Subversion Repositories FlightCtrl

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
1963 - 7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
1612 dongfang 8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
1963 - 17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
1612 dongfang 19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
1868 - 35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
1612 dongfang 36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
1963 - 47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
1612 dongfang 49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
/************************************************************************/
53
/* Flight Attitude                                                      */
54
/************************************************************************/
55
 
56
#include <stdlib.h>
57
#include <avr/io.h>
58
 
59
#include "attitude.h"
60
#include "dongfangMath.h"
61
 
1775 - 62
// For scope debugging only!
63
#include "rc.h"
64
 
1612 dongfang 65
// where our main data flow comes from.
66
#include "analog.h"
67
 
68
#include "configuration.h"
1775 - 69
#include "output.h"
1612 dongfang 70
 
71
// Some calculations are performed depending on some stick related things.
72
#include "controlMixer.h"
73
 
74
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
75
 
76
/*
77
 * Gyro readings, as read from the analog module. It would have been nice to flow
78
 * them around between the different calculations as a struct or array (doing
79
 * things functionally without side effects) but this is shorter and probably
80
 * faster too.
81
 * The variables are overwritten at each attitude calculation invocation - the values
82
 * are not preserved or reused.
83
 */
1775 - 84
int16_t rate_ATT[2], yawRate;
1612 dongfang 85
 
86
// With different (less) filtering
1645 - 87
int16_t rate_PID[2];
88
int16_t differential[2];
1612 dongfang 89
 
90
/*
91
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
92
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
93
 * coordinate system. If axis copling is disabled, the gyro readings will be
94
 * copied into these directly.
95
 * These are global for the same pragmatic reason as with the gyro readings.
96
 * The variables are overwritten at each attitude calculation invocation - the values
97
 * are not preserved or reused.
98
 */
1645 - 99
int16_t ACRate[2], ACYawRate;
1612 dongfang 100
 
101
/*
102
 * Gyro integrals. These are the rotation angles of the airframe compared to the
103
 * horizontal plane, yaw relative to yaw at start.
104
 */
1775 - 105
int32_t angle[2], yawAngleDiff;
1612 dongfang 106
 
107
int readingHeight = 0;
108
 
1805 - 109
// Yaw angle and compass stuff.
110
 
111
// This is updated/written from MM3. Negative angle indicates invalid data.
112
int16_t compassHeading = -1;
113
 
114
// This is NOT updated from MM3. Negative angle indicates invalid data.
115
int16_t compassCourse = -1;
116
 
117
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
118
// Not necessary. Never read anywhere.
119
// int16_t compassOffCourse = 0;
120
 
121
uint8_t updateCompassCourse = 0;
122
uint8_t compassCalState = 0;
123
uint16_t ignoreCompassTimer = 500;
124
 
1612 dongfang 125
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
1775 - 126
int16_t yawGyroDrift;
1612 dongfang 127
 
1616 dongfang 128
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
129
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
130
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
1612 dongfang 131
 
1805 - 132
int16_t correctionSum[2] = { 0, 0 };
1612 dongfang 133
 
1775 - 134
// For NaviCTRL use.
1805 - 135
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
1775 - 136
 
1612 dongfang 137
/*
138
 * Experiment: Compensating for dynamic-induced gyro biasing.
139
 */
1805 - 140
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
1612 dongfang 141
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
142
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
143
// int16_t dynamicCalCount;
144
 
1980 - 145
uint16_t accVector;
146
 
1612 dongfang 147
/************************************************************************
148
 * Set inclination angles from the acc. sensor data.                    
149
 * If acc. sensors are not used, set to zero.                          
150
 * TODO: One could use inverse sine to calculate the angles more        
1616 dongfang 151
 * accurately, but since: 1) the angles are rather small at times when
152
 * it makes sense to set the integrals (standing on ground, or flying at  
1612 dongfang 153
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
154
 * it is hardly worth the trouble.                                      
155
 ************************************************************************/
156
 
1645 - 157
int32_t getAngleEstimateFromAcc(uint8_t axis) {
1991 - 158
  //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L;
159
  return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];// + correctionTerm;
1612 dongfang 160
}
161
 
162
void setStaticAttitudeAngles(void) {
163
#ifdef ATTITUDE_USE_ACC_SENSORS
1869 - 164
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
165
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
1612 dongfang 166
#else
1869 - 167
  angle[PITCH] = angle[ROLL] = 0;
1612 dongfang 168
#endif
169
}
170
 
171
/************************************************************************
172
 * Neutral Readings                                                    
173
 ************************************************************************/
174
void attitude_setNeutral(void) {
1869 - 175
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
1960 - 176
  dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
1612 dongfang 177
 
1869 - 178
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
179
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
1612 dongfang 180
 
1869 - 181
  // Calibrate hardware.
1961 - 182
  analog_setNeutral();
1612 dongfang 183
 
