Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2189 | - | 1 | #include <stdlib.h> |
2 | #include <avr/io.h> |
||
3 | #include <stdio.h> |
||
4 | |||
5 | #include "attitude.h" |
||
6 | #include "commands.h" |
||
7 | #include "vector3d.h" |
||
8 | // For scope debugging only! |
||
9 | #include "rc.h" |
||
10 | |||
11 | // where our main data flow comes from. |
||
12 | #include "analog.h" |
||
13 | |||
14 | #include "configuration.h" |
||
15 | #include "output.h" |
||
16 | |||
17 | // Some calculations are performed depending on some stick related things. |
||
18 | #include "controlMixer.h" |
||
19 | |||
20 | #define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;} |
||
21 | |||
22 | /* |
||
23 | * Gyro integrals. These are the rotation angles of the airframe relative to horizontal. |
||
24 | */ |
||
25 | float attitude[3]; |
||
26 | |||
27 | uint8_t imu_sequence = 0; //incremented on each call to imu_update |
||
28 | |||
29 | float dcmAcc[3][3]; //dcm matrix according to accelerometer |
||
30 | float dcmGyro[3][3]; //dcm matrix according to gyroscopes |
||
31 | float dcmEst[3][3]; //estimated dcm matrix by fusion of accelerometer and gyro |
||
32 | |||
33 | float getAngleEstimateFromAcc(uint8_t axis) { |
||
34 | return GYRO_ACC_FACTOR * acc_ATT[axis]; |
||
35 | } |
||
36 | |||
37 | /************************************************************************ |
||
38 | * Neutral Readings |
||
39 | ************************************************************************/ |
||
40 | void attitude_setNeutral(void) { |
||
41 | // Calibrate hardware. |
||
42 | analog_setNeutral(); |
||
43 | unsigned char i, j; |
||
44 | for (i = 0; i < 3; i++) |
||
45 | for (j = 0; j < 3; j++) |
||
46 | dcmGyro[i][j] = (i == j) ? 1.0 : 0.0; |
||
47 | } |
||
48 | |||
49 | /* |
||
50 | How to use this module in other projects. |
||
51 | |||
52 | Input variables are: |
||
53 | adcAvg[0..6] ADC readings of 3 axis accelerometer and 3 axis gyroscope (they are calculated in the background by adcutil.h) |
||
54 | interval_us - interval in microseconds since last call to imu_update |
||
55 | |||
56 | Output variables are: |
||
57 | DcmEst[0..2] which are the direction cosine of the X,Y,Z axis |
||
58 | |||
59 | First you must initialize the module with: |
||
60 | imu_init(); |
||
61 | |||
62 | Then call periodically every 5-20ms: |
||
63 | imu_update(interval_us); |
||
64 | it is assumed that you also update periodicall the adcAvg[0..5] array |
||
65 | |||
66 | */ |
||
67 | |||
68 | #define ACC_WEIGHT_MAX 0.02 //maximum accelerometer weight in accelerometer-gyro fusion formula |
||
69 | //this value is tuned-up experimentally: if you get too much noise - decrease it |
||
70 | //if you get a delayed response of the filtered values - increase it |
||
71 | //starting with a value of 0.01 .. 0.05 will work for most sensors |
||
72 | |||
73 | #define ACC_ERR_MAX 0.3 //maximum allowable error(external acceleration) where accWeight becomes 0 |
||
74 | |||
75 | //------------------------------------------------------------------- |
||
76 | // Globals |
||
77 | //------------------------------------------------------------------- |
||
78 | |||
