Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1612 | dongfang | 1 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
2 | // + Copyright (c) 04.2007 Holger Buss |
||
2032 | - | 3 | // + Nur f�r den privaten Gebrauch |
1612 | dongfang | 4 | // + www.MikroKopter.com |
5 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
2032 | - | 6 | // + Es gilt f�r das gesamte Projekt (Hardware, Software, Bin�rfiles, Sourcecode und Dokumentation), |
7 | // + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zul�ssig ist. |
||
1612 | dongfang | 8 | // + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt |
9 | // + bzgl. der Nutzungsbedingungen aufzunehmen. |
||
2032 | - | 10 | // + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Best�ckung und Verkauf von Platinen oder Baus�tzen, |
1612 | dongfang | 11 | // + Verkauf von Luftbildaufnahmen, usw. |
12 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
2032 | - | 13 | // + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder ver�ffentlicht, |
14 | // + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright m�ssen dann beiliegen |
||
1612 | dongfang | 15 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
16 | // + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts |
||
2032 | - | 17 | // + auf anderen Webseiten oder Medien ver�ffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de" |
1963 | - | 18 | // + eindeutig als Ursprung verlinkt und genannt werden |
1612 | dongfang | 19 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
2032 | - | 20 | // + Keine Gew�hr auf Fehlerfreiheit, Vollst�ndigkeit oder Funktion |
1612 | dongfang | 21 | // + Benutzung auf eigene Gefahr |
2032 | - | 22 | // + Wir �bernehmen keinerlei Haftung f�r direkte oder indirekte Personen- oder Sachsch�den |
1612 | dongfang | 23 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
24 | // + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur |
||
2032 | - | 25 | // + mit unserer Zustimmung zul�ssig |
1612 | dongfang | 26 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
27 | // + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen |
||
28 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
29 | // + Redistributions of source code (with or without modifications) must retain the above copyright notice, |
||
30 | // + this list of conditions and the following disclaimer. |
||
31 | // + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived |
||
32 | // + from this software without specific prior written permission. |
||
33 | // + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet |
||
34 | // + for non-commercial use (directly or indirectly) |
||
1868 | - | 35 | // + Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted |
1612 | dongfang | 36 | // + with our written permission |
37 | // + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be |
||
38 | // + clearly linked as origin |
||
39 | // + * porting to systems other than hardware from www.mikrokopter.de is not allowed |
||
40 | // + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
||
41 | // + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
42 | // + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||
43 | // + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
||
44 | // + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
||
45 | // + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
||
46 | // + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
||
1963 | - | 47 | // + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
48 | // + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
||
1612 | dongfang | 49 | // + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
50 | // + POSSIBILITY OF SUCH DAMAGE. |
