Subversion Repositories FlightCtrl

Rev

Rev 1634 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
 
52
/************************************************************************/
53
/* Flight Attitude                                                      */
54
/************************************************************************/
55
 
56
#include <stdlib.h>
57
#include <avr/io.h>
58
 
59
#include "attitude.h"
60
#include "dongfangMath.h"
61
 
62
// where our main data flow comes from.
63
#include "analog.h"
64
 
65
#include "configuration.h"
66
 
67
// Some calculations are performed depending on some stick related things.
68
#include "controlMixer.h"
69
 
70
// For Servo_On / Off
71
// #include "timer2.h"
72
 
73
#ifdef USE_MK3MAG
74
#include "mk3mag.h"
75
#include "gps.h"
76
#endif
77
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
78
 
79
/*
80
 * Gyro readings, as read from the analog module. It would have been nice to flow
81
 * them around between the different calculations as a struct or array (doing
82
 * things functionally without side effects) but this is shorter and probably
83
 * faster too.
84
 * The variables are overwritten at each attitude calculation invocation - the values
85
 * are not preserved or reused.
86
 */
1645 - 87
int16_t rate[2], yawRate;
1612 dongfang 88
 
89
// With different (less) filtering
1645 - 90
int16_t rate_PID[2];
91
int16_t differential[2];
1612 dongfang 92
 
93
/*
94
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
95
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
96
 * coordinate system. If axis copling is disabled, the gyro readings will be
97
 * copied into these directly.
98
 * These are global for the same pragmatic reason as with the gyro readings.
99
 * The variables are overwritten at each attitude calculation invocation - the values
100
 * are not preserved or reused.
101
 */
1645 - 102
int16_t ACRate[2], ACYawRate;
1612 dongfang 103
 
104
/*
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
106
 * horizontal plane, yaw relative to yaw at start.
107
 */
1645 - 108
int32_t angle[2], yawAngle;
1612 dongfang 109
 
110
int readingHeight = 0;
111
 
112
// compass course
113
int16_t compassHeading = -1; // negative angle indicates invalid data.
114
int16_t compassCourse = -1;
115
int16_t compassOffCourse = 0;
116
uint16_t updateCompassCourse = 0;
117
uint8_t compassCalState = 0;
118
 
119
// uint8_t FunnelCourse = 0;
120
uint16_t badCompassHeading = 500;
121
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
122
 
1616 dongfang 123
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
124
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
125
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
1612 dongfang 126
 
1645 - 127
int32_t correctionSum[2] = {0,0};
1612 dongfang 128
 
129
/*
130
 * Experiment: Compensating for dynamic-induced gyro biasing.
131
 */
1645 - 132
int16_t dynamicOffset[2] = {0,0}, dynamicOffsetYaw = 0;
1612 dongfang 133
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
134
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
135
// int16_t dynamicCalCount;
136
 
137
/************************************************************************
138
 * Set inclination angles from the acc. sensor data.                    
139
 * If acc. sensors are not used, set to zero.                          
140
 * TODO: One could use inverse sine to calculate the angles more        
1616 dongfang 141
 * accurately, but since: 1) the angles are rather small at times when
142
 * it makes sense to set the integrals (standing on ground, or flying at  
1612 dongfang 143
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
144
 * it is hardly worth the trouble.                                      
145
 ************************************************************************/
146
 
1645 - 147
int32_t getAngleEstimateFromAcc(uint8_t axis) {
148
  return GYRO_ACC_FACTOR * (int32_t)filteredAcc[axis];
1612 dongfang 149
}
150
 
151
void setStaticAttitudeAngles(void) {
152
#ifdef ATTITUDE_USE_ACC_SENSORS
1645 - 153
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
154
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
1612 dongfang 155
#else
1645 - 156
  angle[PITCH] = angle[ROLL] = 0;
1612 dongfang 157
#endif
158
}
159
 
160
/************************************************************************
161
 * Neutral Readings                                                    
162
 ************************************************************************/
163
void attitude_setNeutral(void) {
164
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
165
  dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
166
 
1645 - 167
  dynamicOffset[PITCH] = dynamicOffset[ROLL] = 0;
1612 dongfang 168
 
169
  // Calibrate hardware.
170
  analog_calibrate();
171
 
172
  // reset gyro readings
1645 - 173
  rate[PITCH] = rate[ROLL] = yawRate = 0;
1612 dongfang 174
 
