Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1612 | dongfang | 1 | #include <stdlib.h> |
2 | #include <avr/io.h> |
||
3 | |||
4 | #include "attitude.h" |
||
5 | #include "dongfangMath.h" |
||
2048 | - | 6 | #include "commands.h" |
1612 | dongfang | 7 | |
1775 | - | 8 | // For scope debugging only! |
9 | #include "rc.h" |
||
10 | |||
1612 | dongfang | 11 | // where our main data flow comes from. |
12 | #include "analog.h" |
||
13 | |||
14 | #include "configuration.h" |
||
1775 | - | 15 | #include "output.h" |
1612 | dongfang | 16 | |
17 | // Some calculations are performed depending on some stick related things. |
||
18 | #include "controlMixer.h" |
||
19 | |||
20 | #define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;} |
||
21 | |||
22 | /* |
||
23 | * Gyro readings, as read from the analog module. It would have been nice to flow |
||
24 | * them around between the different calculations as a struct or array (doing |
||
25 | * things functionally without side effects) but this is shorter and probably |
||
26 | * faster too. |
||
27 | * The variables are overwritten at each attitude calculation invocation - the values |
||
28 | * are not preserved or reused. |
||
29 | */ |
||
1775 | - | 30 | int16_t rate_ATT[2], yawRate; |
1612 | dongfang | 31 | |
32 | // With different (less) filtering |
||
1645 | - | 33 | int16_t rate_PID[2]; |
34 | int16_t differential[2]; |
||
1612 | dongfang | 35 | |
36 | /* |
||
37 | * Gyro readings, after performing "axis coupling" - that is, the transfomation |
||
38 | * of rotation rates from the airframe-local coordinate system to a ground-fixed |
||
39 | * coordinate system. If axis copling is disabled, the gyro readings will be |
||
40 | * copied into these directly. |
||
41 | * These are global for the same pragmatic reason as with the gyro readings. |
||
42 | * The variables are overwritten at each attitude calculation invocation - the values |
||
43 | * are not preserved or reused. |
||
44 | */ |
||
1645 | - | 45 | int16_t ACRate[2], ACYawRate; |
1612 | dongfang | 46 | |
47 | /* |
||
48 | * Gyro integrals. These are the rotation angles of the airframe compared to the |
||
49 | * horizontal plane, yaw relative to yaw at start. |
||
50 | */ |
||
2048 | - | 51 | int32_t attitude[2]; |
1612 | dongfang | 52 | |
2048 | - | 53 | //int readingHeight = 0; |
1612 | dongfang | 54 | |
1805 | - | 55 | // Yaw angle and compass stuff. |
56 | |||
57 | // This is updated/written from MM3. Negative angle indicates invalid data. |
||
2041 | - | 58 | int16_t magneticHeading = -1; |
1805 | - | 59 | |
60 | // This is NOT updated from MM3. Negative angle indicates invalid data. |
||
2048 | - | 61 | // int16_t headingInDegrees = -1; |
1805 | - | 62 | |
2048 | - | 63 | int32_t targetHeading; |
64 | |||
1805 | - | 65 | // The difference between the above 2 (heading - course) on a -180..179 degree interval. |
66 | // Not necessary. Never read anywhere. |
||
67 | // int16_t compassOffCourse = 0; |
||
68 | |||
69 | uint16_t ignoreCompassTimer = 500; |
||
70 | |||
2048 | - | 71 | int32_t heading; // Yaw Gyro Integral supported by compass |
1775 | - | 72 | int16_t yawGyroDrift; |
1612 | dongfang | 73 | |
1805 | - | 74 | int16_t correctionSum[2] = { 0, 0 }; |
1612 | dongfang | 75 | |
1775 | - | 76 | // For NaviCTRL use. |
1805 | - | 77 | int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0; |
1775 | - | 78 | |
1612 | dongfang | 79 | /* |
80 | * Experiment: Compensating for dynamic-induced gyro biasing. |
||
81 | */ |
||
1805 | - | 82 | int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0; |
