX)
390
                {
391
                        Compass_Heading = -1;
392
                }
393
                else // fc attitude is avialable
394
                {
395
                        // calculate attitude correction
396
                        // a float implementation takes too long for an ISR call!
397
                        s16 tmp, Hx, Hy;
398
                        s32 sinnick, cosnick, sinroll, cosroll;
399
 
400
                        tmp = FromFlightCtrl.AngleNick/10; // in deg 
401
                        sinnick = (s32)c_sin_8192(tmp);
402
                        cosnick = (s32)c_cos_8192(tmp);
403
                        tmp = FromFlightCtrl.AngleRoll/10; // in deg 
404
                        sinroll = (s32)c_sin_8192(tmp);
405
                        cosroll = (s32)c_cos_8192(tmp);
406
                        // tbd. compensation signs and oriantation has to be fixed 
257 killagreg 407
                        Hx = (s16)((MagVector.Y * cosnick + MagVector.Z * sinnick)/8192L);
408
                        Hy = (s16)((MagVector.X * cosroll - MagVector.Z * sinroll)/8192L);             
256 killagreg 409
                        // calculate heading
410
                        tmp = (s16)(c_tan2_546(Hy, Hx)/546L);
257 killagreg 411
                        if (tmp > 0) tmp = 360 - tmp;
412
                        else tmp = -tmp;
256 killagreg 413
                        Compass_Heading = tmp;
414
                }
254 killagreg 415
        }
242 killagreg 416
}
254 killagreg 417
// rx data handler  for acceleration raw data
253 killagreg 418
void NCMAG_UpdateAccVector(u8* pRxBuffer, u8 RxBufferSize)
419
{       // if number of byte are matching
254 killagreg 420
        if(RxBufferSize == sizeof(AccRawVector) )
253 killagreg 421
        {
254 killagreg 422
                memcpy((u8*)&AccRawVector, pRxBuffer,sizeof(AccRawVector));
253 killagreg 423
        }
424
}
254 killagreg 425
// rx data handler for reading magnetic sensor configuration
253 killagreg 426
void NCMAG_UpdateMagConfig(u8* pRxBuffer, u8 RxBufferSize)
427
{       // if number of byte are matching
428
        if(RxBufferSize == sizeof(MagConfig) )
429
        {
430
                memcpy((u8*)(&MagConfig), pRxBuffer, sizeof(MagConfig));
431
        }
432
}
254 killagreg 433
// rx data handler for reading acceleration sensor configuration
253 killagreg 434
void NCMAG_UpdateAccConfig(u8* pRxBuffer, u8 RxBufferSize)
435
{       // if number of byte are matching
436
        if(RxBufferSize == sizeof(AccConfig) )
437
        {
438
                memcpy((u8*)&AccConfig, pRxBuffer, sizeof(AccConfig));
439
        }
440
}
254 killagreg 441
//----------------------------------------------------------------------
253 killagreg 442
 
254 killagreg 443
 
444
// ---------------------------------------------------------------------
253 killagreg 445
u8 NCMAG_SetMagConfig(void)
446
{
447
        u8 retval = 0;
448
        // try to catch the i2c buffer within 100 ms timeout
449
        if(I2C_LockBuffer(100))
450
        {
451
                u8 TxBytes = 0;
452
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;    
453
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&MagConfig, sizeof(MagConfig));
454
                TxBytes += sizeof(MagConfig);
455
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, 0, 0))
456
                {
457
                        if(I2C_WaitForEndOfTransmission(100))
458
                        {
459
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
460
                        }
461
                }
462
        }
463
        return(retval);        
464
}
242 killagreg 465
 
253 killagreg 466
// ----------------------------------------------------------------------------------------
467
u8 NCMAG_GetMagConfig(void)
242 killagreg 468
{
253 killagreg 469
        u8 retval = 0;
252 killagreg 470
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 471
        if(I2C_LockBuffer(100))
242 killagreg 472
        {
253 killagreg 473
                u8 TxBytes = 0;
474
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;
475
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagConfig, sizeof(MagConfig)))
248 killagreg 476
                {
252 killagreg 477
                        if(I2C_WaitForEndOfTransmission(100))
478
                        {
479
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
480
                        }
248 killagreg 481
                }
242 killagreg 482
        }
253 killagreg 483
        return(retval);        
242 killagreg 484
}
485
 
