Subversion Repositories FlightCtrl

Rev

Rev 2052 | Rev 2055 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1968 - 1
#include <stdlib.h>
2
#include <avr/io.h>
3
#include <avr/interrupt.h>
1962 - 4
 
1968 - 5
#include "rc.h"
6
#include "controlMixer.h"
7
#include "configuration.h"
8
#include "commands.h"
2052 - 9
#include "output.h"
1968 - 10
 
2048 - 11
// The channel array is 0-based!
1968 - 12
volatile int16_t PPM_in[MAX_CHANNELS];
13
volatile int16_t PPM_diff[MAX_CHANNELS];
2026 - 14
volatile uint8_t RCQuality;
1968 - 15
uint8_t lastRCCommand = COMMAND_NONE;
16
uint8_t commandTimer = 0;
17
 
18
/***************************************************************
19
 *  16bit timer 1 is used to decode the PPM-Signal            
20
 ***************************************************************/
21
void RC_Init(void) {
22
  uint8_t sreg = SREG;
23
 
24
  // disable all interrupts before reconfiguration
25
  cli();
26
 
27
  // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
28
  DDRD &= ~(1<<6);
29
  PORTD |= (1<<PORTD6);
30
 
31
  // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
32
  // set as output
33
  DDRD |= (1<<DDD5) | (1<<DDD4) | (1<<DDD3);
34
  // low level
35
  PORTD &= ~((1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3));
36
 
37
  // PD3 can't be used if 2nd UART is activated
38
  // because TXD1 is at that port
39
  if (CPUType != ATMEGA644P) {
40
    DDRD |= (1<<PORTD3);
41
    PORTD &= ~(1<<PORTD3);
42
  }
43
 
44
  // Timer/Counter1 Control Register A, B, C
45
 
46
  // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
47
  // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
48
  // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
49
  // Enable input capture noise cancler (bit: ICNC1=1)
50
  // Trigger on positive edge of the input capture pin (bit: ICES1=1),
51
  // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s
52
  // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
53
  TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0) | (1 << WGM11) | (1 << WGM10));
54
  TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12));
55
  TCCR1B |= (1 << CS11) | (1 << CS10) | (1 << ICES1) | (1 << ICNC1);
56
  TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B));
57
 
58
  // Timer/Counter1 Interrupt Mask Register
59
  // Enable Input Capture Interrupt (bit: ICIE1=1)
60
  // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
61
  // Enable Overflow Interrupt (bit: TOIE1=0)
62
  TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1));
63
  TIMSK1 |= (1<<ICIE1);
64
 
2019 - 65
  RCQuality = 0;
1968 - 66
 
67
  SREG = sreg;
68
}
69
 
70
/********************************************************************/
71
/*         Every time a positive edge is detected at PD6            */
72
/********************************************************************/
73
/*                               t-Frame
74
    <----------------------------------------------------------------------->
75
     ____   ______   _____   ________                ______    sync gap      ____
76
    |    | |      | |     | |        |              |      |                |
77
    |    | |      | |     | |        |              |      |                |
78
 ___|    |_|      |_|     |_|        |_.............|      |________________|
79
    <-----><-------><------><-----------            <------>                <---
80
 t0       t1      t2       t4                     tn                     t0
81
 
1962 - 82
 The PPM-Frame length is 22.5 ms.
83
 Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse.
84
 The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms.
85
 The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms.
86
 The minimum duration of all channels at minimum value is  8 * 1 ms = 8 ms.
87
 The maximum duration of all channels at maximum value is  8 * 2 ms = 16 ms.
88
 The remaining time of (22.5 - 8 ms) ms = 14.5 ms  to (22.5 - 16 ms) ms = 6.5 ms is
89
 the syncronization gap.
90
 */
2048 - 91
ISR(TIMER1_CAPT_vect) { // typical rate of 1 ms to 2 ms
1962 - 92
  int16_t signal = 0, tmp;
93
  static int16_t index;
94
  static uint16_t oldICR1 = 0;
95
 