1612 | dongfang | 83 | // int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0; |
84 | // int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw; |
||
85 | // int16_t dynamicCalCount; |
||
86 | |||
1980 | - | 87 | uint16_t accVector; |
88 | |||
1612 | dongfang | 89 | /************************************************************************ |
90 | * Set inclination angles from the acc. sensor data. |
||
91 | * If acc. sensors are not used, set to zero. |
||
92 | * TODO: One could use inverse sine to calculate the angles more |
||
1616 | dongfang | 93 | * accurately, but since: 1) the angles are rather small at times when |
94 | * it makes sense to set the integrals (standing on ground, or flying at |
||
1612 | dongfang | 95 | * constant speed, and 2) at small angles a, sin(a) ~= constant * a, |
96 | * it is hardly worth the trouble. |
||
97 | ************************************************************************/ |
||
98 | |||
1645 | - | 99 | int32_t getAngleEstimateFromAcc(uint8_t axis) { |
1991 | - | 100 | //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L; |
2048 | - | 101 | return (int32_t) GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis]; // + correctionTerm; |
2032 | - | 102 | // return 342L * filteredAcc[axis]; |
1612 | dongfang | 103 | } |
104 | |||
105 | void setStaticAttitudeAngles(void) { |
||
106 | #ifdef ATTITUDE_USE_ACC_SENSORS |
||
2048 | - | 107 | attitude[PITCH] = getAngleEstimateFromAcc(PITCH); |
108 | attitude[ROLL] = getAngleEstimateFromAcc(ROLL); |
||
1612 | dongfang | 109 | #else |
2048 | - | 110 | attitude[PITCH] = attitude[ROLL] = 0; |
1612 | dongfang | 111 | #endif |
112 | } |
||
113 | |||
114 | /************************************************************************ |
||
115 | * Neutral Readings |
||
116 | ************************************************************************/ |
||
117 | void attitude_setNeutral(void) { |
||
1869 | - | 118 | // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway. |
2032 | - | 119 | // dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0; |
1612 | dongfang | 120 | |
1869 | - | 121 | driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0; |
122 | correctionSum[PITCH] = correctionSum[ROLL] = 0; |
||
1612 | dongfang | 123 | |
1869 | - | 124 | // Calibrate hardware. |
1961 | - | 125 | analog_setNeutral(); |
1612 | dongfang | 126 | |
1869 | - | 127 | // reset gyro integrals to acc guessing |
128 | setStaticAttitudeAngles(); |
||
2048 | - | 129 | attitude_resetHeadingToMagnetic(); |
1869 | - | 130 | // Servo_On(); //enable servo output |
1612 | dongfang | 131 | } |
132 | |||
133 | /************************************************************************ |
||
134 | * Get sensor data from the analog module, and release the ADC |
||
135 | * TODO: Ultimately, the analog module could do this (instead of dumping |
||
1645 | - | 136 | * the values into variables). |
137 | * The rate variable end up in a range of about [-1024, 1023]. |
||
1612 | dongfang | 138 | *************************************************************************/ |
139 | void getAnalogData(void) { |
||
1869 | - | 140 | uint8_t axis; |
1612 | dongfang | 141 | |
1955 | - | 142 | analog_update(); |
143 | |||
1869 | - | 144 | for (axis = PITCH; axis <= ROLL; axis++) { |
1963 | - | 145 | rate_PID[axis] = gyro_PID[axis] + driftComp[axis]; |
146 | rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis]; |
||
1869 | - | 147 | differential[axis] = gyroD[axis]; |
148 | averageAcc[axis] += acc[axis]; |
||
149 | } |
||
1775 | - | 150 | |