79 | //bring dcm matrix in order - adjust values to make orthonormal (or at least closer to orthonormal) |
||
80 | //Note: dcm and dcmResult can be the same |
||
81 | void dcm_orthonormalize(float dcm[3][3]) { |
||
82 | //err = X . Y , X = X - err/2 * Y , Y = Y - err/2 * X (DCMDraft2 Eqn.19) |
||
83 | float err = vector3d_dot((float*) (dcm[0]), (float*) (dcm[1])); |
||
84 | float delta[2][3]; |
||
85 | vector3d_scale(-err / 2, (float*) (dcm[1]), (float*) (delta[0])); |
||
86 | vector3d_scale(-err / 2, (float*) (dcm[0]), (float*) (delta[1])); |
||
87 | vector3d_add((float*) (dcm[0]), (float*) (delta[0]), (float*) (dcm[0])); |
||
88 | vector3d_add((float*) (dcm[1]), (float*) (delta[0]), (float*) (dcm[1])); |
||
89 | |||
90 | //Z = X x Y (DCMDraft2 Eqn. 20) , |
||
91 | vector3d_cross((float*) (dcm[0]), (float*) (dcm[1]), (float*) (dcm[2])); |
||
92 | //re-nomralization |
||
93 | vector3d_normalize((float*) (dcm[0])); |
||
94 | vector3d_normalize((float*) (dcm[1])); |
||
95 | vector3d_normalize((float*) (dcm[2])); |
||
96 | } |
||
97 | |||
98 | //rotate DCM matrix by a small rotation given by angular rotation vector w |
||
99 | //see http://gentlenav.googlecode.com/files/DCMDraft2.pdf |
||
100 | void dcm_rotate(float dcm[3][3], float w[3]) { |
||
101 | //float W[3][3]; |
||
102 | //creates equivalent skew symetric matrix plus identity matrix |
||
103 | //vector3d_skew_plus_identity((float*)w,(float*)W); |
||
104 | //float dcmTmp[3][3]; |
||
105 | //matrix_multiply(3,3,3,(float*)W,(float*)dcm,(float*)dcmTmp); |
||
106 | |||
107 | int i; |
||
108 | float dR[3]; |
||
109 | //update matrix using formula R(t+1)= R(t) + dR(t) = R(t) + w x R(t) |
||
110 | for (i = 0; i < 3; i++) { |
||
111 | vector3d_cross(w, dcm[i], dR); |
||
112 | vector3d_add(dcm[i], dR, dcm[i]); |
||
113 | } |
||
114 | |||
115 | //make matrix orthonormal again |
||
116 | dcm_orthonormalize(dcm); |
||
117 | } |
||
118 | |||
119 | //------------------------------------------------------------------- |
||
120 | // imu_update |
||
121 | //------------------------------------------------------------------- |
||
122 | #define ACC_WEIGHT 0.01 //accelerometer data weight relative to gyro's weight of 1 |
||
123 | #define MAG_WEIGHT 0.0 //magnetometer data weight relative to gyro's weight of 1 |
||
124 | |||
125 | void imu_update(void) { |
||
126 | int i; |
||
127 | imu_sequence++; |
||
128 | |||
129 | //interval since last call |
||
130 | |||
131 | //--------------- |
||
132 | // I,J,K unity vectors of global coordinate system I-North,J-West,K-zenith |
||
133 | // i,j,k unity vectors of body's coordiante system i-"nose", j-"left wing", k-"top" |
||
134 | //--------------- |
||
135 | // [I.i , I.j, I.k] |
||
136 | // DCM = [J.i , J.j, J.k] |
||
137 | // [K.i , K.j, K.k] |
||
138 | |||
139 | |||
140 | //--------------- |
||
141 | //Acelerometer |
||
142 | //--------------- |
||
143 | //Accelerometer measures gravity vector G in body coordinate system |
||
144 | //Gravity vector is the reverse of K unity vector of global system expressed in local coordinates |
||
145 | //K vector coincides with the z coordinate of body's i,j,k vectors expressed in global coordinates (K.i , K.j, K.k) |
