Subversion Repositories FlightCtrl

Rev

Rev 2053 | Rev 2057 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
#include <stdlib.h>
2
#include <avr/io.h>
3
#include "eeprom.h"
4
#include "flight.h"
1845 - 5
#include "output.h"
2052 - 6
#include "uart0.h"
1612 dongfang 7
 
8
// Necessary for external control and motor test
9
#include "twimaster.h"
10
#include "attitude.h"
11
#include "controlMixer.h"
1775 - 12
#include "commands.h"
2052 - 13
#include "heightControl.h"
1612 dongfang 14
 
2052 - 15
#ifdef USE_MK3MAG
16
#include "mk3mag.h"
17
#include "compassControl.h"
18
#endif
19
 
1612 dongfang 20
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
21
 
22
/*
23
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
24
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
25
 */
1645 - 26
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
1872 - 27
uint8_t gyroPFactor, gyroIFactor; // the PD factors for the attitude control
1612 dongfang 28
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
2055 - 29
uint8_t invKi;
30
int32_t IPart[2];
1612 dongfang 31
 
32
/************************************************************************/
33
/*  Filter for motor value smoothing (necessary???)                     */
34
/************************************************************************/
35
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
1988 - 36
  switch (staticParams.motorSmoothing) {
1841 - 37
  case 0:
38
    return newvalue;
39
  case 1:
1872 - 40
    return (oldvalue + newvalue) / 2;
1841 - 41
  case 2:
1872 - 42
    if (newvalue > oldvalue)
43
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
44
    else
1841 - 45
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
46
  case 3:
1872 - 47
    if (newvalue < oldvalue)
48
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
49
    else
1841 - 50
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
1872 - 51
  default:
52
    return newvalue;
1841 - 53
  }
1612 dongfang 54
}
55
 
2055 - 56
void flight_setParameters(uint8_t _invKi, uint8_t _gyroPFactor,
1872 - 57
    uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
2053 - 58
  invKi = _invKi;
1841 - 59
  gyroPFactor = _gyroPFactor;
60
  gyroIFactor = _gyroIFactor;
61
  yawPFactor = _yawPFactor;
62
  yawIFactor = _yawIFactor;
1612 dongfang 63
}
64
 
2055 - 65
void flight_setGround() {
66
  // Just reset all I terms.
67
  IPart[PITCH] = IPart[ROLL] = 0;
68
  headingError = 0;
1612 dongfang 69
}
70
 
2055 - 71
void flight_takeOff() {
72
  HC_setGround();
73
#ifdef USE_MK3MAG
74
  attitude_resetHeadingToMagnetic();
75
  compass_setTakeoffHeading(heading);
76
#endif
1612 dongfang 77
}
78
 
79
/************************************************************************/
80
/*  Main Flight Control                                                 */
81
/************************************************************************/
82
void flight_control(void) {
2055 - 83
  int16_t tmp_int;
1872 - 84
  // Mixer Fractions that are combined for Motor Control
1841 - 85
  int16_t yawTerm, throttleTerm, term[2];
1612 dongfang 86
 
1841 - 87
  // PID controller variables
2053 - 88
  int16_t PDPart;
1841 - 89
  static int8_t debugDataTimer = 1;
1612 dongfang 90
 
1841 - 91
  // High resolution motor values for smoothing of PID motor outputs
92
  static int16_t motorFilters[MAX_MOTORS];
1612 dongfang 93
 
1841 - 94
  uint8_t i, axis;
1612 dongfang 95
 
1908 - 96
  throttleTerm = controls[CONTROL_THROTTLE];
1870 - 97
 
2055 - 98
  if (throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
99
    // increment flight-time counter until overflow.
100
    if (isFlying != 0xFFFF)
101
      isFlying++;
102
  }
103
  /*
104
   * When standing on the ground, do not apply I controls and zero the yaw stick.
105
   * Probably to avoid integration effects that will cause the copter to spin
106
   * or flip when taking off.
107
   */
108
  if (isFlying < 256) {
109
    flight_setGround();
110
    if (isFlying == 250)
111
      flight_takeOff();
112
  }
113
 
1841 - 114
  // This check removed. Is done on a per-motor basis, after output matrix multiplication.
1960 - 115
  if (throttleTerm < staticParams.minThrottle + 10)
116
    throttleTerm = staticParams.minThrottle + 10;
117
  else if (throttleTerm > staticParams.maxThrottle - 20)
118
    throttleTerm = (staticParams.maxThrottle - 20);
1612 dongfang 119
 
2055 - 120
  // Scale up to higher resolution. Hmm why is it not (from controlMixer and down) scaled already?
121
  throttleTerm *= CONTROL_SCALING;
122
  // TODO: We dont need to repeat this for every iteration!
1775 - 123
 