1869 | - | 151 | averageAccCount++; |
152 | yawRate = yawGyro + driftCompYaw; |
||
1612 | dongfang | 153 | } |
154 | |||
155 | /* |
||
156 | * This is the standard flight-style coordinate system transformation |
||
157 | * (from airframe-local axes to a ground-based system). For some reason |
||
158 | * the MK uses a left-hand coordinate system. The tranformation has been |
||
159 | * changed accordingly. |
||
160 | */ |
||
161 | void trigAxisCoupling(void) { |
||
2048 | - | 162 | int16_t rollAngleInDegrees = attitude[ROLL] / GYRO_DEG_FACTOR_PITCHROLL; |
163 | int16_t pitchAngleInDegrees = attitude[PITCH] / GYRO_DEG_FACTOR_PITCHROLL; |
||
1866 | - | 164 | |
2045 | - | 165 | int16_t cospitch = cos_360(pitchAngleInDegrees); |
166 | int16_t cosroll = cos_360(rollAngleInDegrees); |
||
167 | int16_t sinroll = sin_360(rollAngleInDegrees); |
||
168 | |||
2048 | - | 169 | ACRate[PITCH] = (((int32_t) rate_ATT[PITCH] * cosroll |
170 | - (int32_t) yawRate * sinroll) >> LOG_MATH_UNIT_FACTOR); |
||
1866 | - | 171 | |
2048 | - | 172 | ACRate[ROLL] = rate_ATT[ROLL] |
173 | + (((((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll) |
||
174 | >> LOG_MATH_UNIT_FACTOR) * tan_360(pitchAngleInDegrees)) |
||
175 | >> LOG_MATH_UNIT_FACTOR); |
||
1866 | - | 176 | |
2048 | - | 177 | ACYawRate = |
178 | ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll) |
||
179 | / cospitch; |
||
1872 | - | 180 | |
2048 | - | 181 | ACYawRate = |
182 | ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll) |
||
183 | / cospitch; |
||
1612 | dongfang | 184 | } |
185 | |||
1775 | - | 186 | // 480 usec with axis coupling - almost no time without. |
1612 | dongfang | 187 | void integrate(void) { |
1869 | - | 188 | // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate. |
189 | uint8_t axis; |
||
1872 | - | 190 | |
1963 | - | 191 | if (staticParams.bitConfig & CFG_AXIS_COUPLING_ACTIVE) { |
1869 | - | 192 | trigAxisCoupling(); |
193 | } else { |
||
194 | ACRate[PITCH] = rate_ATT[PITCH]; |
||
195 | ACRate[ROLL] = rate_ATT[ROLL]; |
||
196 | ACYawRate = yawRate; |
||
197 | } |
||
1612 | dongfang | 198 | |
1869 | - | 199 | /* |
200 | * Yaw |
||
201 | * Calculate yaw gyro integral (~ to rotation angle) |
||
2048 | - | 202 | * Limit heading proportional to 0 deg to 360 deg |
1869 | - | 203 | */ |
2048 | - | 204 | heading += ACYawRate; |
205 | intervalWrap(&heading, YAWOVER360); |
||
1869 | - | 206 | /* |
207 | * Pitch axis integration and range boundary wrap. |
||
208 | */ |
||
209 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
2048 | - | 210 | attitude[axis] += ACRate[axis]; |
211 | if (attitude[axis] > PITCHROLLOVER180) { |
||
212 | attitude[axis] -= PITCHROLLOVER360; |
||
213 | } else if (attitude[axis] <= -PITCHROLLOVER180) { |
||
214 | attitude[axis] += PITCHROLLOVER360; |
||
1869 | - | 215 | } |
216 | } |
||
1612 | dongfang | 217 | } |
218 | |||
219 | /************************************************************************ |
||
220 | * A kind of 0'th order integral correction, that corrects the integrals |
||
221 | * directly. This is the "gyroAccFactor" stuff in the original code. |
||
1646 | - | 222 | * There is (there) also a drift compensation |
1612 | dongfang | 223 | * - it corrects the differential of the integral = the gyro offsets. |
224 | * That should only be necessary with drifty gyros like ENC-03. |
||
225 | ************************************************************************/ |
||
226 | void correctIntegralsByAcc0thOrder(void) { |
||
1869 | - | 227 | // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities |
