Subversion Repositories FlightCtrl

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1775 - 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten und nicht-kommerziellen Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
 
53
#include <stdlib.h>
54
#include <avr/io.h>
55
#include "eeprom.h"
56
#include "flight.h"
57
 
58
// Only for debug. Remove.
59
//#include "analog.h"
60
//#include "rc.h"
61
 
62
// Necessary for external control and motor test
63
#include "uart0.h"
64
 
65
// for scope debugging
66
#include "rc.h"
67
 
68
#include "twimaster.h"
69
#include "attitude.h"
70
#include "controlMixer.h"
71
#ifdef USE_MK3MAG
72
#include "gps.h"
73
#endif
74
 
75
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
76
 
77
/*
78
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
79
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
80
 */
81
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
82
 
83
uint8_t gyroPFactor, gyroIFactor;       // the PD factors for the attitude control
84
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
85
 
86
// Some integral weight constant...
87
uint16_t Ki = 10300 / 33;
88
uint8_t RequiredMotors = 0;
89
 
90
// No support for altitude control right now.
91
// int16_t SetPointHeight = 0;
92
 
93
/************************************************************************/
94
/*  Filter for motor value smoothing (necessary???)                     */
95
/************************************************************************/
96
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
97
  switch(dynamicParams.UserParams[5]) {
98
  case 0:
99
    return newvalue;
100
  case 1:
101
    return (oldvalue + newvalue) / 2;  
102
  case 2:
103
    if(newvalue > oldvalue)
104
      return (1 * (int16_t)oldvalue + newvalue) / 2;  //mean of old and new
105
    else       
106
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
107
  case 3:
108
    if(newvalue < oldvalue)
109
      return (1 * (int16_t)oldvalue + newvalue) / 2;  //mean of old and new
110
    else       
111
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
112
  default: return newvalue;
113
  }
114
}
115
 
116
/************************************************************************/
117
/*  Neutral Readings                                                    */
118
/************************************************************************/
119
void flight_setNeutral() {
120
  MKFlags |= MKFLAG_CALIBRATE;
121
 
122
  // not really used here any more.
123
  dynamicParams.KalmanK = -1;
124
  dynamicParams.KalmanMaxDrift = 0;
125
  dynamicParams.KalmanMaxFusion = 32;
126
 
127
  controlMixer_initVariables();
128
}
129
 
130
void setFlightParameters(uint8_t _Ki, uint8_t _gyroPFactor, uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
131
  Ki = 10300 / _Ki;
132
  gyroPFactor = _gyroPFactor;
133
  gyroIFactor = _gyroIFactor;
134
  yawPFactor = _yawPFactor;
135
  yawIFactor = _yawIFactor;
136
}
137
 
138
void setNormalFlightParameters(void) {
139
  setFlightParameters(dynamicParams.IFactor + 1,
140
                      dynamicParams.GyroP + 10,
141
                      staticParams.GlobalConfig & CFG_HEADING_HOLD ? 0 : dynamicParams.GyroI,
142
                      dynamicParams.GyroP + 10,
143
                      dynamicParams.UserParams[6]
144
                      );
145
}
146
 
147
void setStableFlightParameters(void) {
148
  setFlightParameters(33, 90, 120, 90, 120);
149
}
150
 
151
 
152
/************************************************************************/
153
/*  Main Flight Control                                                 */
154
/************************************************************************/
155
void flight_control(void) {
156
  int16_t tmp_int;
157
    // Mixer Fractions that are combined for Motor Control
158
  int16_t yawTerm, throttleTerm, term[2];
159
 
160
  // PID controller variables
161
  int16_t PDPart[2], PDPartYaw, PPart[2];
162
  static int32_t IPart[2] = {0,0};
163
  //  static int32_t yawControlRate = 0;
164
 
165
  // Removed. Too complicated, and apparently not necessary with MEMS gyros anyway.
166
  // static int32_t IntegralGyroPitchError = 0, IntegralGyroRollError = 0;
167
  // static int32_t CorrectionPitch, CorrectionRoll;
168
 
169
  static uint16_t emergencyFlightTime;
170
  static int8_t debugDataTimer = 1;
171
 
172
  // High resolution motor values for smoothing of PID motor outputs
173
  static int16_t motorFilters[MAX_MOTORS];
174
 
175
  uint8_t i, axis;
176
 
177
  // Fire the main flight attitude calculation, including integration of angles.
178
 