||
51 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
52 | /************************************************************************/ |
||
53 | /* Flight Attitude */ |
||
54 | /************************************************************************/ |
||
55 | |||
56 | #include <stdlib.h> |
||
57 | #include <avr/io.h> |
||
58 | |||
59 | #include "attitude.h" |
||
60 | #include "dongfangMath.h" |
||
61 | |||
1775 | - | 62 | // For scope debugging only! |
63 | #include "rc.h" |
||
64 | |||
1612 | dongfang | 65 | // where our main data flow comes from. |
66 | #include "analog.h" |
||
67 | |||
68 | #include "configuration.h" |
||
1775 | - | 69 | #include "output.h" |
1612 | dongfang | 70 | |
71 | // Some calculations are performed depending on some stick related things. |
||
72 | #include "controlMixer.h" |
||
73 | |||
74 | #define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;} |
||
75 | |||
76 | /* |
||
77 | * Gyro readings, as read from the analog module. It would have been nice to flow |
||
78 | * them around between the different calculations as a struct or array (doing |
||
79 | * things functionally without side effects) but this is shorter and probably |
||
80 | * faster too. |
||
81 | * The variables are overwritten at each attitude calculation invocation - the values |
||
82 | * are not preserved or reused. |
||
83 | */ |
||
1775 | - | 84 | int16_t rate_ATT[2], yawRate; |
1612 | dongfang | 85 | |
86 | // With different (less) filtering |
||
1645 | - | 87 | int16_t rate_PID[2]; |
88 | int16_t differential[2]; |
||
1612 | dongfang | 89 | |
90 | /* |
||
91 | * Gyro readings, after performing "axis coupling" - that is, the transfomation |
||
92 | * of rotation rates from the airframe-local coordinate system to a ground-fixed |
||
93 | * coordinate system. If axis copling is disabled, the gyro readings will be |
||
94 | * copied into these directly. |
||
95 | * These are global for the same pragmatic reason as with the gyro readings. |
||
96 | * The variables are overwritten at each attitude calculation invocation - the values |
||
97 | * are not preserved or reused. |
||
98 | */ |
||
1645 | - | 99 | int16_t ACRate[2], ACYawRate; |
1612 | dongfang | 100 | |
101 | /* |
||
102 | * Gyro integrals. These are the rotation angles of the airframe compared to the |
||
103 | * horizontal plane, yaw relative to yaw at start. |
||
104 | */ |
||
1775 | - | 105 | int32_t angle[2], yawAngleDiff; |
1612 | dongfang | 106 | |
107 | int readingHeight = 0; |
||
108 | |||
1805 | - | 109 | // Yaw angle and compass stuff. |
110 | |||
111 | // This is updated/written from MM3. Negative angle indicates invalid data. |
||
112 | int16_t compassHeading = -1; |
||
113 | |||
114 | // This is NOT updated from MM3. Negative angle indicates invalid data. |
||
115 | int16_t compassCourse = -1; |
||
116 | |||
117 | // The difference between the above 2 (heading - course) on a -180..179 degree interval. |
||
118 | // Not necessary. Never read anywhere. |
||
119 | // int16_t compassOffCourse = 0; |
||
120 | |||
121 | uint8_t updateCompassCourse = 0; |
||
122 | uint8_t compassCalState = 0; |
||
123 | uint16_t ignoreCompassTimer = 500; |
||
124 | |||
1612 | dongfang | 125 | int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass |
1775 | - | 126 | int16_t yawGyroDrift; |
1612 | dongfang | 127 | |
1616 | dongfang | 128 | #define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L) |
129 | #define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L) |
||
130 | #define YAWOVER360 (GYRO_DEG_FACTOR_YAW * 360L) |
||
1612 | dongfang | 131 | |
1805 | - | 132 | int16_t correctionSum[2] = { 0, 0 }; |
1612 | dongfang | 133 | |