96
  // 16bit Input Capture Register ICR1 contains the timer value TCNT1
97
  // at the time the edge was detected
98
 
99
  // calculate the time delay to the previous event time which is stored in oldICR1
100
  // calculatiing the difference of the two uint16_t and converting the result to an int16_t
101
  // implicit handles a timer overflow 65535 -> 0 the right way.
102
  signal = (uint16_t) ICR1 - oldICR1;
103
  oldICR1 = ICR1;
104
 
105
  //sync gap? (3.52 ms < signal < 25.6 ms)
106
  if ((signal > 1100) && (signal < 8000)) {
1968 - 107
    index = 0;
1962 - 108
  } else { // within the PPM frame
1968 - 109
    if (index < MAX_CHANNELS) { // PPM24 supports 12 channels
1962 - 110
      // check for valid signal length (0.8 ms < signal < 2.1984 ms)
111
      // signal range is from 1.0ms/3.2us = 312 to 2.0ms/3.2us = 625
112
      if ((signal > 250) && (signal < 687)) {
113
        // shift signal to zero symmetric range  -154 to 159
2017 - 114
        signal -= 470; // offset of 1.4912 ms ??? (469 * 3.2us = 1.5008 ms)
1962 - 115
        // check for stable signal
116
        if (abs(signal - PPM_in[index]) < 6) {
2019 - 117
          if (RCQuality < 200)
118
            RCQuality += 10;
1962 - 119
          else
2019 - 120
            RCQuality = 200;
1962 - 121
        }
2051 - 122
        // If signal is the same as before +/- 1, just keep it there. Naah lets get rid of this slimy sticy stuff.
123
        // if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) {
1962 - 124
          // In addition, if the signal is very close to 0, just set it to 0.
2051 - 125
        if (signal >= -1 && signal <= 1) {
126
          tmp = 0;
127
        //} else {
128
        //  tmp = PPM_in[index];
129
        //  }
1962 - 130
        } else
131
          tmp = signal;
132
        // calculate signal difference on good signal level
2019 - 133
        if (RCQuality >= 195)
1962 - 134
          PPM_diff[index] = ((tmp - PPM_in[index]) / 3) * 3; // cut off lower 3 bit for nois reduction
135
        else
136
          PPM_diff[index] = 0;
137
        PPM_in[index] = tmp; // update channel value
138
      }
139
      index++; // next channel
140
      // demux sum signal for channels 5 to 7 to J3, J4, J5
141
      // TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
142
      // channels are usually available at the receiver anyway.
143
      // if(index == 5) J3HIGH; else J3LOW;
144
      // if(index == 6) J4HIGH; else J4LOW;
145
      // if(CPUType != ATMEGA644P) // not used as TXD1
146
      //  {
147
      //    if(index == 7) J5HIGH; else J5LOW;
148
      //  }
149
    }
150
  }
151
}
152
 
153
#define RCChannel(dimension) PPM_in[channelMap.channels[dimension]]
154
#define RCDiff(dimension) PPM_diff[channelMap.channels[dimension]]
155
#define COMMAND_THRESHOLD 85
156
#define COMMAND_CHANNEL_VERTICAL CH_THROTTLE
157
#define COMMAND_CHANNEL_HORIZONTAL CH_YAW
158
 