486
// ----------------------------------------------------------------------------------------
253 killagreg 487
u8 NCMAG_SetAccConfig(void)
242 killagreg 488
{
252 killagreg 489
        u8 retval = 0;
253 killagreg 490
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 491
        if(I2C_LockBuffer(100))
242 killagreg 492
        {
253 killagreg 493
                u8 TxBytes = 0;
494
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1;  
495
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&AccConfig, sizeof(AccConfig));
496
                TxBytes += sizeof(AccConfig);
497
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, 0, 0))
498
                {
499
                        if(I2C_WaitForEndOfTransmission(100))
500
                        {
501
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
502
                        }
503
                }
504
        }
505
        return(retval);        
506
}
507
 
508
// ----------------------------------------------------------------------------------------
509
u8 NCMAG_GetAccConfig(void)
510
{
511
        u8 retval = 0;
512
        // try to catch the i2c buffer within 100 ms timeout
513
        if(I2C_LockBuffer(100))
514
        {
515
                u8 TxBytes = 0;
516
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1;
517
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccConfig, sizeof(AccConfig)))
518
                {
519
                        if(I2C_WaitForEndOfTransmission(100))
520
                        {
521
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
522
                        }
523
                }
524
        }
525
        return(retval);        
526
}
527
 
528
// ----------------------------------------------------------------------------------------
529
u8 NCMAG_GetIdentification(void)
530
{
531
        u8 retval = 0;
532
        // try to catch the i2c buffer within 100 ms timeout
533
        if(I2C_LockBuffer(100))
534
        {
535
                u16 TxBytes = 0;
536
                NCMAG_Identification.A = 0xFF;
537
                NCMAG_Identification.B = 0xFF;
538
                NCMAG_Identification.C = 0xFF;
539
                I2C_Buffer[TxBytes++] = REG_MAG_IDA;
248 killagreg 540
                // initiate transmission
253 killagreg 541
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification, sizeof(NCMAG_Identification)))
248 killagreg 542
                {
253 killagreg 543
                        if(I2C_WaitForEndOfTransmission(100))
252 killagreg 544
                        {
545
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
546
                        }
248 killagreg 547
                }
242 killagreg 548
        }
253 killagreg 549
        return(retval);
242 killagreg 550
}
551
 
253 killagreg 552
// ----------------------------------------------------------------------------------------
553
void NCMAG_GetMagVector(void)
554
{
555
        // try to catch the I2C buffer within 0 ms
556
        if(I2C_LockBuffer(0))
557
        {
558
                u16 TxBytes = 0;
559
                // set register pointer
560
                I2C_Buffer[TxBytes++] = REG_MAG_DATAX_MSB;
561
                // initiate transmission
562
                I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagVector, sizeof(MagVector));
563
        }
564
}
565
 
242 killagreg 566
//----------------------------------------------------------------
253 killagreg 567
void NCMAG_GetAccVector(void)
243 killagreg 568
{
252 killagreg 569
        // try to catch the I2C buffer within 0 ms
570
        if(I2C_LockBuffer(0))
243 killagreg 571
        {
248 killagreg 572
                u16 TxBytes = 0;
243 killagreg 573
                // set register pointer
253 killagreg 574
                I2C_Buffer[TxBytes++] = REG_ACC_X_LSB;
243 killagreg 575
                // initiate transmission
254 killagreg 576
                I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccVector, sizeof(AccRawVector));
243 killagreg 577
        }
578
}
579
 
253 killagreg 580
// --------------------------------------------------------
581
void NCMAG_UpdateCompass(void)
243 killagreg 582
{
583
        static u32 TimerCompassUpdate = 0;
584
 