1775 | - | 134 | // For NaviCTRL use. |
1805 | - | 135 | int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0; |
1775 | - | 136 | |
1612 | dongfang | 137 | /* |
138 | * Experiment: Compensating for dynamic-induced gyro biasing. |
||
139 | */ |
||
1805 | - | 140 | int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0; |
1612 | dongfang | 141 | // int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0; |
142 | // int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw; |
||
143 | // int16_t dynamicCalCount; |
||
144 | |||
1980 | - | 145 | uint16_t accVector; |
146 | |||
1612 | dongfang | 147 | /************************************************************************ |
148 | * Set inclination angles from the acc. sensor data. |
||
149 | * If acc. sensors are not used, set to zero. |
||
150 | * TODO: One could use inverse sine to calculate the angles more |
||
1616 | dongfang | 151 | * accurately, but since: 1) the angles are rather small at times when |
152 | * it makes sense to set the integrals (standing on ground, or flying at |
||
1612 | dongfang | 153 | * constant speed, and 2) at small angles a, sin(a) ~= constant * a, |
154 | * it is hardly worth the trouble. |
||
155 | ************************************************************************/ |
||
156 | |||
1645 | - | 157 | int32_t getAngleEstimateFromAcc(uint8_t axis) { |
1991 | - | 158 | //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L; |
2033 | - | 159 | return (int32_t)GYRO_ACC_FACTOR * (int32_t)filteredAcc[axis];// + correctionTerm; |
2032 | - | 160 | // return 342L * filteredAcc[axis]; |
1612 | dongfang | 161 | } |
162 | |||
163 | void setStaticAttitudeAngles(void) { |
||
164 | #ifdef ATTITUDE_USE_ACC_SENSORS |
||
1869 | - | 165 | angle[PITCH] = getAngleEstimateFromAcc(PITCH); |
166 | angle[ROLL] = getAngleEstimateFromAcc(ROLL); |
||
1612 | dongfang | 167 | #else |
1869 | - | 168 | angle[PITCH] = angle[ROLL] = 0; |
1612 | dongfang | 169 | #endif |
170 | } |
||
171 | |||
172 | /************************************************************************ |
||
173 | * Neutral Readings |
||
174 | ************************************************************************/ |
||
175 | void attitude_setNeutral(void) { |
||
1869 | - | 176 | // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway. |
2032 | - | 177 | // dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0; |
1612 | dongfang | 178 | |
1869 | - | 179 | driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0; |
180 | correctionSum[PITCH] = correctionSum[ROLL] = 0; |
||
1612 | dongfang | 181 | |
1869 | - | 182 | // Calibrate hardware. |
1961 | - | 183 | analog_setNeutral(); |
1612 | dongfang | 184 | |
1869 | - | 185 | // reset gyro integrals to acc guessing |
186 | setStaticAttitudeAngles(); |
||
187 | yawAngleDiff = 0; |
||
1612 | dongfang | 188 | |
1869 | - | 189 | // update compass course to current heading |
190 | compassCourse = compassHeading; |
||
1805 | - | 191 | |
1869 | - | 192 | // Inititialize YawGyroIntegral value with current compass heading |
193 | yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW; |
||
1805 | - | 194 | |
1869 | - | 195 | // Servo_On(); //enable servo output |
1612 | dongfang | 196 | } |
197 | |||
198 | /************************************************************************ |
||
199 | * Get sensor data from the analog module, and release the ADC |
||
200 | * TODO: Ultimately, the analog module could do this (instead of dumping |
||
1645 | - | 201 | * the values into variables). |
202 | * The rate variable end up in a range of about [-1024, 1023]. |
||
1612 | dongfang | 203 | *************************************************************************/ |