159
// Internal.
160
uint8_t RC_getStickCommand(void) {
161
  if (RCChannel(COMMAND_CHANNEL_VERTICAL) > COMMAND_THRESHOLD) {
162
    // vertical is up
163
    if (RCChannel(COMMAND_CHANNEL_HORIZONTAL) > COMMAND_THRESHOLD)
164
      return COMMAND_GYROCAL;
165
    if (RCChannel(COMMAND_CHANNEL_HORIZONTAL) < -COMMAND_THRESHOLD)
166
      return COMMAND_ACCCAL;
167
    return COMMAND_NONE;
168
  } else if (RCChannel(COMMAND_CHANNEL_VERTICAL) < -COMMAND_THRESHOLD) {
169
    // vertical is down
170
    if (RCChannel(COMMAND_CHANNEL_HORIZONTAL) > COMMAND_THRESHOLD)
171
      return COMMAND_STOP;
172
    if (RCChannel(COMMAND_CHANNEL_HORIZONTAL) < -COMMAND_THRESHOLD)
173
      return COMMAND_START;
174
    return COMMAND_NONE;
175
  }
176
  // vertical is around center
177
  return COMMAND_NONE;
178
}
179
 
180
/*
2048 - 181
 * Get Pitch, Roll, Throttle, Yaw values
1962 - 182
 */
2048 - 183
void RC_periodicTaskAndPRTY(int16_t* PRTY) {
1962 - 184
  int16_t tmp1, tmp2;
2019 - 185
  if (RCQuality) {
186
    RCQuality--;
2053 - 187
    PRTY[CONTROL_PITCH]     += RCChannel(CH_PITCH) * staticParams.stickP + RCDiff(CH_PITCH) * staticParams.stickD;
188
    PRTY[CONTROL_ROLL]      += RCChannel(CH_ROLL) * staticParams.stickP + RCDiff(CH_ROLL) * staticParams.stickD;
189
    int16_t throttle = RCChannel(CH_THROTTLE) + RCDiff(CH_THROTTLE) * staticParams.stickThrottleD + 120;
190
    // Negative throttle values are taken as zero.
191
    if (throttle > 0)
192
      PRTY[CONTROL_THROTTLE]  += throttle;
2048 - 193
    tmp1 = -RCChannel(CH_YAW) - RCDiff(CH_YAW);
194
    // exponential stick sensitivity in yawing rate
2052 - 195
    tmp2 = (int32_t)staticParams.stickYawP * ((int32_t)tmp1 * abs(tmp1)) >> 9; // expo  y = ax + bx^2
2048 - 196
    tmp2 += (staticParams.stickYawP * tmp1) >> 2;
2053 - 197
    PRTY[CONTROL_YAW] += tmp2;
2048 - 198
 
1962 - 199
    uint8_t command = RC_getStickCommand();
200
    if (lastRCCommand == command) {
201
      // Keep timer from overrunning.
202
      if (commandTimer < COMMAND_TIMER)
203
        commandTimer++;
204
    } else {
205
      // There was a change.
206
      lastRCCommand = command;
207
      commandTimer = 0;
208
    }
2053 - 209
  } // if RCQuality is no good, we just do nothing.
2045 - 210
  debugOut.analog[18] = RCQuality;
1962 - 211
}
212
 
213
/*
214
 * Get other channel value
215
 */
216
int16_t RC_getVariable(uint8_t varNum) {
217
  if (varNum < 4)
218
    // 0th variable is 5th channel (1-based) etc.
1986 - 219
    return RCChannel(varNum + CH_POTS) + POT_OFFSET;
1962 - 220
  /*
221
   * Let's just say:
1986 - 222
   * The RC variable i is hardwired to channel i, i>=4
1962 - 223
   */
1986 - 224
  return PPM_in[varNum] + POT_OFFSET;
1962 - 225
}
226
 
227
uint8_t RC_getSignalQuality(void) {
2019 - 228
  if (RCQuality >= 160)
1962 - 229
    return SIGNAL_GOOD;
2019 - 230
  if (RCQuality >= 140)
1962 - 231
    return SIGNAL_OK;
2019 - 232
  if (RCQuality >= 120)
1962 - 233
    return SIGNAL_BAD;
234
  return SIGNAL_LOST;
235
}
236
 
