Rev 2052 | Rev 2067 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1612 | dongfang | 1 | #include <avr/io.h> |
2 | #include <avr/interrupt.h> |
||
3 | #include "eeprom.h" |
||
4 | #include "rc.h" |
||
5 | #include "attitude.h" |
||
6 | |||
2062 | - | 7 | //#define COARSERESOLUTION 1 |
1612 | dongfang | 8 | |
2039 | - | 9 | #ifdef COARSERESOLUTION |
1980 | - | 10 | #define NEUTRAL_PULSELENGTH 938 |
11 | #define SERVOLIMIT 500 |
||
12 | #define SCALE_FACTOR 4 |
||
13 | #define CS2 ((1<<CS21)|(1<<CS20)) |
||
2062 | - | 14 | |
1980 | - | 15 | #else |
2062 | - | 16 | |
1980 | - | 17 | #define NEUTRAL_PULSELENGTH 3750 |
18 | #define SERVOLIMIT 2000 |
||
19 | #define SCALE_FACTOR 16 |
||
2062 | - | 20 | #define CS2 (1<<CS21) |
1980 | - | 21 | #endif |
22 | |||
23 | #define MAX_SERVOS 8 |
||
24 | #define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128) |
||
25 | #define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT) |
||
26 | #define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT) |
||
27 | |||
28 | //volatile uint8_t servoActive = 0; |
||
29 | volatile uint8_t recalculateServoTimes = 0; |
||
30 | volatile uint16_t servoValues[MAX_SERVOS]; |
||
31 | volatile uint16_t previousManualValues[2]; |
||
32 | |||
1612 | dongfang | 33 | #define HEF4017R_ON PORTC |= (1<<PORTC6) |
34 | #define HEF4017R_OFF PORTC &= ~(1<<PORTC6) |
||
35 | |||
36 | /***************************************************** |
||
37 | * Initialize Timer 2 |
||
38 | *****************************************************/ |
||
39 | void timer2_init(void) { |
||
1821 | - | 40 | uint8_t sreg = SREG; |
1612 | dongfang | 41 | |
1821 | - | 42 | // disable all interrupts before reconfiguration |
43 | cli(); |
||
1612 | dongfang | 44 | |
1821 | - | 45 | // set PD7 as output of the PWM for pitch servo |
46 | DDRD |= (1 << DDD7); |
||
47 | PORTD &= ~(1 << PORTD7); // set PD7 to low |
||
1612 | dongfang | 48 | |
1821 | - | 49 | DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017) |
50 | HEF4017R_ON; // enable reset |
||
1612 | dongfang | 51 | |
1821 | - | 52 | // Timer/Counter 2 Control Register A |
1980 | - | 53 | // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0) |
54 | // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0) |
||
55 | // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0) |
||
56 | TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22)); |
||
57 | TCCR2A |= (1 << COM2A1) | (1 << WGM21); |
||
58 | |||
59 | // Timer/Counter 2 Control Register B |
||
60 | |||
61 | // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz |
||
62 | // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us |
||
63 | // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms |
||
64 | |||
65 | TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22)); |
||
66 | TCCR2B |= CS2; |
||
67 | |||
68 | // Initialize the Timer/Counter 2 Register |
||
69 | TCNT2 = 0; |
||
70 | |||
71 | // Initialize the Output Compare Register A used for signal generation on port PD7. |
||
72 | OCR2A = 255; |
||
1612 | dongfang | 73 | |
1821 | - | 74 | // Timer/Counter 2 Interrupt Mask Register |
75 | // Enable timer output compare match A Interrupt only |
||
76 | TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2)); |
||
77 | TIMSK2 |= (1 << OCIE2A); |
||
1612 | dongfang | 78 | |
1980 | - | 79 | for (uint8_t axis=0; axis<2; axis++) |
80 | previousManualValues[axis] = dynamicParams.servoManualControl[axis] * SCALE_FACTOR; |
||
81 | |||
1821 | - | 82 | SREG = sreg; |
1612 | dongfang | 83 | } |
84 | |||
1980 | - | 85 | /* |
86 | void servo_On(void) { |
||
87 | servoActive = 1; |
||
1612 | dongfang | 88 | } |
1980 | - | 89 | void servo_Off(void) { |
90 | servoActive = 0; |
||
1821 | - | 91 | HEF4017R_ON; // enable reset |
1612 | dongfang | 92 | } |
1980 | - | 93 | */ |
1612 | dongfang | 94 | |
95 | /***************************************************** |
||
96 | * Control Servo Position |
||
97 | *****************************************************/ |
||
1821 | - | 98 | |
1980 | - | 99 | /*typedef struct { |
100 | uint8_t manualControl; |
||
101 | uint8_t compensationFactor; |
||
102 | uint8_t minValue; |
||
103 | uint8_t maxValue; |
||
104 | uint8_t flags; |
||
105 | } servo_t;*/ |
||
1612 | dongfang | 106 | |
1980 | - | 107 | int16_t calculateStabilizedServoAxis(uint8_t axis) { |
2048 | - | 108 | int32_t value = attitude[axis] / 64L; // between -500000 to 500000 extreme limits. Just about |
