Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1612 | dongfang | 1 | #include <stdlib.h> |
2 | #include <avr/io.h> |
||
3 | |||
4 | #include "attitude.h" |
||
5 | #include "dongfangMath.h" |
||
2048 | - | 6 | #include "commands.h" |
1612 | dongfang | 7 | |
1775 | - | 8 | // For scope debugging only! |
9 | #include "rc.h" |
||
10 | |||
1612 | dongfang | 11 | // where our main data flow comes from. |
12 | #include "analog.h" |
||
13 | |||
14 | #include "configuration.h" |
||
1775 | - | 15 | #include "output.h" |
1612 | dongfang | 16 | |
17 | // Some calculations are performed depending on some stick related things. |
||
18 | #include "controlMixer.h" |
||
19 | |||
20 | #define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;} |
||
21 | |||
22 | /* |
||
23 | * Gyro readings, as read from the analog module. It would have been nice to flow |
||
24 | * them around between the different calculations as a struct or array (doing |
||
25 | * things functionally without side effects) but this is shorter and probably |
||
26 | * faster too. |
||
27 | * The variables are overwritten at each attitude calculation invocation - the values |
||
28 | * are not preserved or reused. |
||
29 | */ |
||
1775 | - | 30 | int16_t rate_ATT[2], yawRate; |
1612 | dongfang | 31 | |
32 | // With different (less) filtering |
||
1645 | - | 33 | int16_t rate_PID[2]; |
34 | int16_t differential[2]; |
||
1612 | dongfang | 35 | |
36 | /* |
||
37 | * Gyro readings, after performing "axis coupling" - that is, the transfomation |
||
38 | * of rotation rates from the airframe-local coordinate system to a ground-fixed |
||
39 | * coordinate system. If axis copling is disabled, the gyro readings will be |
||
40 | * copied into these directly. |
||
41 | * These are global for the same pragmatic reason as with the gyro readings. |
||
42 | * The variables are overwritten at each attitude calculation invocation - the values |
||
43 | * are not preserved or reused. |
||
44 | */ |
||
1645 | - | 45 | int16_t ACRate[2], ACYawRate; |
1612 | dongfang | 46 | |
47 | /* |
||
48 | * Gyro integrals. These are the rotation angles of the airframe compared to the |
||
49 | * horizontal plane, yaw relative to yaw at start. |
||
50 | */ |
||
2048 | - | 51 | int32_t attitude[2]; |
1612 | dongfang | 52 | |
2048 | - | 53 | //int readingHeight = 0; |
1612 | dongfang | 54 | |
1805 | - | 55 | // Yaw angle and compass stuff. |
2051 | - | 56 | int32_t headingError; |
1805 | - | 57 | |
58 | // The difference between the above 2 (heading - course) on a -180..179 degree interval. |
||
59 | // Not necessary. Never read anywhere. |
||
60 | // int16_t compassOffCourse = 0; |
||
61 | |||
2051 | - | 62 | uint16_t ignoreCompassTimer = 0;// 500; |
1805 | - | 63 | |
2048 | - | 64 | int32_t heading; // Yaw Gyro Integral supported by compass |
1775 | - | 65 | int16_t yawGyroDrift; |
1612 | dongfang | 66 | |
1805 | - | 67 | int16_t correctionSum[2] = { 0, 0 }; |
1612 | dongfang | 68 | |
1775 | - | 69 | // For NaviCTRL use. |
1805 | - | 70 | int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0; |
1775 | - | 71 | |
1612 | dongfang | 72 | /* |
73 | * Experiment: Compensating for dynamic-induced gyro biasing. |
||
74 | */ |
||
1805 | - | 75 | int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0; |
1612 | dongfang | 76 | // int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0; |
77 | // int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw; |
||
78 | // int16_t dynamicCalCount; |
||
2089 | - | 79 | // uint16_t accVector; |
1612 | dongfang | 80 | |
2089 | - | 81 | // uint32_t gyroActivity; |
1980 | - | 82 | |
1612 | dongfang | 83 | /************************************************************************ |
84 | * Set inclination angles from the acc. sensor data. |
||
85 | * If acc. sensors are not used, set to zero. |
||
86 | * TODO: One could use inverse sine to calculate the angles more |
||