228 | // are less than ....., or reintroduce Kalman. |
||
229 | // Well actually the Z axis acc. check is not so silly. |
||
230 | uint8_t axis; |
||
231 | int32_t temp; |
||
1908 | - | 232 | |
1988 | - | 233 | uint8_t ca = controlActivity >> 8; |
234 | uint8_t highControlActivity = (ca > staticParams.maxControlActivity); |
||
235 | |||
2048 | - | 236 | if (highControlActivity) { |
237 | debugOut.digital[1] |= DEBUG_ACC0THORDER; |
||
238 | } else { |
||
239 | debugOut.digital[1] &= ~DEBUG_ACC0THORDER; |
||
240 | } |
||
1988 | - | 241 | |
1980 | - | 242 | if (accVector <= dynamicParams.maxAccVector) { |
2048 | - | 243 | debugOut.digital[0] &= ~DEBUG_ACC0THORDER; |
244 | |||
1960 | - | 245 | uint8_t permilleAcc = staticParams.zerothOrderCorrection; |
1869 | - | 246 | int32_t accDerived; |
1612 | dongfang | 247 | |
1908 | - | 248 | /* |
2048 | - | 249 | if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active |
250 | permilleAcc /= 2; |
||
251 | debugFullWeight = 0; |
||
252 | } |
||
1953 | - | 253 | |
2048 | - | 254 | if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity. |
255 | permilleAcc /= 2; |
||
256 | debugFullWeight = 0; |
||
257 | */ |
||
1953 | - | 258 | |
1988 | - | 259 | if (highControlActivity) { // reduce effect during stick control activity |
1908 | - | 260 | permilleAcc /= 4; |
2048 | - | 261 | if (controlActivity > staticParams.maxControlActivity * 2) { // reduce effect during stick control activity |
1908 | - | 262 | permilleAcc /= 4; |
263 | } |
||
2048 | - | 264 | } |
1775 | - | 265 | |
1869 | - | 266 | /* |
267 | * Add to each sum: The amount by which the angle is changed just below. |
||
268 | */ |
||
269 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
270 | accDerived = getAngleEstimateFromAcc(axis); |
||
2033 | - | 271 | debugOut.analog[9 + axis] = accDerived / (GYRO_DEG_FACTOR_PITCHROLL / 10); |
1869 | - | 272 | // 1000 * the correction amount that will be added to the gyro angle in next line. |
2048 | - | 273 | temp = attitude[axis]; |
274 | attitude[axis] = ((int32_t) (1000L - permilleAcc) * temp |
||
1869 | - | 275 | + (int32_t) permilleAcc * accDerived) / 1000L; |
2048 | - | 276 | correctionSum[axis] += attitude[axis] - temp; |
1869 | - | 277 | } |
278 | } else { |
||
2033 | - | 279 | debugOut.analog[9] = 0; |
280 | debugOut.analog[10] = 0; |
||
1869 | - | 281 | // experiment: Kill drift compensation updates when not flying smooth. |
1963 | - | 282 | // correctionSum[PITCH] = correctionSum[ROLL] = 0; |
2017 | - | 283 | debugOut.digital[0] |= DEBUG_ACC0THORDER; |
1869 | - | 284 | } |
1612 | dongfang | 285 | } |
286 | |||
287 | /************************************************************************ |
||
288 | * This is an attempt to correct not the error in the angle integrals |
||
289 | * (that happens in correctIntegralsByAcc0thOrder above) but rather the |
||
290 | * cause of it: Gyro drift, vibration and rounding errors. |
||
291 | * All the corrections made in correctIntegralsByAcc0thOrder over |
||
1646 | - | 292 | * DRIFTCORRECTION_TIME cycles are summed up. This number is |
293 | * then divided by DRIFTCORRECTION_TIME to get the approx. |
||
1612 | dongfang | 294 | * correction that should have been applied to each iteration to fix |
295 | * the error. This is then added to the dynamic offsets. |
||
296 | ************************************************************************/ |
||
1646 | - | 297 | // 2 times / sec. = 488/2 |
298 | #define DRIFTCORRECTION_TIME 256L |
||
299 | void driftCorrection(void) { |
||
