Subversion Repositories FlightCtrl

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
1963 - 7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
1612 dongfang 8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
1963 - 17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
1612 dongfang 19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
1868 - 35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
1612 dongfang 36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
1963 - 47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
1612 dongfang 49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
/************************************************************************/
53
/* Flight Attitude                                                      */
54
/************************************************************************/
55
 
56
#include <stdlib.h>
57
#include <avr/io.h>
58
 
59
#include "attitude.h"
60
#include "dongfangMath.h"
61
 
1775 - 62
// For scope debugging only!
63
#include "rc.h"
64
 
1612 dongfang 65
// where our main data flow comes from.
66
#include "analog.h"
67
 
68
#include "configuration.h"
1775 - 69
#include "output.h"
1612 dongfang 70
 
71
// Some calculations are performed depending on some stick related things.
72
#include "controlMixer.h"
73
 
74
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
75
 
76
/*
77
 * Gyro readings, as read from the analog module. It would have been nice to flow
78
 * them around between the different calculations as a struct or array (doing
79
 * things functionally without side effects) but this is shorter and probably
80
 * faster too.
81
 * The variables are overwritten at each attitude calculation invocation - the values
82
 * are not preserved or reused.
83
 */
1775 - 84
int16_t rate_ATT[2], yawRate;
1612 dongfang 85
 
86
// With different (less) filtering
1645 - 87
int16_t rate_PID[2];
88
int16_t differential[2];
1612 dongfang 89
 
90
/*
91
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
92
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
93
 * coordinate system. If axis copling is disabled, the gyro readings will be
94
 * copied into these directly.
95
 * These are global for the same pragmatic reason as with the gyro readings.
96
 * The variables are overwritten at each attitude calculation invocation - the values
97
 * are not preserved or reused.
98
 */
1645 - 99
int16_t ACRate[2], ACYawRate;
1612 dongfang 100
 
101
/*
102
 * Gyro integrals. These are the rotation angles of the airframe compared to the
103
 * horizontal plane, yaw relative to yaw at start.
104
 */
1775 - 105
int32_t angle[2], yawAngleDiff;
1612 dongfang 106
 
107
int readingHeight = 0;
108
 
1805 - 109
// Yaw angle and compass stuff.
110
 
111
// This is updated/written from MM3. Negative angle indicates invalid data.
112
int16_t compassHeading = -1;
113
 
114
// This is NOT updated from MM3. Negative angle indicates invalid data.
115
int16_t compassCourse = -1;
116
 
117
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
118
// Not necessary. Never read anywhere.
119
// int16_t compassOffCourse = 0;
120
 
121
uint8_t updateCompassCourse = 0;
122
uint8_t compassCalState = 0;
123
uint16_t ignoreCompassTimer = 500;
124
 
1612 dongfang 125
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
1775 - 126
int16_t yawGyroDrift;
1612 dongfang 127
 
1616 dongfang 128
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
129
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
130
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
1612 dongfang 131
 
1805 - 132
int16_t correctionSum[2] = { 0, 0 };
1612 dongfang 133
 
1775 - 134
// For NaviCTRL use.
1805 - 135
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
1775 - 136
 
1612 dongfang 137
/*
138
 * Experiment: Compensating for dynamic-induced gyro biasing.
139
 */
1805 - 140
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
1612 dongfang 141
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
142
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
143
// int16_t dynamicCalCount;
144
 
1980 - 145
uint16_t accVector;
146
 
1612 dongfang 147
/************************************************************************
148
 * Set inclination angles from the acc. sensor data.                    
149
 * If acc. sensors are not used, set to zero.                          
150
 * TODO: One could use inverse sine to calculate the angles more        
1616 dongfang 151
 * accurately, but since: 1) the angles are rather small at times when
152
 * it makes sense to set the integrals (standing on ground, or flying at  
1612 dongfang 153
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
154
 * it is hardly worth the trouble.                                      
155
 ************************************************************************/
156
 
1645 - 157
int32_t getAngleEstimateFromAcc(uint8_t axis) {
1991 - 158
  //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L;
159
  return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];// + correctionTerm;
1612 dongfang 160
}
161
 
162
void setStaticAttitudeAngles(void) {
163
#ifdef ATTITUDE_USE_ACC_SENSORS
1869 - 164
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
165
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
1612 dongfang 166
#else
1869 - 167
  angle[PITCH] = angle[ROLL] = 0;
1612 dongfang 168
#endif
169
}
170
 
171
/************************************************************************
172
 * Neutral Readings                                                    
173
 ************************************************************************/
174
void attitude_setNeutral(void) {
1869 - 175
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
1960 - 176
  dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
1612 dongfang 177
 
1869 - 178
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
179
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
1612 dongfang 180
 
1869 - 181
  // Calibrate hardware.
1961 - 182
  analog_setNeutral();
1612 dongfang 183
 