179
  calculateFlightAttitude();
180
 
181
  /*
182
   * TODO: update should: Set the stick variables if good signal, set them to zero if bad.
183
   * Set variables also.
184
   */
185
  // start part 1: 750-800 usec.
186
  // start part 1a: 750-800 usec.
187
  // start part1b: 700 usec
188
  // start part1c: 700 usec!!!!!!!!! WAY too slow.
189
  controlMixer_update();
190
  // end part1c
191
 
192
  throttleTerm = controlThrottle;
193
  if(throttleTerm < staticParams.MinThrottle + 10) throttleTerm = staticParams.MinThrottle + 10;
194
  else if(throttleTerm > staticParams.MaxThrottle - 20) throttleTerm = (staticParams.MaxThrottle - 20);
195
 
196
  // end part1b: 700 usec.
197
  /************************************************************************/
198
  /* RC-signal is bad                                                     */
199
  /* This part could be abstracted, as having yet another control input   */
200
  /* to the control mixer: An emergency autopilot control.                */
201
  /************************************************************************/
202
 
203
  if(controlMixer_getSignalQuality() <= SIGNAL_BAD) {           // the rc-frame signal is not reveived or noisy
204
    RED_ON;
205
    beepRCAlarm();
206
 
207
    if(emergencyFlightTime) {
208
      // continue emergency flight
209
      emergencyFlightTime--;
210
      if(isFlying > 256) {                    
211
        // We're probably still flying. Descend slowly.
212
        throttleTerm = staticParams.EmergencyGas;  // Set emergency throttle
213
        MKFlags |= (MKFLAG_EMERGENCY_LANDING);     // Set flag for emergency landing
214
        setStableFlightParameters();
215
      } else {
216
        MKFlags &= ~(MKFLAG_MOTOR_RUN);            // Probably not flying, and bad R/C signal. Kill motors.
217
      }
218
    } else {
219
      // end emergency flight (just cut the motors???)
220
      MKFlags &= ~(MKFLAG_MOTOR_RUN | MKFLAG_EMERGENCY_LANDING);
221
    }
222
  } else {
223
    // signal is acceptable
224
    if(controlMixer_getSignalQuality() > SIGNAL_BAD) {
225
      // Reset emergency landing control variables.
226
      MKFlags &= ~(MKFLAG_EMERGENCY_LANDING);  // clear flag for emergency landing
227
      // The time is in whole seconds.
228
      emergencyFlightTime = (uint16_t)staticParams.EmergencyGasDuration * 488;
229
    }
230
 
231
    // If some throttle is given, and the motor-run flag is on, increase the probability that we are flying.
232
    if(throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
233
      // increment flight-time counter until overflow.
234
      if(isFlying != 0xFFFF) isFlying++;
235
    } else
236
      /*
237
       * When standing on the ground, do not apply I controls and zero the yaw stick.
238
       * Probably to avoid integration effects that will cause the copter to spin
239
       * or flip when taking off.
240
       */
241
      if(isFlying < 256) {
242
        IPart[PITCH] = IPart[ROLL] = 0;
243
        // TODO: Don't stomp on other modules' variables!!!
244
        controlYaw = 0;
245
        if(isFlying == 250) {
246
          // HC_setGround();
247
          updateCompassCourse = 1;
248
          yawAngleDiff = 0;
249
        }
250
      } else {
251
            // Set fly flag. TODO: Hmmm what can we trust - the isFlying counter or the flag? 
252
            // Answer: The counter. The flag is not read from anywhere anyway... except the NC maybe.
253
            MKFlags |= (MKFLAG_FLY);
254
      }
255
 
256
        commands_handleCommands();
257
 
258
    // if(controlMixer_getSignalQuality() >= SIGNAL_GOOD) {
259
    setNormalFlightParameters();
260
    // }
261
  } // end else (not bad signal case)
262
  // end part1a: 750-800 usec.
263
  /*
264
   * Looping the H&I way basically is just a matter of turning off attitude angle measurement
265
   * by integration (because 300 deg/s gyros are too slow) and turning down the throttle.
266
   * This is the throttle part.
267
   */
268
  if(looping) {
269
    if(throttleTerm > staticParams.LoopGasLimit) throttleTerm = staticParams.LoopGasLimit;
270
  }
271
 
272
  /************************************************************************/
273
  /*  Yawing                                                              */
274
  /************************************************************************/
275
  if(abs(controlYaw) > 4 * staticParams.StickYawP) { // yaw stick is activated
276
    badCompassHeading = 1000;
277
    if(!(staticParams.GlobalConfig & CFG_COMPASS_FIX)) {
278
      updateCompassCourse = 1;
279
    }
280
  }
281
 