1616 | dongfang | 87 | * accurately, but since: 1) the angles are rather small at times when |
88 | * it makes sense to set the integrals (standing on ground, or flying at |
||
1612 | dongfang | 89 | * constant speed, and 2) at small angles a, sin(a) ~= constant * a, |
90 | * it is hardly worth the trouble. |
||
91 | ************************************************************************/ |
||
92 | |||
1645 | - | 93 | int32_t getAngleEstimateFromAcc(uint8_t axis) { |
1991 | - | 94 | //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L; |
2048 | - | 95 | return (int32_t) GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis]; // + correctionTerm; |
2032 | - | 96 | // return 342L * filteredAcc[axis]; |
1612 | dongfang | 97 | } |
98 | |||
99 | void setStaticAttitudeAngles(void) { |
||
100 | #ifdef ATTITUDE_USE_ACC_SENSORS |
||
2048 | - | 101 | attitude[PITCH] = getAngleEstimateFromAcc(PITCH); |
102 | attitude[ROLL] = getAngleEstimateFromAcc(ROLL); |
||
1612 | dongfang | 103 | #else |
2048 | - | 104 | attitude[PITCH] = attitude[ROLL] = 0; |
1612 | dongfang | 105 | #endif |
106 | } |
||
107 | |||
108 | /************************************************************************ |
||
109 | * Neutral Readings |
||
110 | ************************************************************************/ |
||
111 | void attitude_setNeutral(void) { |
||
1869 | - | 112 | // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway. |
2032 | - | 113 | // dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0; |
1612 | dongfang | 114 | |
1869 | - | 115 | driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0; |
116 | correctionSum[PITCH] = correctionSum[ROLL] = 0; |
||
1612 | dongfang | 117 | |
1869 | - | 118 | // Calibrate hardware. |
1961 | - | 119 | analog_setNeutral(); |
1612 | dongfang | 120 | |
1869 | - | 121 | // reset gyro integrals to acc guessing |
122 | setStaticAttitudeAngles(); |
||
2089 | - | 123 | |
2052 | - | 124 | #ifdef USE_MK3MAG |
2048 | - | 125 | attitude_resetHeadingToMagnetic(); |
2052 | - | 126 | #endif |
1869 | - | 127 | // Servo_On(); //enable servo output |
1612 | dongfang | 128 | } |
129 | |||
130 | /************************************************************************ |
||
131 | * Get sensor data from the analog module, and release the ADC |
||
132 | * TODO: Ultimately, the analog module could do this (instead of dumping |
||
1645 | - | 133 | * the values into variables). |
134 | * The rate variable end up in a range of about [-1024, 1023]. |
||
1612 | dongfang | 135 | *************************************************************************/ |
136 | void getAnalogData(void) { |
||
1869 | - | 137 | uint8_t axis; |
1612 | dongfang | 138 | |
1955 | - | 139 | analog_update(); |
140 | |||
1869 | - | 141 | for (axis = PITCH; axis <= ROLL; axis++) { |
1963 | - | 142 | rate_PID[axis] = gyro_PID[axis] + driftComp[axis]; |
143 | rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis]; |
||
1869 | - | 144 | differential[axis] = gyroD[axis]; |
145 | averageAcc[axis] += acc[axis]; |
||
146 | } |
||
1775 | - | 147 | |
1869 | - | 148 | averageAccCount++; |
149 | yawRate = yawGyro + driftCompYaw; |
||
1612 | dongfang | 150 | } |
151 | |||
152 | /* |
||
153 | * This is the standard flight-style coordinate system transformation |
||
154 | * (from airframe-local axes to a ground-based system). For some reason |
||
155 | * the MK uses a left-hand coordinate system. The tranformation has been |
||
156 | * changed accordingly. |
||
157 | */ |
||
158 | void trigAxisCoupling(void) { |
||
2048 | - | 159 | int16_t rollAngleInDegrees = attitude[ROLL] / GYRO_DEG_FACTOR_PITCHROLL; |
160 | int16_t pitchAngleInDegrees = attitude[PITCH] / GYRO_DEG_FACTOR_PITCHROLL; |
||
1866 | - | 161 | |
2045 | - | 162 | int16_t cospitch = cos_360(pitchAngleInDegrees); |
163 | int16_t cosroll = cos_360(rollAngleInDegrees); |
||
164 | int16_t sinroll = sin_360(rollAngleInDegrees); |