1869 - 184
  // reset gyro integrals to acc guessing
185
  setStaticAttitudeAngles();
186
  yawAngleDiff = 0;
1612 dongfang 187
 
1869 - 188
  // update compass course to current heading
189
  compassCourse = compassHeading;
1805 - 190
 
1869 - 191
  // Inititialize YawGyroIntegral value with current compass heading
192
  yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
1805 - 193
 
1869 - 194
  // Servo_On(); //enable servo output
1612 dongfang 195
}
196
 
197
/************************************************************************
198
 * Get sensor data from the analog module, and release the ADC          
199
 * TODO: Ultimately, the analog module could do this (instead of dumping
1645 - 200
 * the values into variables).
201
 * The rate variable end up in a range of about [-1024, 1023].
1612 dongfang 202
 *************************************************************************/
203
void getAnalogData(void) {
1869 - 204
  uint8_t axis;
1612 dongfang 205
 
1955 - 206
  analog_update();
207
 
1869 - 208
  for (axis = PITCH; axis <= ROLL; axis++) {
1963 - 209
    rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
210
    rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
1869 - 211
    differential[axis] = gyroD[axis];
212
    averageAcc[axis] += acc[axis];
213
  }
1775 - 214
 
1869 - 215
  averageAccCount++;
216
  yawRate = yawGyro + driftCompYaw;
1805 - 217
 
1869 - 218
  // We are done reading variables from the analog module.
219
  // Interrupt-driven sensor reading may restart.
1955 - 220
  startAnalogConversionCycle();
1612 dongfang 221
}
222
 
223
/*
224
 * This is the standard flight-style coordinate system transformation
225
 * (from airframe-local axes to a ground-based system). For some reason
226
 * the MK uses a left-hand coordinate system. The tranformation has been
227
 * changed accordingly.
228
 */
229
void trigAxisCoupling(void) {
1869 - 230
  int16_t cospitch = int_cos(angle[PITCH]);
231
  int16_t cosroll = int_cos(angle[ROLL]);
232
  int16_t sinroll = int_sin(angle[ROLL]);
1866 - 233
 
1870 - 234
  ACRate[PITCH] = (((int32_t)rate_ATT[PITCH] * cosroll - (int32_t)yawRate
1869 - 235
      * sinroll) >> MATH_UNIT_FACTOR_LOG);
1866 - 236
 
1870 - 237
  ACRate[ROLL] = rate_ATT[ROLL] + (((((int32_t)rate_ATT[PITCH] * sinroll
238
      + (int32_t)yawRate * cosroll) >> MATH_UNIT_FACTOR_LOG) * int_tan(
1869 - 239
      angle[PITCH])) >> MATH_UNIT_FACTOR_LOG);
1866 - 240
 
1870 - 241
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
1872 - 242
 
243
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
1612 dongfang 244
}
245
 
1775 - 246
// 480 usec with axis coupling - almost no time without.
1612 dongfang 247
void integrate(void) {
1869 - 248
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
249
  uint8_t axis;
1872 - 250
 
1963 - 251
  if (staticParams.bitConfig & CFG_AXIS_COUPLING_ACTIVE) {
1869 - 252
    trigAxisCoupling();
253
  } else {
254
    ACRate[PITCH] = rate_ATT[PITCH];
255
    ACRate[ROLL] = rate_ATT[ROLL];
256
    ACYawRate = yawRate;
257
  }
1612 dongfang 258
 
1869 - 259
  /*
260
   * Yaw
261
   * Calculate yaw gyro integral (~ to rotation angle)
262
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
263
   */
264
  yawGyroHeading += ACYawRate;
265
  yawAngleDiff += yawRate;
1612 dongfang 266
 
1869 - 267
  if (yawGyroHeading >= YAWOVER360) {
268
    yawGyroHeading -= YAWOVER360; // 360 deg. wrap
269
  } else if (yawGyroHeading < 0) {
270
    yawGyroHeading += YAWOVER360;
271
  }
1805 - 272
 
1869 - 273
  /*
274
   * Pitch axis integration and range boundary wrap.
275
   */
276
  for (axis = PITCH; axis <= ROLL; axis++) {
277
    angle[axis] += ACRate[axis];
278
    if (angle[axis] > PITCHROLLOVER180) {
279
      angle[axis] -= PITCHROLLOVER360;
280
    } else if (angle[axis] <= -PITCHROLLOVER180) {
281
      angle[axis] += PITCHROLLOVER360;
282
    }
283
  }
1612 dongfang 284
}
285
 