175
  // reset gyro integrals to acc guessing
176
  setStaticAttitudeAngles();
177
  yawAngle = 0;
178
 
179
  // update compass course to current heading
180
  compassCourse = compassHeading;
181
  // Inititialize YawGyroIntegral value with current compass heading
182
  yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
183
 
184
  // Servo_On(); //enable servo output
185
}
186
 
187
/************************************************************************
188
 * Get sensor data from the analog module, and release the ADC          
189
 * TODO: Ultimately, the analog module could do this (instead of dumping
1645 - 190
 * the values into variables).
191
 * The rate variable end up in a range of about [-1024, 1023].
192
 * When scaled down by CONTROL_SCALING, the interval is about [-256, 256].
1612 dongfang 193
 *************************************************************************/
194
void getAnalogData(void) {
1645 - 195
  uint8_t axis;
196
 
197
  for (axis=PITCH; axis <=ROLL; axis++) {
198
    rate_PID[axis]     = (gyro_PID[axis] + dynamicOffset[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
199
    rate[axis]         = (gyro_ATT[axis] + dynamicOffset[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
200
    differential[axis] = gyroD[axis];
201
  }
1612 dongfang 202
  yawRate = yawGyro + dynamicOffsetYaw;
203
 
1645 - 204
  // We are done reading variables from the analog module.
205
  // Interrupt-driven sensor reading may restart.
1612 dongfang 206
  analogDataReady = 0;
207
  analog_start();
208
}
209
 
210
/*
211
 * This is the standard flight-style coordinate system transformation
212
 * (from airframe-local axes to a ground-based system). For some reason
213
 * the MK uses a left-hand coordinate system. The tranformation has been
214
 * changed accordingly.
215
 */
216
void trigAxisCoupling(void) {
1645 - 217
  int16_t cospitch = int_cos(angle[PITCH]);
218
  int16_t cosroll =  int_cos(angle[ROLL]);
219
  int16_t sinroll =  int_sin(angle[ROLL]);
220
  int16_t tanpitch = int_tan(angle[PITCH]);
1612 dongfang 221
#define ANTIOVF 1024
1645 - 222
  ACRate[PITCH] =             ((int32_t) rate[PITCH] * cosroll - (int32_t)yawRate * sinroll) / (int32_t)MATH_UNIT_FACTOR;
223
  ACRate[ROLL] = rate[ROLL] + (((int32_t)rate[PITCH] * sinroll / ANTIOVF * tanpitch + (int32_t)yawRate * int_cos(angle[ROLL]) / ANTIOVF * tanpitch) / ((int32_t)MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR));
224
  ACYawRate =                 ((int32_t) rate[PITCH] * sinroll) / cospitch + ((int32_t)yawRate * cosroll) / cospitch;
1612 dongfang 225
}
226
 
227
void integrate(void) {
228
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
1645 - 229
  uint8_t axis;
230
 
1612 dongfang 231
  if(!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
232
    // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
1645 - 233
    trigAxisCoupling();    
1612 dongfang 234
  } else {
1645 - 235
    ACRate[PITCH] = rate[PITCH];
236
    ACRate[ROLL]  = rate[ROLL];
1612 dongfang 237
    ACYawRate = yawRate;
238
  }
239
 
1645 - 240
  DebugOut.Analog[3] = ACRate[PITCH];
241
  DebugOut.Analog[4] = ACRate[ROLL];
242
  DebugOut.Analog[5] = ACYawRate;
1612 dongfang 243
 
244
  /*
245
   * Yaw
246
   * Calculate yaw gyro integral (~ to rotation angle)
247
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
248
   */
249
  yawGyroHeading += ACYawRate;
1617 dongfang 250
 
251
  // Why is yawAngle not wrapped 'round?
1612 dongfang 252
  yawAngle += ACYawRate;
1617 dongfang 253
 
254
  if(yawGyroHeading >= YAWOVER360) {
255
    yawGyroHeading -= YAWOVER360;  // 360 deg. wrap
256
  } else if(yawGyroHeading < 0) {
257
    yawGyroHeading += YAWOVER360;
258
  }
1612 dongfang 259
 