1980 | - | 109 | // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000. |
110 | // That is a divisor of about 1<<14. Same conclusion as H&I. |
||
111 | value *= staticParams.servoConfigurations[axis].stabilizationFactor; |
||
112 | value /= 256L; |
||
113 | if (staticParams.servoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE) |
||
114 | return -value; |
||
115 | return value; |
||
116 | } |
||
1821 | - | 117 | |
1980 | - | 118 | // With constant-speed limitation. |
119 | uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) { |
||
120 | int16_t diff = manualValue - previousManualValues[axis]; |
||
121 | uint8_t maxSpeed = staticParams.servoManualMaxSpeed; |
||
122 | if (diff > maxSpeed) diff = maxSpeed; |
||
123 | else if (diff < -maxSpeed) diff = -maxSpeed; |
||
124 | manualValue = previousManualValues[axis] + diff; |
||
125 | previousManualValues[axis] = manualValue; |
||
126 | return manualValue; |
||
127 | } |
||
1612 | dongfang | 128 | |
1980 | - | 129 | // add stabilization and manual, apply soft position limits. |
130 | // All in a [0..255*SCALE_FACTOR] space (despite signed types used internally) |
||
131 | int16_t featuredServoValue(uint8_t axis) { |
||
132 | int16_t value = calculateManualServoAxis(axis, dynamicParams.servoManualControl[axis] * SCALE_FACTOR); |
||
133 | value += calculateStabilizedServoAxis(axis); |
||
134 | int16_t limit = staticParams.servoConfigurations[axis].minValue * SCALE_FACTOR; |
||
135 | if (value < limit) value = limit; |
||
136 | limit = staticParams.servoConfigurations[axis].maxValue * SCALE_FACTOR; |
||
137 | if (value > limit) value = limit; |
||
138 | return value; |
||
139 | } |
||
1612 | dongfang | 140 | |
1980 | - | 141 | uint16_t servoValue(uint8_t axis) { |
142 | int16_t value; |
||
143 | if (axis<2) value = featuredServoValue(axis); |
||
144 | else value = 128 * SCALE_FACTOR; // dummy. Replace by something useful for servos 3..8. |
||
145 | // Shift out of the [0..255*SCALE_FACTOR] space |
||
146 | value -= (128 * SCALE_FACTOR); |
||
147 | if (value < -SERVOLIMIT) value = -SERVOLIMIT; |
||
148 | else if (value > SERVOLIMIT) value = SERVOLIMIT; |
||
149 | // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space. |
||
150 | return value + NEUTRAL_PULSELENGTH; |
||
151 | } |
||
1821 | - | 152 | |
1980 | - | 153 | void calculateServoValues(void) { |
154 | if (!recalculateServoTimes) return; |
||
155 | for (uint8_t axis=0; axis<MAX_SERVOS; axis++) { |
||
156 | servoValues[axis] = servoValue(axis); |
||
157 | } |
||
158 | recalculateServoTimes = 0; |
||
159 | } |
||
1821 | - | 160 | |
1980 | - | 161 | ISR(TIMER2_COMPA_vect) { |
162 | static uint16_t remainingPulseTime; |
||
163 | static uint8_t servoIndex = 0; |
||
164 | static uint16_t sumOfPulseTimes = 0; |
||
165 | |||
166 | if (!remainingPulseTime) { |
||
167 | // Pulse is over, and the next pulse has already just started. Calculate length of next pulse. |
||
168 | if (servoIndex < staticParams.servoCount) { |
||
169 | // There are more signals to output. |
||
170 | sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]); |
||
171 | servoIndex++; |
||
172 | } else { |
||
173 | // There are no more signals. Reset the counter and make this pulse cover the missing frame time. |
||
174 | remainingPulseTime = FRAMELEN - sumOfPulseTimes; |
||
175 | sumOfPulseTimes = servoIndex = 0; |
||
176 | recalculateServoTimes = 1; |
||
177 | HEF4017R_ON; |
||
178 | } |
||
179 | } |
||
1821 | - | 180 | |
1980 | - | 181 | // Schedule the next OCR2A event. The counter is already reset at this time. |
182 | if (remainingPulseTime > 256+128) { |
||
183 | // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again, |
||
184 | // as long as it happens once per pulse. This will, because all pulses are > 255+128 long. |
||
185 | OCR2A = 255; |
||
186 | TCCR2A &= ~(1<<COM2A0); |
||
187 | remainingPulseTime-=256; |
||
188 | } else if (remainingPulseTime > 256) { |
||
189 | // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard |
||
190 | // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt |
||
191 | // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK. |
||
192 | remainingPulseTime-=128; |
||
193 | OCR2A=127; |
||
194 | } else { |
||
195 | // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low |
||
196 | TCCR2A |= (1<<COM2A0); |
||
197 | OCR2A = remainingPulseTime-1; |
||
198 | remainingPulseTime=0; |
||
199 | HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0. |
||
200 | } |
||
1612 | dongfang | 201 | } |