2055 - 124
// end part 1: 750-800 usec.
125
// start part 3: 350 - 400 usec.
2051 - 126
#define YAW_I_LIMIT (45L * GYRO_DEG_FACTOR_YAW)
2055 - 127
// This is where control affects the target heading. It also (later) directly controls yaw.
2051 - 128
  headingError -= controls[CONTROL_YAW];
2055 - 129
  if (headingError < -YAW_I_LIMIT)
130
    headingError = -YAW_I_LIMIT;
131
  if (headingError > YAW_I_LIMIT)
132
    headingError = YAW_I_LIMIT;
2048 - 133
 
2055 - 134
  PDPart = (int32_t) (headingError * yawIFactor) / (GYRO_DEG_FACTOR_YAW << 4);
135
// Ehhhhh here is something with desired yaw rate, not?? Ahh OK it gets added in later on.
136
  PDPart += (int32_t) (yawRate * yawPFactor) / (GYRO_DEG_FACTOR_YAW >> 5);
1872 - 137
 
2055 - 138
  // Lets not limit P and D.
139
// CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT);
1612 dongfang 140
 
1841 - 141
  /*
142
   * Compose yaw term.
143
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
144
   * However, at low throttle the yaw term is limited to a fixed value,
145
   * and at high throttle it is limited by the throttle reserve (the difference
146
   * between current throttle and maximum throttle).
147
   */
1645 - 148
#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
2053 - 149
  yawTerm = PDPart - controls[CONTROL_YAW] * CONTROL_SCALING;
2055 - 150
// Limit yawTerm
1955 - 151
  debugOut.digital[0] &= ~DEBUG_CLIP;
1872 - 152
  if (throttleTerm > MIN_YAWGAS) {
153
    if (yawTerm < -throttleTerm / 2) {
1955 - 154
      debugOut.digital[0] |= DEBUG_CLIP;
1872 - 155
      yawTerm = -throttleTerm / 2;
156
    } else if (yawTerm > throttleTerm / 2) {
1955 - 157
      debugOut.digital[0] |= DEBUG_CLIP;
1872 - 158
      yawTerm = throttleTerm / 2;
1841 - 159
    }
160
  } else {
1872 - 161
    if (yawTerm < -MIN_YAWGAS / 2) {
1955 - 162
      debugOut.digital[0] |= DEBUG_CLIP;
1872 - 163
      yawTerm = -MIN_YAWGAS / 2;
164
    } else if (yawTerm > MIN_YAWGAS / 2) {
1955 - 165
      debugOut.digital[0] |= DEBUG_CLIP;
1872 - 166
      yawTerm = MIN_YAWGAS / 2;
1841 - 167
    }
168
  }
1775 - 169
 
1960 - 170
  tmp_int = staticParams.maxThrottle * CONTROL_SCALING;
2055 - 171
 
1845 - 172
  if (yawTerm < -(tmp_int - throttleTerm)) {
173
    yawTerm = -(tmp_int - throttleTerm);
1955 - 174
    debugOut.digital[0] |= DEBUG_CLIP;
1845 - 175
  } else if (yawTerm > (tmp_int - throttleTerm)) {
176
    yawTerm = (tmp_int - throttleTerm);
1955 - 177
    debugOut.digital[0] |= DEBUG_CLIP;
1841 - 178
  }
1867 - 179
 
1955 - 180
  debugOut.digital[1] &= ~DEBUG_CLIP;
2053 - 181
 
2055 - 182
  tmp_int = ((uint16_t)dynamicParams.dynamicStability * ((uint16_t)throttleTerm + (abs(yawTerm) >> 1)) >> 6);
183
  //tmp_int = (int32_t) ((int32_t) dynamicParams.dynamicStability * (int32_t) (throttleTerm + abs(yawTerm) / 2)) / 64;
2053 - 184
 
185
  /************************************************************************/
186
  /* Calculate control feedback from angle (gyro integral)                */
187
  /* and angular velocity (gyro signal)                                   */
188
  /************************************************************************/
189
  // The P-part is the P of the PID controller. That's the angle integrals (not rates).
1872 - 190
  for (axis = PITCH; axis <= ROLL; axis++) {
2055 - 191
    PDPart = (int32_t) rate_PID[axis] * gyroPFactor / (GYRO_DEG_FACTOR_PITCHROLL >> 4);
2053 - 192
    PDPart += (differential[axis] * (int16_t) dynamicParams.gyroD) / 16;
193
    // In acc. mode the I part is summed only from the attitude (IFaktor) angle minus stick.
194
    // In HH mode, the I part is summed from P and D of gyros minus stick.
1872 - 195
    if (gyroIFactor) {
2055 - 196
      int16_t iDiff = attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 3);
197
      PDPart += iDiff;
2053 - 198
      IPart[axis] += iDiff - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
1841 - 199
    } else {
2053 - 200
      IPart[axis] += PDPart - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
1841 - 201
    }
1612 dongfang 202
 
