Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1612 | dongfang | 1 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
2 | // + Copyright (c) 04.2007 Holger Buss |
||
3 | // + Nur für den privaten Gebrauch |
||
4 | // + www.MikroKopter.com |
||
5 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
6 | // + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation), |
||
7 | // + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist. |
||
8 | // + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt |
||
9 | // + bzgl. der Nutzungsbedingungen aufzunehmen. |
||
10 | // + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen, |
||
11 | // + Verkauf von Luftbildaufnahmen, usw. |
||
12 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
13 | // + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht, |
||
14 | // + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen |
||
15 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
16 | // + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts |
||
17 | // + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de" |
||
18 | // + eindeutig als Ursprung verlinkt werden |
||
19 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
20 | // + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion |
||
21 | // + Benutzung auf eigene Gefahr |
||
22 | // + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden |
||
23 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
24 | // + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur |
||
25 | // + mit unserer Zustimmung zulässig |
||
26 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
27 | // + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen |
||
28 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
29 | // + Redistributions of source code (with or without modifications) must retain the above copyright notice, |
||
30 | // + this list of conditions and the following disclaimer. |
||
31 | // + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived |
||
32 | // + from this software without specific prior written permission. |
||
33 | // + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet |
||
34 | // + for non-commercial use (directly or indirectly) |
||
35 | // + Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted |
||
36 | // + with our written permission |
||
37 | // + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be |
||
38 | // + clearly linked as origin |
||
39 | // + * porting to systems other than hardware from www.mikrokopter.de is not allowed |
||
40 | // + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
||
41 | // + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
42 | // + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||
43 | // + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
||
44 | // + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
||
45 | // + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
||
46 | // + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
||
47 | // + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
||
48 | // + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
49 | // + POSSIBILITY OF SUCH DAMAGE. |
||
50 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
51 | |||
52 | /************************************************************************/ |
||
53 | /* Flight Attitude */ |
||
54 | /************************************************************************/ |
||
55 | |||
56 | #include <stdlib.h> |
||
57 | #include <avr/io.h> |
||
58 | |||
59 | #include "attitude.h" |
||
60 | #include "dongfangMath.h" |
||
61 | |||
1775 | - | 62 | // For scope debugging only! |
63 | #include "rc.h" |
||
64 | |||
1612 | dongfang | 65 | // where our main data flow comes from. |
66 | #include "analog.h" |
||
67 | |||
68 | #include "configuration.h" |
||
1775 | - | 69 | #include "output.h" |
1612 | dongfang | 70 | |
71 | // Some calculations are performed depending on some stick related things. |
||
72 | #include "controlMixer.h" |
||
73 | |||
74 | // For Servo_On / Off |
||
75 | // #include "timer2.h" |
||
76 | |||
77 | #define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;} |
||
78 | |||
79 | /* |
||
80 | * Gyro readings, as read from the analog module. It would have been nice to flow |
||
81 | * them around between the different calculations as a struct or array (doing |
||
82 | * things functionally without side effects) but this is shorter and probably |
||
83 | * faster too. |
||
84 | * The variables are overwritten at each attitude calculation invocation - the values |
||
85 | * are not preserved or reused. |
||