||
165 | |||
2048 | - | 166 | ACRate[PITCH] = (((int32_t) rate_ATT[PITCH] * cosroll |
167 | - (int32_t) yawRate * sinroll) >> LOG_MATH_UNIT_FACTOR); |
||
1866 | - | 168 | |
2048 | - | 169 | ACRate[ROLL] = rate_ATT[ROLL] |
170 | + (((((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll) |
||
171 | >> LOG_MATH_UNIT_FACTOR) * tan_360(pitchAngleInDegrees)) |
||
172 | >> LOG_MATH_UNIT_FACTOR); |
||
1866 | - | 173 | |
2048 | - | 174 | ACYawRate = |
175 | ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll) |
||
176 | / cospitch; |
||
1612 | dongfang | 177 | } |
178 | |||
1775 | - | 179 | // 480 usec with axis coupling - almost no time without. |
1612 | dongfang | 180 | void integrate(void) { |
1869 | - | 181 | // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate. |
182 | uint8_t axis; |
||
1872 | - | 183 | |
2058 | - | 184 | if (staticParams.bitConfig & CFG_AXIS_COUPLING_ENABLED) { |
1869 | - | 185 | trigAxisCoupling(); |
186 | } else { |
||
187 | ACRate[PITCH] = rate_ATT[PITCH]; |
||
188 | ACRate[ROLL] = rate_ATT[ROLL]; |
||
189 | ACYawRate = yawRate; |
||
190 | } |
||
1612 | dongfang | 191 | |
1869 | - | 192 | /* |
193 | * Yaw |
||
194 | * Calculate yaw gyro integral (~ to rotation angle) |
||
2048 | - | 195 | * Limit heading proportional to 0 deg to 360 deg |
1869 | - | 196 | */ |
2048 | - | 197 | heading += ACYawRate; |
198 | intervalWrap(&heading, YAWOVER360); |
||
2051 | - | 199 | headingError += ACYawRate; |
200 | |||
1869 | - | 201 | /* |
202 | * Pitch axis integration and range boundary wrap. |
||
203 | */ |
||
204 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
2048 | - | 205 | attitude[axis] += ACRate[axis]; |
206 | if (attitude[axis] > PITCHROLLOVER180) { |
||
207 | attitude[axis] -= PITCHROLLOVER360; |
||
208 | } else if (attitude[axis] <= -PITCHROLLOVER180) { |
||
209 | attitude[axis] += PITCHROLLOVER360; |
||
1869 | - | 210 | } |
211 | } |
||
1612 | dongfang | 212 | } |
213 | |||
214 | /************************************************************************ |
||
215 | * A kind of 0'th order integral correction, that corrects the integrals |
||
216 | * directly. This is the "gyroAccFactor" stuff in the original code. |
||
1646 | - | 217 | * There is (there) also a drift compensation |
1612 | dongfang | 218 | * - it corrects the differential of the integral = the gyro offsets. |
219 | * That should only be necessary with drifty gyros like ENC-03. |
||
220 | ************************************************************************/ |
||
2059 | - | 221 | #define LOG_DIVIDER 12 |
222 | #define DIVIDER (1L << LOG_DIVIDER) |
||
2089 | - | 223 | void correctIntegralsByAcc0thOrder(void) { |
1869 | - | 224 | // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities |
225 | // are less than ....., or reintroduce Kalman. |
||
226 | // Well actually the Z axis acc. check is not so silly. |
||
227 | uint8_t axis; |
||
228 | int32_t temp; |
||
1908 | - | 229 | |
2089 | - | 230 | uint16_t ca = gyroActivity >> 8; |
231 | debugOut.analog[14] = ca; |
||
1988 | - | 232 | |
2089 | - | 233 | uint8_t gyroActivityWeighted = ca / staticParams.rateTolerance; |
234 | if (!gyroActivityWeighted) gyroActivityWeighted = 1; |
||
1988 | - | 235 | |
2089 | - | 236 | uint8_t accPart = staticParams.zerothOrderCorrection / gyroActivityWeighted; |
2048 | - | 237 | |
2089 | - | 238 | debugOut.analog[15] = gyroActivityWeighted; |
239 | debugOut.digital[0] &= ~DEBUG_ACC0THORDER; |
||
240 | debugOut.digital[1] &= ~DEBUG_ACC0THORDER; |
||
1953 | - | 241 | |
2089 | - | 242 | if (gyroActivityWeighted < 8) { |
243 | debugOut.digital[0] |= DEBUG_ACC0THORDER; |
||
2084 | - | 244 | } |
2089 | - | 245 | if (gyroActivityWeighted <= 2) { |
246 | debugOut.digital[1] |= DEBUG_ACC0THORDER; |
||
2084 | - | 247 | } |
248 | |||
2059 | - | 249 | /* |
250 | * Add to each sum: The amount by which the angle is changed just below. |
||
251 | */ |