1869 | - | 300 | static int16_t timer = DRIFTCORRECTION_TIME; |
301 | int16_t deltaCorrection; |
||
1872 | - | 302 | int16_t round; |
1869 | - | 303 | uint8_t axis; |
1872 | - | 304 | |
1869 | - | 305 | if (!--timer) { |
306 | timer = DRIFTCORRECTION_TIME; |
||
307 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
308 | // Take the sum of corrections applied, add it to delta |
||
2048 | - | 309 | if (correctionSum[axis] >= 0) |
1872 | - | 310 | round = DRIFTCORRECTION_TIME / 2; |
311 | else |
||
312 | round = -DRIFTCORRECTION_TIME / 2; |
||
313 | deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME; |
||
1869 | - | 314 | // Add the delta to the compensation. So positive delta means, gyro should have higher value. |
1960 | - | 315 | driftComp[axis] += deltaCorrection / staticParams.driftCompDivider; |
316 | CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit); |
||
1869 | - | 317 | // DebugOut.Analog[11 + axis] = correctionSum[axis]; |
1955 | - | 318 | // DebugOut.Analog[16 + axis] = correctionSum[axis]; |
2035 | - | 319 | // debugOut.analog[28 + axis] = driftComp[axis]; |
1869 | - | 320 | correctionSum[axis] = 0; |
321 | } |
||
322 | } |
||
1612 | dongfang | 323 | } |
324 | |||
1980 | - | 325 | void calculateAccVector(void) { |
2048 | - | 326 | int16_t temp; |
327 | temp = filteredAcc[0] >> 3; |
||
328 | accVector = temp * temp; |
||
329 | temp = filteredAcc[1] >> 3; |
||
330 | accVector += temp * temp; |
||
331 | temp = filteredAcc[2] >> 3; |
||
332 | accVector += temp * temp; |
||
333 | //debugOut.analog[18] = accVector; |
||
1980 | - | 334 | } |
335 | |||
2048 | - | 336 | void attitude_resetHeadingToMagnetic(void) { |
337 | if (commands_isCalibratingCompass()) |
||
338 | return; |
||
339 | |||
340 | // Compass is off, skip. |
||
341 | if (!(staticParams.bitConfig & CFG_COMPASS_ACTIVE)) |
||
342 | return; |
||
343 | |||
344 | // Compass is invalid, skip. |
||
345 | if (magneticHeading < 0) |
||
346 | return; |
||
347 | |||
348 | heading = (int32_t) magneticHeading * GYRO_DEG_FACTOR_YAW; |
||
349 | targetHeading = heading; |
||
350 | |||
351 | debugOut.digital[0] ^= DEBUG_COMPASS; |
||
352 | } |
||
353 | |||
354 | void correctHeadingToMagnetic(void) { |
||
355 | int32_t error; |
||
356 | |||
357 | debugOut.analog[27] = heading; |
||
358 | |||
359 | if (commands_isCalibratingCompass()) |
||
360 | return; |
||
361 | |||
362 | // Compass is off, skip. |
||
363 | // Naaah this is assumed. |
||
364 | // if (!(staticParams.bitConfig & CFG_COMPASS_ACTIVE)) |
||
365 | // return; |
||
366 | |||
367 | // Compass is invalid, skip. |
||
368 | if (magneticHeading < 0) |
||
369 | return; |
||
370 | |||
371 | // Spinning fast, skip |
||
372 | if (abs(yawRate) > 128) |
||
373 | return; |
||
374 | |||
375 | // Otherwise invalidated, skip |
||
376 | if (ignoreCompassTimer) { |
||
377 | ignoreCompassTimer--; |
||
378 | return; |
||
379 | } |
||
380 | |||
381 | // TODO: Find computational cost of this. |
||
382 | error = (magneticHeading*GYRO_DEG_FACTOR_YAW - heading) % GYRO_DEG_FACTOR_YAW; |
||
383 | |||
384 | // We only correct errors larger than the resolution of the compass, or else we would keep rounding the |
||
385 | // better resolution of the gyros to the worse resolution of the compass all the time. |
||
386 | // The correction should really only serve to compensate for gyro drift. |
||
387 | if(abs(error) < GYRO_DEG_FACTOR_YAW) return; |
||
388 | |||
389 | int32_t correction = (error * (int32_t)dynamicParams.compassYawEffect) >> 8; |
||
390 | |||