254 killagreg 585
        if( (I2C_State == I2C_STATE_OFF) || !NCMAG_Present )
586
        {
587
                Compass_Heading = -1;
588
                return;
589
        }
253 killagreg 590
 
243 killagreg 591
        if(CheckDelay(TimerCompassUpdate))
592
        {
254 killagreg 593
                // check for new calibration state
594
                Compass_UpdateCalState();
595
                if(Compass_CalState) NCMAG_Calibrate();
596
                NCMAG_GetMagVector(); //Get new data;
243 killagreg 597
                TimerCompassUpdate = SetDelay(20);    // every 20 ms are 50 Hz
598
        }
599
}
600
 
254 killagreg 601
// --------------------------------------------------------
253 killagreg 602
u8 NCMAG_SelfTest(void)
243 killagreg 603
{
253 killagreg 604
        #define LIMITS(value, min, max) {min = (90 * value)/100; max = (110 * value)/100;}
243 killagreg 605
        u32 time;
253 killagreg 606
        s32 XMin = 0, XMax = 0, YMin = 0, YMax = 0, ZMin = 0, ZMax = 0;
607
        s16 xscale, yscale, zscale, scale_min, scale_max;
608
        u8 crb_gain, cra_rate;
609
        u8 i = 0, retval = 1;
243 killagreg 610
 
253 killagreg 611
        switch(NCMAG_MagType)
612
        {
613
                case MAG_TYPE_HMC5843:
614
                        crb_gain = HMC5843_CRB_GAIN_10GA;
615
                        cra_rate = HMC5843_CRA_RATE_50HZ;
616
                        xscale = HMC5843_TEST_XSCALE;
617
                        yscale = HMC5843_TEST_YSCALE;
618
                        zscale = HMC5843_TEST_ZSCALE;
619
                        break;
620
 
621
                case MAG_TYPE_LSM303DLH:
622
                        crb_gain = LSM303DLH_CRB_GAIN_13GA;
623
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
624
                        xscale = LSM303DLH_TEST_XSCALE;
625
                        yscale = LSM303DLH_TEST_YSCALE;
626
                        zscale = LSM303DLH_TEST_ZSCALE;
627
                        break;
628
 
629
                default:
630
                return(0);
631
        }
632
 
633
        MagConfig.cra = cra_rate|CRA_MODE_POSBIAS;
634
        MagConfig.crb = crb_gain;
635
        MagConfig.mode = MODE_CONTINUOUS;
636
        // activate positive bias field
637
        NCMAG_SetMagConfig();
251 killagreg 638
        // wait for stable readings
639
        time = SetDelay(50);
640
        while(!CheckDelay(time));
243 killagreg 641
        // averaging
253 killagreg 642
        #define AVERAGE 20
643
        for(i = 0; i<AVERAGE; i++)
243 killagreg 644
        {
253 killagreg 645
                NCMAG_GetMagVector();
243 killagreg 646
                time = SetDelay(20);
647
        while(!CheckDelay(time));
254 killagreg 648
                XMax += MagRawVector.X;
649
                YMax += MagRawVector.Y;
650
                ZMax += MagRawVector.Z;
243 killagreg 651
        }
253 killagreg 652
        MagConfig.cra = cra_rate|CRA_MODE_NEGBIAS;
653
        // activate positive bias field
654
        NCMAG_SetMagConfig();
251 killagreg 655
    // wait for stable readings
656
        time = SetDelay(50);
657
        while(!CheckDelay(time));
243 killagreg 658
        // averaging
253 killagreg 659
        for(i = 0; i < AVERAGE; i++)
243 killagreg 660
        {
253 killagreg 661
                NCMAG_GetMagVector();
243 killagreg 662
                time = SetDelay(20);
663
        while(!CheckDelay(time));
254 killagreg 664
                XMin += MagRawVector.X;
665
                YMin += MagRawVector.Y;
666
                ZMin += MagRawVector.Z;
243 killagreg 667
        }
668
        // setup final configuration
253 killagreg 669
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
670
        // activate positive bias field
671
        NCMAG_SetMagConfig();
243 killagreg 672
        // prepare scale limits
253 killagreg 673
        LIMITS(xscale, scale_min, scale_max);
243 killagreg 674
        // check scale for all axes
253 killagreg 675
        xscale = (XMax - XMin)/(2*AVERAGE);
676
        if((xscale > scale_max) || (xscale < scale_min)) retval = 0;
677
        LIMITS(yscale, scale_min, scale_max);
678
        yscale = (YMax - YMin)/(2*AVERAGE);
679
        if((yscale > scale_max) || (yscale < scale_min)) retval = 0;
680
        LIMITS(zscale, scale_min, scale_max);
681
        zscale = (ZMax - ZMin)/(2*AVERAGE);
682
        if((zscale > scale_max) || (zscale < scale_min)) retval = 0;
683
        return(retval);
243 killagreg 684
}
685
 