86 | */ |
||
1775 | - | 87 | int16_t rate_ATT[2], yawRate; |
1612 | dongfang | 88 | |
89 | // With different (less) filtering |
||
1645 | - | 90 | int16_t rate_PID[2]; |
91 | int16_t differential[2]; |
||
1612 | dongfang | 92 | |
93 | /* |
||
94 | * Gyro readings, after performing "axis coupling" - that is, the transfomation |
||
95 | * of rotation rates from the airframe-local coordinate system to a ground-fixed |
||
96 | * coordinate system. If axis copling is disabled, the gyro readings will be |
||
97 | * copied into these directly. |
||
98 | * These are global for the same pragmatic reason as with the gyro readings. |
||
99 | * The variables are overwritten at each attitude calculation invocation - the values |
||
100 | * are not preserved or reused. |
||
101 | */ |
||
1645 | - | 102 | int16_t ACRate[2], ACYawRate; |
1612 | dongfang | 103 | |
104 | /* |
||
105 | * Gyro integrals. These are the rotation angles of the airframe compared to the |
||
106 | * horizontal plane, yaw relative to yaw at start. |
||
107 | */ |
||
1775 | - | 108 | int32_t angle[2], yawAngleDiff; |
1612 | dongfang | 109 | |
110 | int readingHeight = 0; |
||
111 | |||
1805 | - | 112 | // Yaw angle and compass stuff. |
113 | |||
114 | // This is updated/written from MM3. Negative angle indicates invalid data. |
||
115 | int16_t compassHeading = -1; |
||
116 | |||
117 | // This is NOT updated from MM3. Negative angle indicates invalid data. |
||
118 | int16_t compassCourse = -1; |
||
119 | |||
120 | // The difference between the above 2 (heading - course) on a -180..179 degree interval. |
||
121 | // Not necessary. Never read anywhere. |
||
122 | // int16_t compassOffCourse = 0; |
||
123 | |||
124 | uint8_t updateCompassCourse = 0; |
||
125 | uint8_t compassCalState = 0; |
||
126 | uint16_t ignoreCompassTimer = 500; |
||
127 | |||
1612 | dongfang | 128 | int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass |
1775 | - | 129 | int16_t yawGyroDrift; |
1612 | dongfang | 130 | |
1616 | dongfang | 131 | #define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L) |
132 | #define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L) |
||
133 | #define YAWOVER360 (GYRO_DEG_FACTOR_YAW * 360L) |
||
1612 | dongfang | 134 | |
1805 | - | 135 | int16_t correctionSum[2] = { 0, 0 }; |
1612 | dongfang | 136 | |
1775 | - | 137 | // For NaviCTRL use. |
1805 | - | 138 | int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0; |
1775 | - | 139 | |
1612 | dongfang | 140 | /* |
141 | * Experiment: Compensating for dynamic-induced gyro biasing. |
||
142 | */ |
||
1805 | - | 143 | int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0; |
1612 | dongfang | 144 | // int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0; |
145 | // int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw; |
||
146 | // int16_t dynamicCalCount; |
||
147 | |||
148 | /************************************************************************ |
||
149 | * Set inclination angles from the acc. sensor data. |
||
150 | * If acc. sensors are not used, set to zero. |
||
151 | * TODO: One could use inverse sine to calculate the angles more |
||
1616 | dongfang | 152 | * accurately, but since: 1) the angles are rather small at times when |
153 | * it makes sense to set the integrals (standing on ground, or flying at |
||
1612 | dongfang | 154 | * constant speed, and 2) at small angles a, sin(a) ~= constant * a, |
155 | * it is hardly worth the trouble. |
||
156 | ************************************************************************/ |
||
157 | |||
1645 | - | 158 | int32_t getAngleEstimateFromAcc(uint8_t axis) { |
1805 | - | 159 | return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis]; |
1612 | dongfang | 160 | } |
161 | |||
162 | void setStaticAttitudeAngles(void) { |
||
163 | #ifdef ATTITUDE_USE_ACC_SENSORS |
||
1805 | - | 164 | angle[PITCH] = getAngleEstimateFromAcc(PITCH); |
165 | angle[ROLL] = getAngleEstimateFromAcc(ROLL); |
||
1612 | dongfang | 166 | #else |
1805 | - | 167 | angle[PITCH] = angle[ROLL] = 0; |
1612 | dongfang | 168 | #endif |
169 | } |
||
170 | |||
171 | /************************************************************************ |
||
172 | * Neutral Readings |
||
173 | ************************************************************************/ |
||
174 | void attitude_setNeutral(void) { |
||
1805 | - | 175 | // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway. |
176 | dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0; |
||
1612 | dongfang | 177 | |
1805 | - | 178 | driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0; |