286
/************************************************************************
287
 * A kind of 0'th order integral correction, that corrects the integrals
288
 * directly. This is the "gyroAccFactor" stuff in the original code.
1646 - 289
 * There is (there) also a drift compensation
1612 dongfang 290
 * - it corrects the differential of the integral = the gyro offsets.
291
 * That should only be necessary with drifty gyros like ENC-03.
292
 ************************************************************************/
293
void correctIntegralsByAcc0thOrder(void) {
1869 - 294
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
295
  // are less than ....., or reintroduce Kalman.
296
  // Well actually the Z axis acc. check is not so silly.
297
  uint8_t axis;
298
  int32_t temp;
1908 - 299
 
1988 - 300
  uint8_t ca = controlActivity >> 8;
301
  uint8_t highControlActivity = (ca > staticParams.maxControlActivity);
302
 
303
        if (highControlActivity) {
304
      debugOut.digital[1] |= DEBUG_ACC0THORDER;
305
        } else {
306
          debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
307
        }
308
 
1980 - 309
  if (accVector <= dynamicParams.maxAccVector) {
310
    debugOut.digital[0] |= DEBUG_ACC0THORDER;
311
 
1960 - 312
    uint8_t permilleAcc = staticParams.zerothOrderCorrection;
1869 - 313
    int32_t accDerived;
1612 dongfang 314
 
1908 - 315
    /*
1869 - 316
    if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
317
      permilleAcc /= 2;
318
      debugFullWeight = 0;
319
    }
1953 - 320
 
321
    if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
322
      permilleAcc /= 2;
323
      debugFullWeight = 0;
1908 - 324
    */
1953 - 325
 
1988 - 326
    if (highControlActivity) { // reduce effect during stick control activity
1908 - 327
      permilleAcc /= 4;
1986 - 328
      if (controlActivity > staticParams.maxControlActivity*2) { // reduce effect during stick control activity
1908 - 329
        permilleAcc /= 4;
330
      }
1989 - 331
    }
1775 - 332
 
1869 - 333
    /*
334
     * Add to each sum: The amount by which the angle is changed just below.
335
     */
336
    for (axis = PITCH; axis <= ROLL; axis++) {
337
      accDerived = getAngleEstimateFromAcc(axis);
1955 - 338
      debugOut.analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
1805 - 339
 
1869 - 340
      // 1000 * the correction amount that will be added to the gyro angle in next line.
1963 - 341
      temp = angle[axis];
1869 - 342
      angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
343
          + (int32_t) permilleAcc * accDerived) / 1000L;
344
      correctionSum[axis] += angle[axis] - temp;
345
    }
346
  } else {
1955 - 347
    debugOut.analog[9] = 0;
348
    debugOut.analog[10] = 0;
1869 - 349
    // experiment: Kill drift compensation updates when not flying smooth.
1963 - 350
    // correctionSum[PITCH] = correctionSum[ROLL] = 0;
1989 - 351
    debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
1869 - 352
  }
1612 dongfang 353
}
354
 
355
/************************************************************************
356
 * This is an attempt to correct not the error in the angle integrals
357
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
358
 * cause of it: Gyro drift, vibration and rounding errors.
359
 * All the corrections made in correctIntegralsByAcc0thOrder over
1646 - 360
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
361
 * then divided by DRIFTCORRECTION_TIME to get the approx.
1612 dongfang 362
 * correction that should have been applied to each iteration to fix
363
 * the error. This is then added to the dynamic offsets.
364
 ************************************************************************/
1646 - 365
// 2 times / sec. = 488/2
366
#define DRIFTCORRECTION_TIME 256L
367
void driftCorrection(void) {
1869 - 368
  static int16_t timer = DRIFTCORRECTION_TIME;
369
  int16_t deltaCorrection;
1872 - 370
  int16_t round;
1869 - 371
  uint8_t axis;
1872 - 372
 
1869 - 373
  if (!--timer) {
374
    timer = DRIFTCORRECTION_TIME;
375
    for (axis = PITCH; axis <= ROLL; axis++) {
376
      // Take the sum of corrections applied, add it to delta
1872 - 377
      if (correctionSum[axis] >=0)
378
        round = DRIFTCORRECTION_TIME / 2;
379
      else
380
        round = -DRIFTCORRECTION_TIME / 2;
381
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
1869 - 382
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
1960 - 383
      driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
384
      CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
1869 - 385
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
1955 - 386
      // DebugOut.Analog[16 + axis] = correctionSum[axis];
387
      debugOut.analog[28 + axis] = driftComp[axis];
1775 - 388
 
1869 - 389
      correctionSum[axis] = 0;
390
    }
391
  }
1612 dongfang 392
}
393
 
1980 - 394
void calculateAccVector(void) {
395
        uint16_t temp;
396
        temp = filteredAcc[0]/4;
397
        accVector = temp * temp;
398
        temp = filteredAcc[1]/4;
399
        accVector += temp * temp;
400
        temp = filteredAcc[2]/4;
401
        accVector += temp * temp;
1986 - 402
        debugOut.analog[18] = accVector;
403
    debugOut.analog[19] = dynamicParams.maxAccVector;
1980 - 404
}
405
 
