Subversion Repositories FlightCtrl

Rev

Rev 2052 | Rev 2067 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
#include <avr/io.h>
2
#include <avr/interrupt.h>
3
#include "eeprom.h"
4
#include "rc.h"
5
#include "attitude.h"
6
 
2062 - 7
//#define COARSERESOLUTION 1
1612 dongfang 8
 
2039 - 9
#ifdef COARSERESOLUTION
1980 - 10
#define NEUTRAL_PULSELENGTH 938
11
#define SERVOLIMIT 500
12
#define SCALE_FACTOR 4
13
#define CS2 ((1<<CS21)|(1<<CS20))
2062 - 14
 
1980 - 15
#else
2062 - 16
 
1980 - 17
#define NEUTRAL_PULSELENGTH 3750
18
#define SERVOLIMIT 2000
19
#define SCALE_FACTOR 16
2062 - 20
#define CS2 (1<<CS21)
1980 - 21
#endif
22
 
23
#define MAX_SERVOS 8
24
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
25
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
26
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
27
 
28
//volatile uint8_t servoActive = 0;
29
volatile uint8_t recalculateServoTimes = 0;
30
volatile uint16_t servoValues[MAX_SERVOS];
31
volatile uint16_t previousManualValues[2];
32
 
1612 dongfang 33
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
34
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
35
 
36
/*****************************************************
37
 *              Initialize Timer 2                  
38
 *****************************************************/
39
void timer2_init(void) {
1821 - 40
        uint8_t sreg = SREG;
1612 dongfang 41
 
1821 - 42
        // disable all interrupts before reconfiguration
43
        cli();
1612 dongfang 44
 
1821 - 45
        // set PD7 as output of the PWM for pitch servo
46
        DDRD |= (1 << DDD7);
47
        PORTD &= ~(1 << PORTD7); // set PD7 to low
1612 dongfang 48
 
1821 - 49
        DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
50
        HEF4017R_ON; // enable reset
1612 dongfang 51
 
1821 - 52
        // Timer/Counter 2 Control Register A
1980 - 53
        // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
54
        // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
55
        // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
56
        TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
57
        TCCR2A |= (1 << COM2A1) | (1 << WGM21);
58
 
59
        // Timer/Counter 2 Control Register B
60
 
61
        // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
62
        // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
63
        // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
64
 
65
        TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
66
        TCCR2B |= CS2;
67
 
68
        // Initialize the Timer/Counter 2 Register
69
        TCNT2 = 0;
70
 
71
        // Initialize the Output Compare Register A used for signal generation on port PD7.
72
        OCR2A = 255;
1612 dongfang 73
 
1821 - 74
        // Timer/Counter 2 Interrupt Mask Register
75
        // Enable timer output compare match A Interrupt only
76
        TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
77
        TIMSK2 |= (1 << OCIE2A);
1612 dongfang 78
 
1980 - 79
        for (uint8_t axis=0; axis<2; axis++)
80
          previousManualValues[axis] = dynamicParams.servoManualControl[axis] * SCALE_FACTOR;
81
 
1821 - 82
        SREG = sreg;
1612 dongfang 83
}
84
 
1980 - 85
/*
86
void servo_On(void) {
87
        servoActive = 1;
1612 dongfang 88
}
1980 - 89
void servo_Off(void) {
90
        servoActive = 0;
1821 - 91
        HEF4017R_ON; // enable reset
1612 dongfang 92
}
1980 - 93
*/
1612 dongfang 94
 
95
/*****************************************************
96
 * Control Servo Position              
97
 *****************************************************/
1821 - 98
 
1980 - 99
/*typedef struct {
100
  uint8_t manualControl;
101
  uint8_t compensationFactor;
102
  uint8_t minValue;
103
  uint8_t maxValue;
104
  uint8_t flags;
105
} servo_t;*/
1612 dongfang 106
 
1980 - 107
int16_t calculateStabilizedServoAxis(uint8_t axis) {
2048 - 108
  int32_t value = attitude[axis] / 64L; // between -500000 to 500000 extreme limits. Just about
1980 - 109
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
110
  // That is a divisor of about 1<<14. Same conclusion as H&I.
111
  value *= staticParams.servoConfigurations[axis].stabilizationFactor;
112
  value /= 256L;
113
  if (staticParams.servoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
114
        return -value;
115
  return value;
116
}
1821 - 117
 
1980 - 118
// With constant-speed limitation.
119
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
120
  int16_t diff = manualValue - previousManualValues[axis];
121
  uint8_t maxSpeed = staticParams.servoManualMaxSpeed;
122
  if (diff > maxSpeed) diff = maxSpeed;
123
  else if (diff < -maxSpeed) diff = -maxSpeed;
124
  manualValue = previousManualValues[axis] + diff;
125
  previousManualValues[axis] = manualValue;
126
  return manualValue;
127
}
1612 dongfang 128
 
1980 - 129
// add stabilization and manual, apply soft position limits.
130
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
131
int16_t featuredServoValue(uint8_t axis) {
132
  int16_t value = calculateManualServoAxis(axis, dynamicParams.servoManualControl[axis] * SCALE_FACTOR);
133
  value += calculateStabilizedServoAxis(axis);
134
  int16_t limit = staticParams.servoConfigurations[axis].minValue * SCALE_FACTOR;
135
  if (value < limit) value = limit;
136
  limit = staticParams.servoConfigurations[axis].maxValue * SCALE_FACTOR;
137
  if (value > limit) value = limit;
138
  return value;
139
}
1612 dongfang 140
 
1980 - 141
uint16_t servoValue(uint8_t axis) {
142
  int16_t value;
143
  if (axis<2) value = featuredServoValue(axis);
144
  else value = 128 * SCALE_FACTOR; // dummy. Replace by something useful for servos 3..8.
145
  // Shift out of the [0..255*SCALE_FACTOR] space 
146
  value -= (128 * SCALE_FACTOR);
147
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
148
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
149
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
150
  return value + NEUTRAL_PULSELENGTH;
151
}
1821 - 152
 
1980 - 153
void calculateServoValues(void) {
154
  if (!recalculateServoTimes) return;
155
  for (uint8_t axis=0; axis<MAX_SERVOS; axis++) {
156
        servoValues[axis] = servoValue(axis);
157
  }  
158
  recalculateServoTimes = 0;
159
}
1821 - 160
 
1980 - 161
ISR(TIMER2_COMPA_vect) {
162
  static uint16_t remainingPulseTime;
163
  static uint8_t servoIndex = 0;
164
  static uint16_t sumOfPulseTimes = 0;
165
 
166
  if (!remainingPulseTime) {
167
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
168
    if (servoIndex < staticParams.servoCount) {
169
      // There are more signals to output.
170
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]);
171
      servoIndex++;
172
    } else {
173
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
174
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
175
      sumOfPulseTimes = servoIndex = 0;
176
      recalculateServoTimes = 1;
177
      HEF4017R_ON;
178
    }
179
  }
1821 - 180
 
1980 - 181
  // Schedule the next OCR2A event. The counter is already reset at this time.
182
  if (remainingPulseTime > 256+128) {
183
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again, 
184
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
185
    OCR2A = 255;
186
    TCCR2A &= ~(1<<COM2A0);
187
    remainingPulseTime-=256;
188
  } else if (remainingPulseTime > 256) {
189
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard 
190
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
191
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
192
    remainingPulseTime-=128;
193
    OCR2A=127;
194
  } else {
195
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
196
    TCCR2A |= (1<<COM2A0);
197
    OCR2A = remainingPulseTime-1;
198
    remainingPulseTime=0;
199
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
200
  }
1612 dongfang 201
}