204 | void getAnalogData(void) { |
||
1869 | - | 205 | uint8_t axis; |
1612 | dongfang | 206 | |
1955 | - | 207 | analog_update(); |
208 | |||
1869 | - | 209 | for (axis = PITCH; axis <= ROLL; axis++) { |
1963 | - | 210 | rate_PID[axis] = gyro_PID[axis] + driftComp[axis]; |
211 | rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis]; |
||
1869 | - | 212 | differential[axis] = gyroD[axis]; |
213 | averageAcc[axis] += acc[axis]; |
||
214 | } |
||
1775 | - | 215 | |
1869 | - | 216 | averageAccCount++; |
217 | yawRate = yawGyro + driftCompYaw; |
||
1612 | dongfang | 218 | } |
219 | |||
220 | /* |
||
221 | * This is the standard flight-style coordinate system transformation |
||
222 | * (from airframe-local axes to a ground-based system). For some reason |
||
223 | * the MK uses a left-hand coordinate system. The tranformation has been |
||
224 | * changed accordingly. |
||
225 | */ |
||
226 | void trigAxisCoupling(void) { |
||
1869 | - | 227 | int16_t cospitch = int_cos(angle[PITCH]); |
228 | int16_t cosroll = int_cos(angle[ROLL]); |
||
229 | int16_t sinroll = int_sin(angle[ROLL]); |
||
1866 | - | 230 | |
1870 | - | 231 | ACRate[PITCH] = (((int32_t)rate_ATT[PITCH] * cosroll - (int32_t)yawRate |
1869 | - | 232 | * sinroll) >> MATH_UNIT_FACTOR_LOG); |
1866 | - | 233 | |
1870 | - | 234 | ACRate[ROLL] = rate_ATT[ROLL] + (((((int32_t)rate_ATT[PITCH] * sinroll |
235 | + (int32_t)yawRate * cosroll) >> MATH_UNIT_FACTOR_LOG) * int_tan( |
||
1869 | - | 236 | angle[PITCH])) >> MATH_UNIT_FACTOR_LOG); |
1866 | - | 237 | |
1870 | - | 238 | ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch; |
1872 | - | 239 | |
240 | ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch; |
||
1612 | dongfang | 241 | } |
242 | |||
1775 | - | 243 | // 480 usec with axis coupling - almost no time without. |
1612 | dongfang | 244 | void integrate(void) { |
1869 | - | 245 | // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate. |
246 | uint8_t axis; |
||
1872 | - | 247 | |
1963 | - | 248 | if (staticParams.bitConfig & CFG_AXIS_COUPLING_ACTIVE) { |
1869 | - | 249 | trigAxisCoupling(); |
250 | } else { |
||
251 | ACRate[PITCH] = rate_ATT[PITCH]; |
||
252 | ACRate[ROLL] = rate_ATT[ROLL]; |
||
253 | ACYawRate = yawRate; |
||
254 | } |
||
1612 | dongfang | 255 | |
1869 | - | 256 | /* |
257 | * Yaw |
||
258 | * Calculate yaw gyro integral (~ to rotation angle) |
||
259 | * Limit yawGyroHeading proportional to 0 deg to 360 deg |
||
260 | */ |
||
261 | yawGyroHeading += ACYawRate; |
||
262 | yawAngleDiff += yawRate; |
||
1612 | dongfang | 263 | |
1869 | - | 264 | if (yawGyroHeading >= YAWOVER360) { |
265 | yawGyroHeading -= YAWOVER360; // 360 deg. wrap |
||
266 | } else if (yawGyroHeading < 0) { |
||
267 | yawGyroHeading += YAWOVER360; |
||
268 | } |
||
1805 | - | 269 | |
1869 | - | 270 | /* |
271 | * Pitch axis integration and range boundary wrap. |
||
272 | */ |
||
273 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
274 | angle[axis] += ACRate[axis]; |
||
275 | if (angle[axis] > PITCHROLLOVER180) { |
||
276 | angle[axis] -= PITCHROLLOVER360; |
||
277 | } else if (angle[axis] <= -PITCHROLLOVER180) { |
||
278 | angle[axis] += PITCHROLLOVER360; |
||
279 | } |
||
280 | } |
||
1612 | dongfang | 281 | } |
282 | |||
283 | /************************************************************************ |
||
284 | * A kind of 0'th order integral correction, that corrects the integrals |
||
285 | * directly. This is the "gyroAccFactor" stuff in the original code. |
||
1646 | - | 286 | * There is (there) also a drift compensation |
1612 | dongfang | 287 | * - it corrects the differential of the integral = the gyro offsets. |
288 | * That should only be necessary with drifty gyros like ENC-03. |