1612 dongfang 406
/************************************************************************
407
 * Main procedure.
408
 ************************************************************************/
1805 - 409
void calculateFlightAttitude(void) {
1869 - 410
  getAnalogData();
1980 - 411
  calculateAccVector();
1869 - 412
  integrate();
1775 - 413
 
1612 dongfang 414
#ifdef ATTITUDE_USE_ACC_SENSORS
1869 - 415
  correctIntegralsByAcc0thOrder();
416
  driftCorrection();
1612 dongfang 417
#endif
418
}
419
 
1775 - 420
void updateCompass(void) {
1869 - 421
  int16_t w, v, r, correction, error;
1805 - 422
 
1869 - 423
  if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
424
    if (controlMixer_testCompassCalState()) {
425
      compassCalState++;
426
      if (compassCalState < 5)
427
        beepNumber(compassCalState);
428
      else
429
        beep(1000);
430
    }
431
  } else {
432
    // get maximum attitude angle
433
    w = abs(angle[PITCH] / 512);
434
    v = abs(angle[ROLL] / 512);
435
    if (v > w)
436
      w = v;
437
    correction = w / 8 + 1;
438
    // calculate the deviation of the yaw gyro heading and the compass heading
439
    if (compassHeading < 0)
440
      error = 0; // disable yaw drift compensation if compass heading is undefined
441
    else if (abs(yawRate) > 128) { // spinning fast
442
      error = 0;
443
    } else {
444
      // compassHeading - yawGyroHeading, on a -180..179 deg interval.
445
      error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW))
446
          % 360) - 180;
447
    }
448
    if (!ignoreCompassTimer && w < 25) {
449
      yawGyroDrift += error;
450
      // Basically this gets set if we are in "fix" mode, and when starting.
451
      if (updateCompassCourse) {
452
        beep(200);
453
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
454
        compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
455
        updateCompassCourse = 0;
456
      }
457
    }
458
    yawGyroHeading += (error * 8) / correction;
1805 - 459
 
1869 - 460
    /*
461
     w = (w * dynamicParams.CompassYawEffect) / 32;
462
     w = dynamicParams.CompassYawEffect - w;
463
     */
1960 - 464
    w = dynamicParams.compassYawEffect - (w * dynamicParams.compassYawEffect)
1869 - 465
        / 32;
1805 - 466
 
1869 - 467
    // As readable formula:
468
    // w = dynamicParams.CompassYawEffect * (1-w/32);
1805 - 469
 
1869 - 470
    if (w >= 0) { // maxAttitudeAngle < 32
471
      if (!ignoreCompassTimer) {
1908 - 472
        /*v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;*/
473
        v = 64 + controlActivity / 100;
1869 - 474
        // yawGyroHeading - compassCourse on a -180..179 degree interval.
475
        r
476
            = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse)
477
                % 360) - 180;
478
        v = (r * w) / v; // align to compass course
479
        // limit yaw rate
1960 - 480
        w = 3 * dynamicParams.compassYawEffect;
1869 - 481
        if (v > w)
482
          v = w;
483
        else if (v < -w)
484
          v = -w;
485
        yawAngleDiff += v;
486
      } else { // wait a while
487
        ignoreCompassTimer--;
488
      }
489
    } else { // ignore compass at extreme attitudes for a while
490
      ignoreCompassTimer = 500;
491
    }
492
  }
1775 - 493
}
1612 dongfang 494
 
495
/*
496
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
497
 * and to compensate them away. It brings about some improvement, but no miracles.
498
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
499
 * will measure the effect of vibration, to use for later compensation. So, one should keep
500
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
501
 * speed unfortunately... must find a better way)
502
 */
503
/*
1805 - 504
 void attitude_startDynamicCalibration(void) {
505
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
506
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
507
 }
1612 dongfang 508
 
1805 - 509
 void attitude_continueDynamicCalibration(void) {
510
 // measure dynamic offset now...
511
 dynamicCalPitch += hiResPitchGyro;
512
 dynamicCalRoll += hiResRollGyro;
513
 dynamicCalYaw += rawYawGyroSum;
514
 dynamicCalCount++;
515
 
516
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
517
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
518
 // manual mode
519
 driftCompPitch = dynamicParams.UserParam7 - 128;
520
 driftCompRoll = dynamicParams.UserParam8 - 128;
521
 } else {
522
 // use the sampled value (does not seem to work so well....)
523
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
524
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
525
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
526
 }
527
 
528
 // keep resetting these meanwhile, to avoid accumulating errors.
529
 setStaticAttitudeIntegrals();
530
 yawAngle = 0;
531
 }
532
 */