1869 - 184
  // reset gyro integrals to acc guessing
185
  setStaticAttitudeAngles();
186
  yawAngleDiff = 0;
1612 dongfang 187
 
1869 - 188
  // update compass course to current heading
189
  compassCourse = compassHeading;
1805 - 190
 
1869 - 191
  // Inititialize YawGyroIntegral value with current compass heading
192
  yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
1805 - 193
 
1869 - 194
  // Servo_On(); //enable servo output
1612 dongfang 195
}
196
 
197
/************************************************************************
198
 * Get sensor data from the analog module, and release the ADC          
199
 * TODO: Ultimately, the analog module could do this (instead of dumping
1645 - 200
 * the values into variables).
201
 * The rate variable end up in a range of about [-1024, 1023].
1612 dongfang 202
 *************************************************************************/
203
void getAnalogData(void) {
1869 - 204
  uint8_t axis;
1612 dongfang 205
 
1955 - 206
  analog_update();
207
 
1869 - 208
  for (axis = PITCH; axis <= ROLL; axis++) {
1963 - 209
    rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
210
    rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
1869 - 211
    differential[axis] = gyroD[axis];
212
    averageAcc[axis] += acc[axis];
213
  }
1775 - 214
 
1869 - 215
  averageAccCount++;
216
  yawRate = yawGyro + driftCompYaw;
1612 dongfang 217
}
218
 
219
/*
220
 * This is the standard flight-style coordinate system transformation
221
 * (from airframe-local axes to a ground-based system). For some reason
222
 * the MK uses a left-hand coordinate system. The tranformation has been
223
 * changed accordingly.
224
 */
225
void trigAxisCoupling(void) {
1869 - 226
  int16_t cospitch = int_cos(angle[PITCH]);
227
  int16_t cosroll = int_cos(angle[ROLL]);
228
  int16_t sinroll = int_sin(angle[ROLL]);
1866 - 229
 
1870 - 230
  ACRate[PITCH] = (((int32_t)rate_ATT[PITCH] * cosroll - (int32_t)yawRate
1869 - 231
      * sinroll) >> MATH_UNIT_FACTOR_LOG);
1866 - 232
 
1870 - 233
  ACRate[ROLL] = rate_ATT[ROLL] + (((((int32_t)rate_ATT[PITCH] * sinroll
234
      + (int32_t)yawRate * cosroll) >> MATH_UNIT_FACTOR_LOG) * int_tan(
1869 - 235
      angle[PITCH])) >> MATH_UNIT_FACTOR_LOG);
1866 - 236
 
1870 - 237
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
1872 - 238
 
239
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
1612 dongfang 240
}
241
 
1775 - 242
// 480 usec with axis coupling - almost no time without.
1612 dongfang 243
void integrate(void) {
1869 - 244
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
245
  uint8_t axis;
1872 - 246
 
1963 - 247
  if (staticParams.bitConfig & CFG_AXIS_COUPLING_ACTIVE) {
1869 - 248
    trigAxisCoupling();
249
  } else {
250
    ACRate[PITCH] = rate_ATT[PITCH];
251
    ACRate[ROLL] = rate_ATT[ROLL];
252
    ACYawRate = yawRate;
253
  }
1612 dongfang 254
 
1869 - 255
  /*
256
   * Yaw
257
   * Calculate yaw gyro integral (~ to rotation angle)
258
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
259
   */
260
  yawGyroHeading += ACYawRate;
261
  yawAngleDiff += yawRate;
1612 dongfang 262
 
1869 - 263
  if (yawGyroHeading >= YAWOVER360) {
264
    yawGyroHeading -= YAWOVER360; // 360 deg. wrap
265
  } else if (yawGyroHeading < 0) {
266
    yawGyroHeading += YAWOVER360;
267
  }
1805 - 268
 
1869 - 269
  /*
270
   * Pitch axis integration and range boundary wrap.
271
   */
272
  for (axis = PITCH; axis <= ROLL; axis++) {
273
    angle[axis] += ACRate[axis];
274
    if (angle[axis] > PITCHROLLOVER180) {
275
      angle[axis] -= PITCHROLLOVER360;
276
    } else if (angle[axis] <= -PITCHROLLOVER180) {
277
      angle[axis] += PITCHROLLOVER360;
278
    }
279
  }
1612 dongfang 280
}
281
 
282
/************************************************************************
283
 * A kind of 0'th order integral correction, that corrects the integrals
284
 * directly. This is the "gyroAccFactor" stuff in the original code.
1646 - 285
 * There is (there) also a drift compensation
1612 dongfang 286
 * - it corrects the differential of the integral = the gyro offsets.
287
 * That should only be necessary with drifty gyros like ENC-03.
288
 ************************************************************************/
289
void correctIntegralsByAcc0thOrder(void) {
1869 - 290
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
291
  // are less than ....., or reintroduce Kalman.
292
  // Well actually the Z axis acc. check is not so silly.
293
  uint8_t axis;
294
  int32_t temp;
1908 - 295
 