2055 - 203
    // With normal Ki, limit I parts to +/- 205 (of about 1024)
2053 - 204
    if (IPart[axis] < -64000) {
205
      IPart[axis] = -64000;
2052 - 206
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
2053 - 207
    } else if (IPart[axis] > 64000) {
208
      IPart[axis] = 64000;
2052 - 209
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
210
    }
211
 
2055 - 212
    term[axis] = PDPart - controls[axis] + (((int32_t) IPart[axis] * invKi) >> 14);
213
    term[axis] += (dynamicParams.levelCorrection[axis] - 128);
214
 
215
    /*
1841 - 216
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
217
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
218
     * (max. pitch or roll term is the throttle value).
219
     * TODO: Why a growing function of yaw?
220
     */
221
    if (term[axis] < -tmp_int) {
1955 - 222
      debugOut.digital[1] |= DEBUG_CLIP;
2055 - 223
      term[axis] = -tmp_int;
1841 - 224
    } else if (term[axis] > tmp_int) {
1955 - 225
      debugOut.digital[1] |= DEBUG_CLIP;
2055 - 226
      term[axis] = tmp_int;
1841 - 227
    }
228
  }
1775 - 229
 
1841 - 230
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
231
  // Universal Mixer
232
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
233
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1612 dongfang 234
 
2055 - 235
  if (!(--debugDataTimer)) {
236
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
237
    debugOut.analog[0] = attitude[PITCH] / (GYRO_DEG_FACTOR_PITCHROLL / 10); // in 0.1 deg
238
    debugOut.analog[1] = attitude[ROLL]  / (GYRO_DEG_FACTOR_PITCHROLL / 10); // in 0.1 deg
239
    debugOut.analog[2] = heading / GYRO_DEG_FACTOR_YAW;
1976 - 240
 
2055 - 241
    debugOut.analog[3] = rate_ATT[PITCH];
242
    debugOut.analog[4] = rate_ATT[ROLL];
243
    debugOut.analog[5] = yawRate;
244
  }
1976 - 245
 
2055 - 246
  debugOut.analog[8] = yawTerm;
247
  debugOut.analog[9] = throttleTerm;
1775 - 248
 
2055 - 249
  debugOut.analog[16] = gyroActivity;
250
 
1872 - 251
  for (i = 0; i < MAX_MOTORS; i++) {
1874 - 252
    int32_t tmp;
1908 - 253
    uint8_t throttle;
254
 
2055 - 255
    tmp = (int32_t) throttleTerm * mixerMatrix.motor[i][MIX_THROTTLE];
256
    tmp += (int32_t) term[PITCH] * mixerMatrix.motor[i][MIX_PITCH];
257
    tmp += (int32_t) term[ROLL] * mixerMatrix.motor[i][MIX_ROLL];
258
    tmp += (int32_t) yawTerm * mixerMatrix.motor[i][MIX_YAW];
1908 - 259
    tmp = tmp >> 6;
260
    motorFilters[i] = motorFilter(tmp, motorFilters[i]);
261
    // Now we scale back down to a 0..255 range.
262
    tmp = motorFilters[i] / MOTOR_SCALING;
263
 
264
    // So this was the THIRD time a throttle was limited. But should the limitation
265
    // apply to the common throttle signal (the one used for setting the "power" of
266
    // all motors together) or should it limit the throttle set for each motor,
267
    // including mix components of pitch, roll and yaw? I think only the common
268
    // throttle should be limited.
269
    // --> WRONG. This caused motors to stall completely in tight maneuvers.
270
    // Apply to individual signals instead.
271
    CHECK_MIN_MAX(tmp, 1, 255);
272
    throttle = tmp;
273
 
2055 - 274
    if (i < 4)
275
      debugOut.analog[10 + i] = throttle;
1908 - 276
 
1960 - 277
    if ((MKFlags & MKFLAG_MOTOR_RUN) && mixerMatrix.motor[i][MIX_THROTTLE] > 0) {
2035 - 278
      motor[i].throttle = throttle;
1872 - 279
    } else if (motorTestActive) {
2035 - 280
      motor[i].throttle = motorTest[i];
1841 - 281
    } else {
2035 - 282
      motor[i].throttle = 0;
1841 - 283
    }
284
  }
1872 - 285
 
1841 - 286
  I2C_Start(TWI_STATE_MOTOR_TX);
1612 dongfang 287
}