||
146 | float Kacc[3]; |
||
147 | //Acc can estimate global K vector(zenith) measured in body's coordinate systems (the reverse of gravitation vector) |
||
148 | Kacc[0] = -acc_ATT[X]; |
||
149 | Kacc[1] = -acc_ATT[Y]; |
||
150 | Kacc[2] = -acc_ATT[Z]; |
||
151 | vector3d_normalize(Kacc); |
||
152 | //calculate correction vector to bring dcmGyro's K vector closer to Acc vector (K vector according to accelerometer) |
||
153 | float wA[3]; |
||
154 | vector3d_cross(dcmGyro[2], Kacc, wA); // wA = Kgyro x Kacc , rotation needed to bring Kacc to Kgyro |
||
155 | |||
156 | //--------------- |
||
157 | //Magnetomer |
||
158 | //--------------- |
||
159 | //calculate correction vector to bring dcmGyro's I vector closer to Mag vector (I vector according to magnetometer) |
||
160 | float Imag[3]; |
||
161 | float wM[3]; |
||
162 | //in the absense of magnetometer let's assume North vector (I) is always in XZ plane of the device (y coordinate is 0) |
||
163 | Imag[0] = sqrt(1 - dcmGyro[0][2] * dcmGyro[0][2]); |
||
164 | Imag[1] = 0; |
||
165 | Imag[2] = dcmGyro[0][2]; |
||
166 | |||
167 | vector3d_cross(dcmGyro[0], Imag, wM); // wM = Igyro x Imag, roation needed to bring Imag to Igyro |
||
168 | |||
169 | //--------------- |
||
170 | //dcmGyro |
||
171 | //--------------- |
||
172 | float w[3]; //gyro rates (angular velocity of a global vector in local coordinates) |
||
173 | w[0] = -gyro_ATT[PITCH] / 1000.0; //rotation rate about accelerometer's X axis (GY output) in rad/ms |
||
174 | w[1] = -gyro_ATT[ROLL] / 1000.0; //rotation rate about accelerometer's Y axis (GX output) in rad/ms |
||
175 | w[2] = -gyro_ATT[YAW] / 1000.0; //rotation rate about accelerometer's Z axis (GZ output) in rad/ms |
||
176 | |||
177 | for (i = 0; i < 3; i++) { |
||
178 | w[i] *= INTEGRATION_TIME_MS; //scale by elapsed time to get angle in radians |
||
179 | //compute weighted average with the accelerometer correction vector |
||
180 | w[i] = (w[i] + ACC_WEIGHT * wA[i] + MAG_WEIGHT * wM[i]) / (1.0 |
||
181 | + ACC_WEIGHT + MAG_WEIGHT); |
||
182 | } |
||
183 | |||
184 | dcm_rotate(dcmGyro, w); |
||
185 | |||
186 | //Output for PicQuadController_GYRO_DEBUG1.scc |
||
187 | //only output data ocasionally to allow computer to process data |
||
188 | /* |
||
189 | if(0 == imu_sequence % 4){ |
||
190 | printf("%.5f,",(double)interval_ms); |
||
191 | print_float_list(3,(float*)w); |
||
192 | printf(",%.2f,%.2f,%.2f",adcAvg[3+1],adcAvg[3+0],adcAvg[3+2]); |
||
193 | |||
194 | printf("\n "); |
||
195 | } |
||
196 | */ |
||
197 | |||
198 | //Output for: PICQUADCONTROLLER_DEBUG1.pde |
||
199 | //only output data ocasionally to allow computer to process data |
||
200 | /* |
||
201 | if (0 == imu_sequence % 16) { |
||
202 | printf("%.2f,", (double) interval_ms); |
||
203 | print_float_list(3, (float*) Kacc); |
||
204 | printf(", "); |
||
205 | print_float_list(9, (float*) dcmGyro); |
||
206 | printf("\n"); |
||
207 | } |
||
208 | */ |
||
209 | } |
||
210 | |||
211 | void attitude_update(void) { |
||
212 | analog_update(); |
||
213 | startAnalogConversionCycle(); |
||
214 | |||
215 | // Takes 4 ms. |
||
216 | imu_update(); |
||
217 | } |