1988 - 296
  uint8_t ca = controlActivity >> 8;
297
  uint8_t highControlActivity = (ca > staticParams.maxControlActivity);
298
 
299
        if (highControlActivity) {
300
      debugOut.digital[1] |= DEBUG_ACC0THORDER;
301
        } else {
302
          debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
303
        }
304
 
1980 - 305
  if (accVector <= dynamicParams.maxAccVector) {
2017 - 306
    debugOut.digital[0] &= ~ DEBUG_ACC0THORDER;
1980 - 307
 
1960 - 308
    uint8_t permilleAcc = staticParams.zerothOrderCorrection;
1869 - 309
    int32_t accDerived;
1612 dongfang 310
 
1908 - 311
    /*
1869 - 312
    if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
313
      permilleAcc /= 2;
314
      debugFullWeight = 0;
315
    }
1953 - 316
 
317
    if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
318
      permilleAcc /= 2;
319
      debugFullWeight = 0;
1908 - 320
    */
1953 - 321
 
1988 - 322
    if (highControlActivity) { // reduce effect during stick control activity
1908 - 323
      permilleAcc /= 4;
1986 - 324
      if (controlActivity > staticParams.maxControlActivity*2) { // reduce effect during stick control activity
1908 - 325
        permilleAcc /= 4;
326
      }
1989 - 327
    }
1775 - 328
 
1869 - 329
    /*
330
     * Add to each sum: The amount by which the angle is changed just below.
331
     */
332
    for (axis = PITCH; axis <= ROLL; axis++) {
333
      accDerived = getAngleEstimateFromAcc(axis);
1955 - 334
      debugOut.analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
1805 - 335
 
1869 - 336
      // 1000 * the correction amount that will be added to the gyro angle in next line.
1963 - 337
      temp = angle[axis];
1869 - 338
      angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
339
          + (int32_t) permilleAcc * accDerived) / 1000L;
340
      correctionSum[axis] += angle[axis] - temp;
341
    }
342
  } else {
1955 - 343
    debugOut.analog[9] = 0;
344
    debugOut.analog[10] = 0;
1869 - 345
    // experiment: Kill drift compensation updates when not flying smooth.
1963 - 346
    // correctionSum[PITCH] = correctionSum[ROLL] = 0;
2017 - 347
    debugOut.digital[0] |= DEBUG_ACC0THORDER;
1869 - 348
  }
1612 dongfang 349
}
350
 
351
/************************************************************************
352
 * This is an attempt to correct not the error in the angle integrals
353
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
354
 * cause of it: Gyro drift, vibration and rounding errors.
355
 * All the corrections made in correctIntegralsByAcc0thOrder over
1646 - 356
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
357
 * then divided by DRIFTCORRECTION_TIME to get the approx.
1612 dongfang 358
 * correction that should have been applied to each iteration to fix
359
 * the error. This is then added to the dynamic offsets.
360
 ************************************************************************/
1646 - 361
// 2 times / sec. = 488/2
362
#define DRIFTCORRECTION_TIME 256L
363
void driftCorrection(void) {
1869 - 364
  static int16_t timer = DRIFTCORRECTION_TIME;
365
  int16_t deltaCorrection;
1872 - 366
  int16_t round;
1869 - 367
  uint8_t axis;
1872 - 368
 
1869 - 369
  if (!--timer) {
370
    timer = DRIFTCORRECTION_TIME;
371
    for (axis = PITCH; axis <= ROLL; axis++) {
372
      // Take the sum of corrections applied, add it to delta
1872 - 373
      if (correctionSum[axis] >=0)
374
        round = DRIFTCORRECTION_TIME / 2;
375
      else
376
        round = -DRIFTCORRECTION_TIME / 2;
377
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
1869 - 378
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
1960 - 379
      driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
380
      CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
1869 - 381
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
1955 - 382
      // DebugOut.Analog[16 + axis] = correctionSum[axis];
383
      debugOut.analog[28 + axis] = driftComp[axis];
1775 - 384
 
1869 - 385
      correctionSum[axis] = 0;
386
    }
387
  }
1612 dongfang 388
}
389
 
1980 - 390
void calculateAccVector(void) {
2018 - 391
        int16_t temp;
392
        temp = filteredAcc[0] >> 3;
1980 - 393
        accVector = temp * temp;
2018 - 394
        temp = filteredAcc[1] >> 3;
1980 - 395
        accVector += temp * temp;
2018 - 396
        temp = filteredAcc[2] >> 3;
1980 - 397
        accVector += temp * temp;
1986 - 398
        debugOut.analog[18] = accVector;
1980 - 399
}
400
 