||
252 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
2089 | - | 253 | int32_t accDerived = getAngleEstimateFromAcc(axis); |
2059 | - | 254 | //debugOut.analog[9 + axis] = accDerived / (GYRO_DEG_FACTOR_PITCHROLL / 10); |
255 | // 1000 * the correction amount that will be added to the gyro angle in next line. |
||
256 | temp = attitude[axis]; |
||
257 | attitude[axis] = ((int32_t) (DIVIDER - accPart) * temp + (int32_t)accPart * accDerived) >> LOG_DIVIDER; |
||
258 | correctionSum[axis] += attitude[axis] - temp; |
||
1869 | - | 259 | } |
1612 | dongfang | 260 | } |
261 | |||
262 | /************************************************************************ |
||
263 | * This is an attempt to correct not the error in the angle integrals |
||
264 | * (that happens in correctIntegralsByAcc0thOrder above) but rather the |
||
265 | * cause of it: Gyro drift, vibration and rounding errors. |
||
266 | * All the corrections made in correctIntegralsByAcc0thOrder over |
||
1646 | - | 267 | * DRIFTCORRECTION_TIME cycles are summed up. This number is |
268 | * then divided by DRIFTCORRECTION_TIME to get the approx. |
||
1612 | dongfang | 269 | * correction that should have been applied to each iteration to fix |
270 | * the error. This is then added to the dynamic offsets. |
||
271 | ************************************************************************/ |
||
1646 | - | 272 | // 2 times / sec. = 488/2 |
273 | #define DRIFTCORRECTION_TIME 256L |
||
274 | void driftCorrection(void) { |
||
1869 | - | 275 | static int16_t timer = DRIFTCORRECTION_TIME; |
276 | int16_t deltaCorrection; |
||
1872 | - | 277 | int16_t round; |
1869 | - | 278 | uint8_t axis; |
1872 | - | 279 | |
1869 | - | 280 | if (!--timer) { |
281 | timer = DRIFTCORRECTION_TIME; |
||
282 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
283 | // Take the sum of corrections applied, add it to delta |
||
2048 | - | 284 | if (correctionSum[axis] >= 0) |
1872 | - | 285 | round = DRIFTCORRECTION_TIME / 2; |
286 | else |
||
287 | round = -DRIFTCORRECTION_TIME / 2; |
||
288 | deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME; |
||
1869 | - | 289 | // Add the delta to the compensation. So positive delta means, gyro should have higher value. |
1960 | - | 290 | driftComp[axis] += deltaCorrection / staticParams.driftCompDivider; |
291 | CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit); |
||
1869 | - | 292 | // DebugOut.Analog[11 + axis] = correctionSum[axis]; |
1955 | - | 293 | // DebugOut.Analog[16 + axis] = correctionSum[axis]; |
2035 | - | 294 | // debugOut.analog[28 + axis] = driftComp[axis]; |
1869 | - | 295 | correctionSum[axis] = 0; |
296 | } |
||
297 | } |
||
1612 | dongfang | 298 | } |
299 | |||
2089 | - | 300 | /* |
1980 | - | 301 | void calculateAccVector(void) { |
2048 | - | 302 | int16_t temp; |
303 | temp = filteredAcc[0] >> 3; |
||
304 | accVector = temp * temp; |
||
305 | temp = filteredAcc[1] >> 3; |
||
306 | accVector += temp * temp; |
||
307 | temp = filteredAcc[2] >> 3; |
||
308 | accVector += temp * temp; |
||
1980 | - | 309 | } |
2089 | - | 310 | */ |
1980 | - | 311 | |
2052 | - | 312 | #ifdef USE_MK3MAG |
2048 | - | 313 | void attitude_resetHeadingToMagnetic(void) { |
314 | if (commands_isCalibratingCompass()) |
||
315 | return; |
||
316 | |||
317 | // Compass is off, skip. |
||
2052 | - | 318 | if (!(staticParams.bitConfig & CFG_COMPASS_ENABLED)) |
2048 | - | 319 | return; |
320 | |||
321 | // Compass is invalid, skip. |
||
322 | if (magneticHeading < 0) |
||
323 | return; |
||
324 | |||
325 | heading = (int32_t) magneticHeading * GYRO_DEG_FACTOR_YAW; |
||
2051 | - | 326 | //targetHeading = heading; |
327 | headingError = 0; |
||
2048 | - | 328 | } |
329 | |||
330 | void correctHeadingToMagnetic(void) { |
||
331 | int32_t error; |
||
332 | |||
2051 | - | 333 | if (commands_isCalibratingCompass()) { |
2059 | - | 334 | //debugOut.analog[30] = -1; |