282
  //  yawControlRate = controlYaw;
283
 
284
  // Trim drift of yawAngleDiff with controlYaw.
285
  // TODO: We want NO feedback of control related stuff to the attitude related stuff.
286
  // This seems to be used as: Difference desired <--> real heading.
287
  yawAngleDiff -= controlYaw;
288
 
289
  // limit the effect
290
  CHECK_MIN_MAX(yawAngleDiff, -50000, 50000);
291
 
292
  /************************************************************************/
293
  /* Compass is currently not supported.                                  */
294
  /************************************************************************/
295
  if(staticParams.GlobalConfig & (CFG_COMPASS_ACTIVE|CFG_GPS_ACTIVE)) {
296
    updateCompass();
297
  }
298
 
299
#if defined (USE_MK3MAG)
300
  /************************************************************************/
301
  /* GPS is currently not supported.                                      */
302
  /************************************************************************/
303
  if(staticParams.GlobalConfig & CFG_GPS_ACTIVE) {
304
    GPS_Main();
305
    MKFlags &= ~(MKFLAG_CALIBRATE | MKFLAG_START);
306
  }
307
  else {
308
    // GPSStickPitch = 0;
309
    // GPSStickRoll = 0;
310
  }
311
#endif
312
  // end part 1: 750-800 usec.
313
  // start part 3: 350 - 400 usec.
314
#define SENSOR_LIMIT  (4096 * 4)
315
    /************************************************************************/
316
 
317
    /* Calculate control feedback from angle (gyro integral)                */
318
    /* and angular velocity (gyro signal)                                   */
319
    /************************************************************************/
320
    // The P-part is the P of the PID controller. That's the angle integrals (not rates).
321
  for (axis=PITCH; axis<=ROLL; axis++) {
322
    if(looping & ((1<<4)<<axis)) {
323
      PPart[axis] = 0;
324
    } else { // TODO: Where do the 44000 come from???
325
      PPart[axis] = angle[axis] * gyroIFactor / (44000 / CONTROL_SCALING); // P-Part - Proportional to Integral
326
    }
327
 
328
    /*
329
     * Now blend in the D-part - proportional to the Differential of the integral = the rate.
330
     * Read this as: PDPart = PPart + rate_PID * pfactor * CONTROL_SCALING
331
     * where pfactor is in [0..1].
332
     */
333
    PDPart[axis] = PPart[axis] + (int32_t)((int32_t)rate_PID[axis] * gyroPFactor / (256L / CONTROL_SCALING))
334
      + (differential[axis] * (int16_t)dynamicParams.GyroD) / 16;
335
 
336
    CHECK_MIN_MAX(PDPart[axis], -SENSOR_LIMIT, SENSOR_LIMIT);
337
  }
338
 
339
  PDPartYaw =
340
    (int32_t)(yawRate * 2 * (int32_t)yawPFactor) / (256L / CONTROL_SCALING)
341
  + (int32_t)(yawAngleDiff * yawIFactor) / (2 * (44000 / CONTROL_SCALING));
342
 
343
  // limit control feedback
344
  CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT);
345
 
346
  /*
347
   * Compose throttle term.
348
   * If a Bl-Ctrl is missing, prevent takeoff.
349
   */
350
  if(missingMotor) {
351
    // if we are in the lift off condition. Hmmmmmm when is throttleTerm == 0 anyway???
352
    if((isFlying > 1) && (isFlying < 50) && (throttleTerm > 0))
353
      isFlying = 1; // keep within lift off condition
354
    throttleTerm = staticParams.MinThrottle; // reduce gas to min to avoid lift of
355
  }
356
 
357
  throttleTerm *= CONTROL_SCALING;
358
 
359
  /*
360
   * Compose yaw term.
361
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
362
   * However, at low throttle the yaw term is limited to a fixed value,
363
   * and at high throttle it is limited by the throttle reserve (the difference
364
   * between current throttle and maximum throttle).
365
   */
366
#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
367
  yawTerm = PDPartYaw - controlYaw * CONTROL_SCALING;
368
  // limit yawTerm
369
  if(throttleTerm > MIN_YAWGAS) {
370
    CHECK_MIN_MAX(yawTerm, - (throttleTerm / 2), (throttleTerm / 2));
371
  } else {
372
    CHECK_MIN_MAX(yawTerm, - (MIN_YAWGAS / 2), (MIN_YAWGAS / 2));
373
  }
374
 
375
  tmp_int = staticParams.MaxThrottle * CONTROL_SCALING;
376
  CHECK_MIN_MAX(yawTerm, -(tmp_int - throttleTerm), (tmp_int - throttleTerm));
377
 