1612 dongfang 401
/************************************************************************
402
 * Main procedure.
403
 ************************************************************************/
1805 - 404
void calculateFlightAttitude(void) {
1869 - 405
  getAnalogData();
1980 - 406
  calculateAccVector();
1869 - 407
  integrate();
1775 - 408
 
1612 dongfang 409
#ifdef ATTITUDE_USE_ACC_SENSORS
1869 - 410
  correctIntegralsByAcc0thOrder();
411
  driftCorrection();
1612 dongfang 412
#endif
2015 - 413
 
414
  // We are done reading variables from the analog module.
415
  // Interrupt-driven sensor reading may restart.
416
  startAnalogConversionCycle();
1612 dongfang 417
}
418
 
1775 - 419
void updateCompass(void) {
1869 - 420
  int16_t w, v, r, correction, error;
1805 - 421
 
1869 - 422
  if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
423
    if (controlMixer_testCompassCalState()) {
424
      compassCalState++;
425
      if (compassCalState < 5)
426
        beepNumber(compassCalState);
427
      else
428
        beep(1000);
429
    }
430
  } else {
431
    // get maximum attitude angle
432
    w = abs(angle[PITCH] / 512);
433
    v = abs(angle[ROLL] / 512);
434
    if (v > w)
435
      w = v;
436
    correction = w / 8 + 1;
437
    // calculate the deviation of the yaw gyro heading and the compass heading
438
    if (compassHeading < 0)
439
      error = 0; // disable yaw drift compensation if compass heading is undefined
440
    else if (abs(yawRate) > 128) { // spinning fast
441
      error = 0;
442
    } else {
443
      // compassHeading - yawGyroHeading, on a -180..179 deg interval.
444
      error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW))
445
          % 360) - 180;
446
    }
447
    if (!ignoreCompassTimer && w < 25) {
448
      yawGyroDrift += error;
449
      // Basically this gets set if we are in "fix" mode, and when starting.
450
      if (updateCompassCourse) {
451
        beep(200);
452
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
453
        compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
454
        updateCompassCourse = 0;
455
      }
456
    }
457
    yawGyroHeading += (error * 8) / correction;
1805 - 458
 
1869 - 459
    /*
460
     w = (w * dynamicParams.CompassYawEffect) / 32;
461
     w = dynamicParams.CompassYawEffect - w;
462
     */
1960 - 463
    w = dynamicParams.compassYawEffect - (w * dynamicParams.compassYawEffect)
1869 - 464
        / 32;
1805 - 465
 
1869 - 466
    // As readable formula:
467
    // w = dynamicParams.CompassYawEffect * (1-w/32);
1805 - 468
 
1869 - 469
    if (w >= 0) { // maxAttitudeAngle < 32
470
      if (!ignoreCompassTimer) {
1908 - 471
        /*v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;*/
472
        v = 64 + controlActivity / 100;
1869 - 473
        // yawGyroHeading - compassCourse on a -180..179 degree interval.
474
        r
475
            = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse)
476
                % 360) - 180;
477
        v = (r * w) / v; // align to compass course
478
        // limit yaw rate
1960 - 479
        w = 3 * dynamicParams.compassYawEffect;
1869 - 480
        if (v > w)
481
          v = w;
482
        else if (v < -w)
483
          v = -w;
484
        yawAngleDiff += v;
485
      } else { // wait a while
486
        ignoreCompassTimer--;
487
      }
488
    } else { // ignore compass at extreme attitudes for a while
489
      ignoreCompassTimer = 500;
490
    }
491
  }
1775 - 492
}
1612 dongfang 493
 
494
/*
495
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
496
 * and to compensate them away. It brings about some improvement, but no miracles.
497
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
498
 * will measure the effect of vibration, to use for later compensation. So, one should keep
499
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
500
 * speed unfortunately... must find a better way)
501
 */
502
/*
1805 - 503
 void attitude_startDynamicCalibration(void) {
504
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
505
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
506
 }
1612 dongfang 507
 
1805 - 508
 void attitude_continueDynamicCalibration(void) {
509
 // measure dynamic offset now...
510
 dynamicCalPitch += hiResPitchGyro;
511
 dynamicCalRoll += hiResRollGyro;
512
 dynamicCalYaw += rawYawGyroSum;
513
 dynamicCalCount++;
514
 
515
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
516
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
517
 // manual mode
518
 driftCompPitch = dynamicParams.UserParam7 - 128;
519
 driftCompRoll = dynamicParams.UserParam8 - 128;
520
 } else {
521
 // use the sampled value (does not seem to work so well....)
522
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
523
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
524
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
525
 }
526
 
527
 // keep resetting these meanwhile, to avoid accumulating errors.
528
 setStaticAttitudeIntegrals();
529
 yawAngle = 0;
530
 }
531
 */