237
/*
238
 * To should fired only when the right stick is in the center position.
239
 * This will cause the value of pitch and roll stick to be adjusted
240
 * to zero (not just to near zero, as per the assumption in rc.c
241
 * about the rc signal. I had values about 50..70 with a Futaba
242
 * R617 receiver.) This calibration is not strictly necessary, but
243
 * for control logic that depends on the exact (non)center position
244
 * of a stick, it may be useful.
245
 */
246
void RC_calibrate(void) {
247
  // Do nothing.
248
}
249
 
250
/*
251
 if (staticParams.GlobalConfig & CFG_HEADING_HOLD) {
252
 // In HH, it s OK to trim the R/C. The effect should not be conteracted here.
253
 stickOffsetPitch = stickOffsetRoll = 0;
254
 } else {
255
 stickOffsetPitch = RCChannel(CH_PITCH) * staticParams.StickP;
256
 stickOffsetRoll = RCChannel(CH_ROLL)   * staticParams.StickP;
257
 }
258
 }
259
 */
260
 
261
uint8_t RC_getCommand(void) {
262
  if (commandTimer == COMMAND_TIMER) {
263
    // Stick has been held long enough; command committed.
264
    return lastRCCommand;
265
  }
266
  // Not yet sure what the command is.
267
  return COMMAND_NONE;
268
}
269
 
270
/*
271
 * Command arguments on R/C:
272
 * 2--3--4
273
 * |     |  +
274
 * 1  0  5  ^ 0
275
 * |     |  |  
276
 * 8--7--6
277
 *    
278
 * + <--
279
 *    0
280
 *
281
 * Not in any of these positions: 0
282
 */
283
 
284
#define ARGUMENT_THRESHOLD 70
285
#define ARGUMENT_CHANNEL_VERTICAL CH_PITCH
286
#define ARGUMENT_CHANNEL_HORIZONTAL CH_ROLL
287
 
288
uint8_t RC_getArgument(void) {
289
  if (RCChannel(ARGUMENT_CHANNEL_VERTICAL) > ARGUMENT_THRESHOLD) {
290
    // vertical is up
291
    if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) > ARGUMENT_THRESHOLD)
292
      return 2;
293
    if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) < -ARGUMENT_THRESHOLD)
294
      return 4;
295
    return 3;
296
  } else if (RCChannel(ARGUMENT_CHANNEL_VERTICAL) < -ARGUMENT_THRESHOLD) {
297
    // vertical is down
298
    if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) > ARGUMENT_THRESHOLD)
299
      return 8;
300
    if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) < -ARGUMENT_THRESHOLD)
301
      return 6;
302
    return 7;
303
  } else {
304
    // vertical is around center
305
    if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) > ARGUMENT_THRESHOLD)
306
      return 1;
307
    if (RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) < -ARGUMENT_THRESHOLD)
308
      return 5;
309
    return 0;
310
  }
311
}
312
 
2052 - 313
#ifdef USE_MK3MAG
1962 - 314
/*
2048 - 315
 * For each time the stick is pulled, returns true.
316
 */
1962 - 317
uint8_t RC_testCompassCalState(void) {
2048 - 318
  static uint8_t stickPulled = 1;
1962 - 319
  // if pitch is centered or top set stick to zero
320
  if (RCChannel(CH_PITCH) > -20)
2048 - 321
    stickPulled = 0;
1962 - 322
  // if pitch is down trigger to next cal state
2048 - 323
  if ((RCChannel(CH_PITCH) < -70) && !stickPulled) {
324
    stickPulled = 1;
1962 - 325
    return 1;
326
  }
327
  return 0;
328
}
2052 - 329
#endif
330
 
1962 - 331
/*
332
 * Abstract controls are not used at the moment.
333
 t_control rc_control = {
334
 RC_getPitch,
335
 RC_getRoll,
336
 RC_getYaw,
337
 RC_getThrottle,
338
 RC_getSignalQuality,
339
 RC_calibrate
340
 };
341
 */