||
289 | ************************************************************************/ |
||
290 | void correctIntegralsByAcc0thOrder(void) { |
||
1869 | - | 291 | // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities |
292 | // are less than ....., or reintroduce Kalman. |
||
293 | // Well actually the Z axis acc. check is not so silly. |
||
294 | uint8_t axis; |
||
295 | int32_t temp; |
||
1908 | - | 296 | |
1988 | - | 297 | uint8_t ca = controlActivity >> 8; |
298 | uint8_t highControlActivity = (ca > staticParams.maxControlActivity); |
||
299 | |||
300 | if (highControlActivity) { |
||
301 | debugOut.digital[1] |= DEBUG_ACC0THORDER; |
||
302 | } else { |
||
303 | debugOut.digital[1] &= ~DEBUG_ACC0THORDER; |
||
304 | } |
||
305 | |||
1980 | - | 306 | if (accVector <= dynamicParams.maxAccVector) { |
2017 | - | 307 | debugOut.digital[0] &= ~ DEBUG_ACC0THORDER; |
1980 | - | 308 | |
1960 | - | 309 | uint8_t permilleAcc = staticParams.zerothOrderCorrection; |
1869 | - | 310 | int32_t accDerived; |
1612 | dongfang | 311 | |
1908 | - | 312 | /* |
1869 | - | 313 | if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active |
314 | permilleAcc /= 2; |
||
315 | debugFullWeight = 0; |
||
316 | } |
||
1953 | - | 317 | |
318 | if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity. |
||
319 | permilleAcc /= 2; |
||
320 | debugFullWeight = 0; |
||
1908 | - | 321 | */ |
1953 | - | 322 | |
1988 | - | 323 | if (highControlActivity) { // reduce effect during stick control activity |
1908 | - | 324 | permilleAcc /= 4; |
1986 | - | 325 | if (controlActivity > staticParams.maxControlActivity*2) { // reduce effect during stick control activity |
1908 | - | 326 | permilleAcc /= 4; |
327 | } |
||
1989 | - | 328 | } |
1775 | - | 329 | |
1869 | - | 330 | /* |
331 | * Add to each sum: The amount by which the angle is changed just below. |
||
332 | */ |
||
333 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
334 | accDerived = getAngleEstimateFromAcc(axis); |
||
2033 | - | 335 | debugOut.analog[9 + axis] = accDerived / (GYRO_DEG_FACTOR_PITCHROLL / 10); |
1869 | - | 336 | // 1000 * the correction amount that will be added to the gyro angle in next line. |
1963 | - | 337 | temp = angle[axis]; |
1869 | - | 338 | angle[axis] = ((int32_t) (1000L - permilleAcc) * temp |
339 | + (int32_t) permilleAcc * accDerived) / 1000L; |
||
340 | correctionSum[axis] += angle[axis] - temp; |
||
341 | } |
||
342 | } else { |
||
2033 | - | 343 | debugOut.analog[9] = 0; |
344 | debugOut.analog[10] = 0; |
||
1869 | - | 345 | // experiment: Kill drift compensation updates when not flying smooth. |
1963 | - | 346 | // correctionSum[PITCH] = correctionSum[ROLL] = 0; |
2017 | - | 347 | debugOut.digital[0] |= DEBUG_ACC0THORDER; |
1869 | - | 348 | } |
1612 | dongfang | 349 | } |
350 | |||
351 | /************************************************************************ |
||
352 | * This is an attempt to correct not the error in the angle integrals |
||
353 | * (that happens in correctIntegralsByAcc0thOrder above) but rather the |
||
354 | * cause of it: Gyro drift, vibration and rounding errors. |
||
355 | * All the corrections made in correctIntegralsByAcc0thOrder over |
||
1646 | - | 356 | * DRIFTCORRECTION_TIME cycles are summed up. This number is |
357 | * then divided by DRIFTCORRECTION_TIME to get the approx. |
||
1612 | dongfang | 358 | * correction that should have been applied to each iteration to fix |
359 | * the error. This is then added to the dynamic offsets. |
||
360 | ************************************************************************/ |
||
1646 | - | 361 | // 2 times / sec. = 488/2 |
362 | #define DRIFTCORRECTION_TIME 256L |