2048 | - | 335 | return; |
2051 | - | 336 | } |
2048 | - | 337 | |
338 | // Compass is off, skip. |
||
339 | // Naaah this is assumed. |
||
340 | // if (!(staticParams.bitConfig & CFG_COMPASS_ACTIVE)) |
||
341 | // return; |
||
342 | |||
343 | // Compass is invalid, skip. |
||
2051 | - | 344 | if (magneticHeading < 0) { |
2059 | - | 345 | //debugOut.analog[30] = -2; |
2048 | - | 346 | return; |
2051 | - | 347 | } |
2048 | - | 348 | |
349 | // Spinning fast, skip |
||
2051 | - | 350 | if (abs(yawRate) > 128) { |
2059 | - | 351 | // debugOut.analog[30] = -3; |
2048 | - | 352 | return; |
2051 | - | 353 | } |
2048 | - | 354 | |
355 | // Otherwise invalidated, skip |
||
356 | if (ignoreCompassTimer) { |
||
357 | ignoreCompassTimer--; |
||
2059 | - | 358 | //debugOut.analog[30] = -4; |
2048 | - | 359 | return; |
360 | } |
||
361 | |||
2059 | - | 362 | //debugOut.analog[30] = magneticHeading; |
2058 | - | 363 | |
2048 | - | 364 | // TODO: Find computational cost of this. |
2051 | - | 365 | error = ((int32_t)magneticHeading*GYRO_DEG_FACTOR_YAW - heading); |
366 | if (error <= -YAWOVER180) error += YAWOVER360; |
||
367 | else if (error > YAWOVER180) error -= YAWOVER360; |
||
2048 | - | 368 | |
369 | // We only correct errors larger than the resolution of the compass, or else we would keep rounding the |
||
370 | // better resolution of the gyros to the worse resolution of the compass all the time. |
||
371 | // The correction should really only serve to compensate for gyro drift. |
||
372 | if(abs(error) < GYRO_DEG_FACTOR_YAW) return; |
||
373 | |||
2051 | - | 374 | int32_t correction = (error * staticParams.compassYawCorrection) >> 8; |
2055 | - | 375 | //debugOut.analog[30] = correction; |
2048 | - | 376 | |
2087 | - | 377 | debugOut.digital[0] &= ~DEBUG_COMPASS; |
378 | debugOut.digital[1] &= ~DEBUG_COMPASS; |
||
2086 | - | 379 | |
380 | if (correction > 0) { |
||
381 | debugOut.digital[0] ^= DEBUG_COMPASS; |
||
382 | } else if (correction < 0) { |
||
383 | debugOut.digital[1] ^= DEBUG_COMPASS; |
||
384 | } |
||
385 | |||
2048 | - | 386 | // The correction is added both to current heading (the direction in which the copter thinks it is pointing) |
2059 | - | 387 | // and to the heading error (the angle of yaw that the copter is off the set heading). |
2048 | - | 388 | heading += correction; |
2059 | - | 389 | headingError += correction; |
2048 | - | 390 | intervalWrap(&heading, YAWOVER360); |
391 | |||
2051 | - | 392 | // If we want a transparent flight wrt. compass correction (meaning the copter does not change attitude all |
393 | // when the compass corrects the heading - it only corrects numbers!) we want to add: |
||
394 | // This will however cause drift to remain uncorrected! |
||
395 | // headingError += correction; |
||
2055 | - | 396 | //debugOut.analog[29] = 0; |
2048 | - | 397 | } |
2052 | - | 398 | #endif |
2048 | - | 399 | |
1612 | dongfang | 400 | /************************************************************************ |
401 | * Main procedure. |
||
402 | ************************************************************************/ |
||
1805 | - | 403 | void calculateFlightAttitude(void) { |
1869 | - | 404 | getAnalogData(); |
2089 | - | 405 | // calculateAccVector(); |
1869 | - | 406 | integrate(); |
1775 | - | 407 | |
1612 | dongfang | 408 | #ifdef ATTITUDE_USE_ACC_SENSORS |
2089 | - | 409 | correctIntegralsByAcc0thOrder(); |
1869 | - | 410 | driftCorrection(); |
1612 | dongfang | 411 | #endif |
2015 | - | 412 | |
413 | // We are done reading variables from the analog module. |
||
414 | // Interrupt-driven sensor reading may restart. |
||
415 | startAnalogConversionCycle(); |
||
1612 | dongfang | 416 | |
2052 | - | 417 | #ifdef USE_MK3MAG |
2088 | - | 418 | if (staticParams.bitConfig & CFG_COMPASS_ENABLED) { |
2048 | - | 419 | correctHeadingToMagnetic(); |
1869 | - | 420 | } |
2052 | - | 421 | #endif |
1775 | - | 422 | } |