260
  /*
261
   * Pitch axis integration and range boundary wrap.
262
   */
1645 - 263
  for (axis=PITCH; axis<=ROLL; axis++) {
264
    angle[axis] += ACRate[axis];
265
    if(angle[axis] > PITCHROLLOVER180) {
266
      angle[axis] -= PITCHROLLOVER360;
267
    } else if (angle[axis] <= -PITCHROLLOVER180) {
268
      angle[axis] += PITCHROLLOVER360;
269
    }
1612 dongfang 270
  }
271
}
272
 
273
/************************************************************************
274
 * A kind of 0'th order integral correction, that corrects the integrals
275
 * directly. This is the "gyroAccFactor" stuff in the original code.
276
 * There is (there) also what I would call a  "minus 1st order correction"
277
 * - it corrects the differential of the integral = the gyro offsets.
278
 * That should only be necessary with drifty gyros like ENC-03.
279
 ************************************************************************/
280
void correctIntegralsByAcc0thOrder(void) {
281
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
282
  // are less than ....., or reintroduce Kalman.
283
  // Well actually the Z axis acc. check is not so silly.
1645 - 284
  uint8_t axis;
285
  if(!looping && //((ZAcc >= -4) || (MKFlags & MKFLAG_MOTOR_RUN))) { // if not looping in any direction
286
     ZAcc >= -dynamicParams.UserParams[7] && ZAcc <= dynamicParams.UserParams[7]) {
1612 dongfang 287
    DebugOut.Digital[0] = 1;
288
 
289
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
290
    uint8_t debugFullWeight = 1;
1645 - 291
    int32_t accDerived[2];
1612 dongfang 292
 
1645 - 293
    if((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
1612 dongfang 294
      permilleAcc /= 2;
295
      debugFullWeight = 0;
296
    }
297
 
298
    if(abs(controlYaw) > 25) { // reduce further if yaw stick is active
299
      permilleAcc /= 2;
300
      debugFullWeight = 0;
301
    }
302
 
303
    /*
304
     * Add to each sum: The amount by which the angle is changed just below.
305
     */
1645 - 306
    for (axis=PITCH; axis<=ROLL; axis++) {
307
      accDerived[axis] = getAngleEstimateFromAcc(axis);
308
      correctionSum[axis] += permilleAcc * (accDerived[axis] - angle[axis]);
1612 dongfang 309
 
1645 - 310
      // There should not be a risk of overflow here, since the integrals do not exceed a few 100000.
311
      angle[axis] = ((int32_t)(1000 - permilleAcc) * angle[axis] + (int32_t)permilleAcc * accDerived[axis]) / 1000L;
312
    }
313
 
1612 dongfang 314
    DebugOut.Digital[1] = debugFullWeight;
315
  } else {
316
    DebugOut.Digital[0] = 0;
317
  }
318
}
319
 
320
/************************************************************************
321
 * This is an attempt to correct not the error in the angle integrals
322
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
323
 * cause of it: Gyro drift, vibration and rounding errors.
324
 * All the corrections made in correctIntegralsByAcc0thOrder over
325
 * MINUSFIRSTORDERCORRECTION_TIME cycles are summed up. This number is
326
 * then divided by MINUSFIRSTORDERCORRECTION_TIME to get the approx.
327
 * correction that should have been applied to each iteration to fix
328
 * the error. This is then added to the dynamic offsets.
329
 ************************************************************************/
330
// 2 times / sec.
331
#define DRIFTCORRECTION_TIME 488/2
332
void driftCompensation(void) {
333
  static int16_t timer = DRIFTCORRECTION_TIME;
334
  int16_t deltaCompensation;
1645 - 335
  uint8_t axis;
1612 dongfang 336
  if (! --timer) {
337
    timer = DRIFTCORRECTION_TIME;
1645 - 338
    for (axis=PITCH; axis<=ROLL; axis++) {
339
      deltaCompensation = ((correctionSum[axis] + 1000L * DRIFTCORRECTION_TIME / 2) / 1000 / DRIFTCORRECTION_TIME);
340
      CHECK_MIN_MAX(deltaCompensation, -staticParams.DriftComp, staticParams.DriftComp);
341
      dynamicOffset[axis] += deltaCompensation / staticParams.GyroAccTrim;
342
      correctionSum[axis] = 0;
343
      DebugOut.Analog[28 + axis] = dynamicOffset;
344
    }
1612 dongfang 345
  }
346
}
347
 