378
  tmp_int = (int32_t)((int32_t)dynamicParams.DynamicStability * (int32_t)(throttleTerm + abs(yawTerm) / 2)) / 64;
379
 
380
  for (axis=PITCH; axis<=ROLL; axis++) {  
381
    /*
382
     * Compose pitch and roll terms. This is finally where the sticks come into play.
383
     */
384
    if(gyroIFactor) {
385
      // Integration mode: Integrate (angle - stick) = the difference between angle and stick pos.
386
      // That means: Holding the stick a little forward will, at constant flight attitude, cause this to grow (decline??) over time.
387
      // TODO: Find out why this seems to be proportional to stick position - not integrating it at all.
388
      IPart[axis] += PPart[axis] - control[axis]; // Integrate difference between P part (the angle) and the stick pos.
389
    } else {
390
      // "HH" mode: Integrate (rate - stick) = the difference between rotation rate and stick pos.
391
      // To keep up with a full stick PDPart should be about 156...
392
      IPart[axis] += PDPart[axis] - control[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
393
    }
394
 
395
    // TODO: From which planet comes the 16000?
396
    CHECK_MIN_MAX(IPart[axis], -(CONTROL_SCALING * 16000L), (CONTROL_SCALING * 16000L));
397
    // Add (P, D) parts minus stick pos. to the scaled-down I part.
398
    term[axis] = PDPart[axis] - control[axis] + IPart[axis] / Ki;    // PID-controller for pitch
399
 
400
    /*
401
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
402
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
403
     * (max. pitch or roll term is the throttle value).
404
     * TODO: Why a growing function of yaw?
405
     */
406
    CHECK_MIN_MAX(term[axis], -tmp_int, tmp_int);
407
  }
408
  // end part 3: 350 - 400 usec.
409
 
410
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
411
  // Universal Mixer
412
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
413
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
414
 
415
  for(i = 0; i < MAX_MOTORS; i++) {
416
    int16_t tmp;
417
    if (MKFlags & MKFLAG_MOTOR_RUN && Mixer.Motor[i][MIX_THROTTLE] > 0) {
418
      tmp =  ((int32_t)throttleTerm * Mixer.Motor[i][MIX_THROTTLE]) / 64L;
419
      tmp += ((int32_t)term[PITCH]  * Mixer.Motor[i][MIX_PITCH])    / 64L;
420
      tmp += ((int32_t)term[ROLL]   * Mixer.Motor[i][MIX_ROLL])     / 64L;
421
      tmp += ((int32_t)yawTerm      * Mixer.Motor[i][MIX_YAW])      / 64L;
422
      motorFilters[i] = motorFilter(tmp, motorFilters[i]);
423
      tmp = motorFilters[i] / CONTROL_SCALING;
424
      // So this was the THIRD time a throttle was limited. But should the limitation
425
      // apply to the common throttle signal (the one used for setting the "power" of 
426
      // all motors together) or should it limit the throttle set for each motor, 
427
      // including mix components of pitch, roll and yaw? I think only the common
428
      // throttle should be limited.
429
      // CHECK_MIN_MAX(tmp, staticParams.MinThrottle, staticParams.MaxThrottle);
430
      DebugOut.Analog[22+i] = tmp;
431
      CHECK_MIN_MAX(tmp, 1, 255);
432
      Motor[i].SetPoint = tmp;
433
    }
434
    else if (motorTestActive) {
435
      Motor[i].SetPoint = motorTest[i];
436
    } else {
437
      Motor[i].SetPoint = 0;
438
    }
439
  }
440
  I2C_Start(TWI_STATE_MOTOR_TX);
441
 
442
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
443
  // Debugging
444
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
445
  if(!(--debugDataTimer)) {
446
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
447
    DebugOut.Analog[0]  = (10 * angle[PITCH]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
448
    DebugOut.Analog[1]  = (10 * angle[ROLL]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
449
    DebugOut.Analog[2]  = yawGyroHeading / GYRO_DEG_FACTOR_YAW;
450
 
451
    /*
452
    DebugOut.Analog[23] = (yawRate * 2 * (int32_t)yawPFactor) / (256L / CONTROL_SCALING);
453
    DebugOut.Analog[24] = controlYaw;
454
    DebugOut.Analog[25] = yawAngleDiff / 100L;
455
    */
456
 
457
    DebugOut.Analog[26] = accNoisePeak[PITCH];
458
    DebugOut.Analog[27] = accNoisePeak[ROLL];
459
 
460
    DebugOut.Analog[30] = gyroNoisePeak[PITCH];
461
    DebugOut.Analog[31] = gyroNoisePeak[ROLL];
462
  }
463
}