686
 
687
//----------------------------------------------------------------
253 killagreg 688
u8 NCMAG_Init(void)
242 killagreg 689
{
690
        u8 msg[64];
252 killagreg 691
        u8 retval = 0;
242 killagreg 692
        u8 repeat;
693
 
253 killagreg 694
        NCMAG_Present = 0;
695
        NCMAG_MagType = MAG_TYPE_HMC5843;       // assuming having an HMC5843
696
        // polling for LSM302DLH option
697
        repeat = 0;
698
        do
699
        {
700
                retval = NCMAG_GetAccConfig();
701
                if(retval) break; // break loop on success
702
                UART1_PutString(".");
703
                repeat++;
704
        }while(repeat < 3);
705
        if(retval) NCMAG_MagType = MAG_TYPE_LSM303DLH; // must be a LSM303DLH
242 killagreg 706
        // polling of identification
707
        repeat = 0;
708
        do
709
        {
253 killagreg 710
                retval = NCMAG_GetIdentification();
252 killagreg 711
                if(retval) break; // break loop on success
242 killagreg 712
                UART1_PutString(".");
713
                repeat++;
252 killagreg 714
        }while(repeat < 12);
253 killagreg 715
        // if we got an answer to id request
252 killagreg 716
        if(retval)
242 killagreg 717
        {
253 killagreg 718
                u8 n1[] = "HMC5843";
719
                u8 n2[] = "LSM303DLH";
720
                u8* pn;
721
                if(NCMAG_MagType == MAG_TYPE_LSM303DLH) pn = n2;
722
                else pn = n1;
723
                sprintf(msg, " %s ID%d/%d/%d", pn, NCMAG_Identification.A, NCMAG_Identification.B, NCMAG_Identification.C);
242 killagreg 724
                UART1_PutString(msg);
253 killagreg 725
                if (    (NCMAG_Identification.A == MAG_IDA)
726
                     && (NCMAG_Identification.B == MAG_IDB)
727
                         && (NCMAG_Identification.C == MAG_IDC))
242 killagreg 728
                {
253 killagreg 729
                        if(!NCMAG_SelfTest())
243 killagreg 730
                        {
253 killagreg 731
                                UART1_PutString(" Selftest failed!");
243 killagreg 732
                                LED_RED_ON;
733
                        }
254 killagreg 734
                        else
735
                        {
736
                                NCMAG_Present = 1;
737
                                NCMAG_IsCalibrated = NCMag_CalibrationRead();
738
                                if(!NCMAG_IsCalibrated) UART1_PutString("\r\n Not calibrated!");
739
                        }
242 killagreg 740
                }
741
                else
742
                {
254 killagreg 743
                        UART1_PutString("\n\r Not compatible!");
256 killagreg 744
                        UART_VersionInfo.HardwareError[0] |= NC_ERROR0_COMPASS_INCOMPATIBLE;
242 killagreg 745
                        LED_RED_ON;
746
                }
747
        }
253 killagreg 748
        else // nothing found
749
        {
750
                NCMAG_MagType = MAG_TYPE_NONE;
751
                UART1_PutString("not found!");  
752
        }
753
        return(NCMAG_Present);
242 killagreg 754
}
755