||
363 | void driftCorrection(void) { |
||
1869 | - | 364 | static int16_t timer = DRIFTCORRECTION_TIME; |
365 | int16_t deltaCorrection; |
||
1872 | - | 366 | int16_t round; |
1869 | - | 367 | uint8_t axis; |
1872 | - | 368 | |
1869 | - | 369 | if (!--timer) { |
370 | timer = DRIFTCORRECTION_TIME; |
||
371 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
372 | // Take the sum of corrections applied, add it to delta |
||
1872 | - | 373 | if (correctionSum[axis] >=0) |
374 | round = DRIFTCORRECTION_TIME / 2; |
||
375 | else |
||
376 | round = -DRIFTCORRECTION_TIME / 2; |
||
377 | deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME; |
||
1869 | - | 378 | // Add the delta to the compensation. So positive delta means, gyro should have higher value. |
1960 | - | 379 | driftComp[axis] += deltaCorrection / staticParams.driftCompDivider; |
380 | CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit); |
||
1869 | - | 381 | // DebugOut.Analog[11 + axis] = correctionSum[axis]; |
1955 | - | 382 | // DebugOut.Analog[16 + axis] = correctionSum[axis]; |
2035 | - | 383 | // debugOut.analog[28 + axis] = driftComp[axis]; |
1775 | - | 384 | |
1869 | - | 385 | correctionSum[axis] = 0; |
386 | } |
||
387 | } |
||
1612 | dongfang | 388 | } |
389 | |||
1980 | - | 390 | void calculateAccVector(void) { |
2018 | - | 391 | int16_t temp; |
392 | temp = filteredAcc[0] >> 3; |
||
1980 | - | 393 | accVector = temp * temp; |
2018 | - | 394 | temp = filteredAcc[1] >> 3; |
1980 | - | 395 | accVector += temp * temp; |
2018 | - | 396 | temp = filteredAcc[2] >> 3; |
1980 | - | 397 | accVector += temp * temp; |
1986 | - | 398 | debugOut.analog[18] = accVector; |
1980 | - | 399 | } |
400 | |||
1612 | dongfang | 401 | /************************************************************************ |
402 | * Main procedure. |
||
403 | ************************************************************************/ |
||
1805 | - | 404 | void calculateFlightAttitude(void) { |
1869 | - | 405 | getAnalogData(); |
1980 | - | 406 | calculateAccVector(); |
1869 | - | 407 | integrate(); |
1775 | - | 408 | |
1612 | dongfang | 409 | #ifdef ATTITUDE_USE_ACC_SENSORS |
1869 | - | 410 | correctIntegralsByAcc0thOrder(); |
411 | driftCorrection(); |
||
1612 | dongfang | 412 | #endif |
2015 | - | 413 | |
414 | // We are done reading variables from the analog module. |
||
415 | // Interrupt-driven sensor reading may restart. |
||
416 | startAnalogConversionCycle(); |
||
1612 | dongfang | 417 | } |
418 | |||
1775 | - | 419 | void updateCompass(void) { |
1869 | - | 420 | int16_t w, v, r, correction, error; |
1805 | - | 421 | |
1869 | - | 422 | if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) { |
423 | if (controlMixer_testCompassCalState()) { |
||
424 | compassCalState++; |
||
425 | if (compassCalState < 5) |
||
426 | beepNumber(compassCalState); |
||
427 | else |
||
428 | beep(1000); |
||
429 | } |
||
430 | } else { |
||
431 | // get maximum attitude angle |
||
432 | w = abs(angle[PITCH] / 512); |
||
433 | v = abs(angle[ROLL] / 512); |
||
434 | if (v > w) |
||
435 | w = v; |
||
436 | correction = w / 8 + 1; |
||
437 | // calculate the deviation of the yaw gyro heading and the compass heading |
||
438 | if (compassHeading < 0) |
||
439 | error = 0; // disable yaw drift compensation if compass heading is undefined |
||
440 | else if (abs(yawRate) > 128) { // spinning fast |
||
441 | error = 0; |
||
442 | } else { |
||
443 | // compassHeading - yawGyroHeading, on a -180..179 deg interval. |
||
444 | error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) |
||
445 | % 360) - 180; |
||
446 | } |
||
447 | if (!ignoreCompassTimer && w < 25) { |
||
448 | yawGyroDrift += error; |