348
/************************************************************************
349
 * Main procedure.
350
 ************************************************************************/
351
void calculateFlightAttitude(void) {  
352
  getAnalogData();
353
  integrate();
354
#ifdef ATTITUDE_USE_ACC_SENSORS
355
  correctIntegralsByAcc0thOrder();
356
  driftCompensation();
357
#endif
358
}
359
 
360
/*
1645 - 361
  void updateCompass(void) {
1612 dongfang 362
  int16_t w, v, r,correction, error;
363
 
364
  if(compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
1645 - 365
  setCompassCalState();
1612 dongfang 366
  } else {
1645 - 367
  // get maximum attitude angle
368
  w = abs(pitchAngle / 512);
369
  v = abs(rollAngle / 512);
370
  if(v > w) w = v;
371
  correction = w / 8 + 1;
372
  // calculate the deviation of the yaw gyro heading and the compass heading
373
  if (compassHeading < 0) error = 0; // disable yaw drift compensation if compass heading is undefined
374
  else error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
375
  if(abs(yawRate) > 128) { // spinning fast
376
  error = 0;
1612 dongfang 377
  }
1645 - 378
  if(!badCompassHeading && w < 25) {
379
  if(updateCompassCourse) {
380
  beep(200);
381
  yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
382
  compassCourse = (int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
383
  updateCompassCourse = 0;
384
  }
385
  }
386
  yawGyroHeading += (error * 8) / correction;
387
  w = (w * dynamicParams.CompassYawEffect) / 32;
388
  w = dynamicParams.CompassYawEffect - w;
389
  if(w >= 0) {
390
  if(!badCompassHeading) {
391
  v = 64 + (maxControlPitch + maxControlRoll) / 8;
392
  // calc course deviation
393
  r = ((540 + (yawGyroHeading / GYRO_DEG_FACTOR_YAW) - compassCourse) % 360) - 180;
394
  v = (r * w) / v; // align to compass course
395
  // limit yaw rate
396
  w = 3 * dynamicParams.CompassYawEffect;
397
  if (v > w) v = w;
398
  else if (v < -w) v = -w;
399
  yawAngle += v;
400
  }
401
  else
402
  { // wait a while
403
  badCompassHeading--;
404
  }
405
  }
406
  else {  // ignore compass at extreme attitudes for a while
407
  badCompassHeading = 500;
408
  }
409
  }
410
  }
1612 dongfang 411
*/
412
 
413
/*
414
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
415
 * and to compensate them away. It brings about some improvement, but no miracles.
416
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
417
 * will measure the effect of vibration, to use for later compensation. So, one should keep
418
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
419
 * speed unfortunately... must find a better way)
420
 */
421
/*
1645 - 422
  void attitude_startDynamicCalibration(void) {
1612 dongfang 423
  dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
424
  savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
1645 - 425
  }
1612 dongfang 426
 
1645 - 427
  void attitude_continueDynamicCalibration(void) {
1612 dongfang 428
  // measure dynamic offset now...
429
  dynamicCalPitch += hiResPitchGyro;
430
  dynamicCalRoll += hiResRollGyro;
431
  dynamicCalYaw += rawYawGyroSum;
432
  dynamicCalCount++;
433
 
434
  // Param6: Manual mode. The offsets are taken from Param7 and Param8.
435
  if (dynamicParams.UserParam6 || 1) { // currently always enabled.
1645 - 436
  // manual mode
437
  dynamicOffsetPitch = dynamicParams.UserParam7 - 128;
438
  dynamicOffsetRoll = dynamicParams.UserParam8 - 128;
1612 dongfang 439
  } else {
1645 - 440
  // use the sampled value (does not seem to work so well....)
441
  dynamicOffsetPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
442
  dynamicOffsetRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
443
  dynamicOffsetYaw = -dynamicCalYaw / dynamicCalCount;
1612 dongfang 444
  }
445
 
446
  // keep resetting these meanwhile, to avoid accumulating errors.
447
  setStaticAttitudeIntegrals();
448
  yawAngle = 0;
1645 - 449
  }
1612 dongfang 450
*/