391 | // The correction is added both to current heading (the direction in which the copter thinks it is pointing) |
||
392 | // and to the target heading (the direction to which it maneuvers to point). That means, this correction has |
||
393 | // no effect on control at all!!! It only has effect on the values of the two variables. However, these values |
||
394 | // could have effect on control elsewhere, like in compassControl.c . |
||
395 | heading += correction; |
||
396 | intervalWrap(&heading, YAWOVER360); |
||
397 | |||
398 | targetHeading += correction; |
||
399 | intervalWrap(&targetHeading, YAWOVER360); |
||
400 | |||
401 | debugOut.digital[1] ^= DEBUG_COMPASS; |
||
402 | } |
||
403 | |||
1612 | dongfang | 404 | /************************************************************************ |
405 | * Main procedure. |
||
406 | ************************************************************************/ |
||
1805 | - | 407 | void calculateFlightAttitude(void) { |
1869 | - | 408 | getAnalogData(); |
1980 | - | 409 | calculateAccVector(); |
1869 | - | 410 | integrate(); |
1775 | - | 411 | |
1612 | dongfang | 412 | #ifdef ATTITUDE_USE_ACC_SENSORS |
1869 | - | 413 | correctIntegralsByAcc0thOrder(); |
414 | driftCorrection(); |
||
1612 | dongfang | 415 | #endif |
2015 | - | 416 | |
417 | // We are done reading variables from the analog module. |
||
418 | // Interrupt-driven sensor reading may restart. |
||
419 | startAnalogConversionCycle(); |
||
1612 | dongfang | 420 | |
2048 | - | 421 | if (staticParams.bitConfig & (CFG_COMPASS_ACTIVE | CFG_GPS_ACTIVE)) { |
422 | correctHeadingToMagnetic(); |
||
1869 | - | 423 | } |
1775 | - | 424 | } |
1612 | dongfang | 425 | |
426 | /* |
||
427 | * This is part of an experiment to measure average sensor offsets caused by motor vibration, |
||
428 | * and to compensate them away. It brings about some improvement, but no miracles. |
||
429 | * As long as the left stick is kept in the start-motors position, the dynamic compensation |
||
430 | * will measure the effect of vibration, to use for later compensation. So, one should keep |
||
431 | * the stick in the start-motors position for a few seconds, till all motors run (at the wrong |
||
432 | * speed unfortunately... must find a better way) |
||
433 | */ |
||
434 | /* |
||
1805 | - | 435 | void attitude_startDynamicCalibration(void) { |
436 | dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0; |
||
437 | savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000; |
||
438 | } |
||
1612 | dongfang | 439 | |
1805 | - | 440 | void attitude_continueDynamicCalibration(void) { |
441 | // measure dynamic offset now... |
||
442 | dynamicCalPitch += hiResPitchGyro; |
||
443 | dynamicCalRoll += hiResRollGyro; |
||
444 | dynamicCalYaw += rawYawGyroSum; |
||
445 | dynamicCalCount++; |
||
446 | |||
447 | // Param6: Manual mode. The offsets are taken from Param7 and Param8. |
||
448 | if (dynamicParams.UserParam6 || 1) { // currently always enabled. |
||
449 | // manual mode |
||
450 | driftCompPitch = dynamicParams.UserParam7 - 128; |
||
451 | driftCompRoll = dynamicParams.UserParam8 - 128; |
||
452 | } else { |
||
453 | // use the sampled value (does not seem to work so well....) |
||
454 | driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount; |
||
455 | driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount; |
||
456 | driftCompYaw = -dynamicCalYaw / dynamicCalCount; |
||
457 | } |
||
458 | |||
459 | // keep resetting these meanwhile, to avoid accumulating errors. |
||
460 | setStaticAttitudeIntegrals(); |
||
461 | yawAngle = 0; |
||
462 | } |
||
463 | */ |