||
449 | // Basically this gets set if we are in "fix" mode, and when starting. |
||
450 | if (updateCompassCourse) { |
||
451 | beep(200); |
||
452 | yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW; |
||
453 | compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW); |
||
454 | updateCompassCourse = 0; |
||
455 | } |
||
456 | } |
||
457 | yawGyroHeading += (error * 8) / correction; |
||
1805 | - | 458 | |
1869 | - | 459 | /* |
460 | w = (w * dynamicParams.CompassYawEffect) / 32; |
||
461 | w = dynamicParams.CompassYawEffect - w; |
||
462 | */ |
||
1960 | - | 463 | w = dynamicParams.compassYawEffect - (w * dynamicParams.compassYawEffect) |
1869 | - | 464 | / 32; |
1805 | - | 465 | |
1869 | - | 466 | // As readable formula: |
467 | // w = dynamicParams.CompassYawEffect * (1-w/32); |
||
1805 | - | 468 | |
1869 | - | 469 | if (w >= 0) { // maxAttitudeAngle < 32 |
470 | if (!ignoreCompassTimer) { |
||
1908 | - | 471 | /*v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;*/ |
472 | v = 64 + controlActivity / 100; |
||
1869 | - | 473 | // yawGyroHeading - compassCourse on a -180..179 degree interval. |
474 | r |
||
475 | = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse) |
||
476 | % 360) - 180; |
||
477 | v = (r * w) / v; // align to compass course |
||
478 | // limit yaw rate |
||
1960 | - | 479 | w = 3 * dynamicParams.compassYawEffect; |
1869 | - | 480 | if (v > w) |
481 | v = w; |
||
482 | else if (v < -w) |
||
483 | v = -w; |
||
484 | yawAngleDiff += v; |
||
485 | } else { // wait a while |
||
486 | ignoreCompassTimer--; |
||
487 | } |
||
488 | } else { // ignore compass at extreme attitudes for a while |
||
489 | ignoreCompassTimer = 500; |
||
490 | } |
||
491 | } |
||
1775 | - | 492 | } |
1612 | dongfang | 493 | |
494 | /* |
||
495 | * This is part of an experiment to measure average sensor offsets caused by motor vibration, |
||
496 | * and to compensate them away. It brings about some improvement, but no miracles. |
||
497 | * As long as the left stick is kept in the start-motors position, the dynamic compensation |
||
498 | * will measure the effect of vibration, to use for later compensation. So, one should keep |
||
499 | * the stick in the start-motors position for a few seconds, till all motors run (at the wrong |
||
500 | * speed unfortunately... must find a better way) |
||
501 | */ |
||
502 | /* |
||
1805 | - | 503 | void attitude_startDynamicCalibration(void) { |
504 | dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0; |
||
505 | savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000; |
||
506 | } |
||
1612 | dongfang | 507 | |
1805 | - | 508 | void attitude_continueDynamicCalibration(void) { |
509 | // measure dynamic offset now... |
||
510 | dynamicCalPitch += hiResPitchGyro; |
||
511 | dynamicCalRoll += hiResRollGyro; |
||
512 | dynamicCalYaw += rawYawGyroSum; |
||
513 | dynamicCalCount++; |
||
514 | |||
515 | // Param6: Manual mode. The offsets are taken from Param7 and Param8. |
||
516 | if (dynamicParams.UserParam6 || 1) { // currently always enabled. |
||
517 | // manual mode |
||
518 | driftCompPitch = dynamicParams.UserParam7 - 128; |
||
519 | driftCompRoll = dynamicParams.UserParam8 - 128; |
||
520 | } else { |
||
521 | // use the sampled value (does not seem to work so well....) |
||
522 | driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount; |
||
523 | driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount; |
||
524 | driftCompYaw = -dynamicCalYaw / dynamicCalCount; |
||
525 | } |
||
526 | |||
527 | // keep resetting these meanwhile, to avoid accumulating errors. |
||
528 | setStaticAttitudeIntegrals(); |
||
529 | yawAngle = 0; |
||
530 | } |
||
531 | */ |