179 | correctionSum[PITCH] = correctionSum[ROLL] = 0; |
||
1612 | dongfang | 180 | |
1805 | - | 181 | // Calibrate hardware. |
182 | analog_calibrate(); |
||
1612 | dongfang | 183 | |
1805 | - | 184 | // reset gyro readings |
185 | // rate_ATT[PITCH] = rate_ATT[ROLL] = yawRate = 0; |
||
1646 | - | 186 | |
1805 | - | 187 | // reset gyro integrals to acc guessing |
188 | setStaticAttitudeAngles(); |
||
189 | yawAngleDiff = 0; |
||
1612 | dongfang | 190 | |
1805 | - | 191 | // update compass course to current heading |
192 | compassCourse = compassHeading; |
||
193 | |||
194 | // Inititialize YawGyroIntegral value with current compass heading |
||
195 | yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW; |
||
196 | |||
197 | // Servo_On(); //enable servo output |
||
1612 | dongfang | 198 | } |
199 | |||
200 | /************************************************************************ |
||
201 | * Get sensor data from the analog module, and release the ADC |
||
202 | * TODO: Ultimately, the analog module could do this (instead of dumping |
||
1645 | - | 203 | * the values into variables). |
204 | * The rate variable end up in a range of about [-1024, 1023]. |
||
1612 | dongfang | 205 | *************************************************************************/ |
206 | void getAnalogData(void) { |
||
1805 | - | 207 | uint8_t axis; |
1612 | dongfang | 208 | |
1805 | - | 209 | for (axis = PITCH; axis <= ROLL; axis++) { |
210 | rate_PID[axis] = (gyro_PID[axis] + driftComp[axis]) |
||
211 | / HIRES_GYRO_INTEGRATION_FACTOR; |
||
212 | rate_ATT[axis] = (gyro_ATT[axis] + driftComp[axis]) |
||
213 | / HIRES_GYRO_INTEGRATION_FACTOR; |
||
214 | differential[axis] = gyroD[axis]; |
||
215 | averageAcc[axis] += acc[axis]; |
||
216 | } |
||
1775 | - | 217 | |
1805 | - | 218 | averageAccCount++; |
219 | yawRate = yawGyro + driftCompYaw; |
||
220 | |||
221 | // We are done reading variables from the analog module. |
||
222 | // Interrupt-driven sensor reading may restart. |
||
223 | analogDataReady = 0; |
||
224 | analog_start(); |
||
1612 | dongfang | 225 | } |
226 | |||
227 | /* |
||
228 | * This is the standard flight-style coordinate system transformation |
||
229 | * (from airframe-local axes to a ground-based system). For some reason |
||
230 | * the MK uses a left-hand coordinate system. The tranformation has been |
||
231 | * changed accordingly. |
||
232 | */ |
||
233 | void trigAxisCoupling(void) { |
||
1805 | - | 234 | int16_t cospitch = int_cos(angle[PITCH]); |
235 | int16_t cosroll = int_cos(angle[ROLL]); |
||
236 | int16_t sinroll = int_sin(angle[ROLL]); |
||
237 | int16_t tanpitch = int_tan(angle[PITCH]); |
||
1775 | - | 238 | #define ANTIOVF 512 |
1805 | - | 239 | ACRate[PITCH] = ((int32_t) rate_ATT[PITCH] * cosroll - (int32_t) yawRate |
240 | * sinroll) / (int32_t) MATH_UNIT_FACTOR; |
||
241 | ACRate[ROLL] = rate_ATT[ROLL] + (((int32_t) rate_ATT[PITCH] * sinroll |
||
1821 | - | 242 | / ANTIOVF * tanpitch + (int32_t) yawRate * int_cos(angle[ROLL]) / ANTIOVF |
243 | * tanpitch) / ((int32_t) MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR)); |
||
1805 | - | 244 | ACYawRate = ((int32_t) rate_ATT[PITCH] * sinroll) / cospitch |
245 | + ((int32_t) yawRate * cosroll) / cospitch; |
||
1612 | dongfang | 246 | } |
247 | |||
1775 | - | 248 | // 480 usec with axis coupling - almost no time without. |
1612 | dongfang | 249 | void integrate(void) { |
1805 | - | 250 | // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate. |
251 | uint8_t axis; |
||
252 | if (!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) { |
||
253 | // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead. |
||
254 | trigAxisCoupling(); |
||
255 | } else { |
||
256 | ACRate[PITCH] = rate_ATT[PITCH]; |
||
257 | ACRate[ROLL] = rate_ATT[ROLL]; |
||
258 | ACYawRate = yawRate; |
||
259 | } |
||
1612 | dongfang | 260 | |
1805 | - | 261 | /* |
262 | * Yaw |
||
263 | * Calculate yaw gyro integral (~ to rotation angle) |
||
264 | * Limit yawGyroHeading proportional to 0 deg to 360 deg |
||
265 | */ |
||
266 | yawGyroHeading += ACYawRate; |
||
267 | yawAngleDiff += yawRate; |
||
1612 | dongfang | 268 | |
1805 | - | 269 | if (yawGyroHeading >= YAWOVER360) { |
270 | yawGyroHeading -= YAWOVER360; // 360 deg. wrap |
||
271 | } else if (yawGyroHeading < 0) { |
||
272 | yawGyroHeading += YAWOVER360; |
||
273 | } |
||
274 | |||
275 | /* |
||
276 | * Pitch axis integration and range boundary wrap. |
||
277 | */ |
||
278 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
279 | angle[axis] += ACRate[axis]; |
||
280 | if (angle[axis] > PITCHROLLOVER180) { |
||
281 | angle[axis] -= PITCHROLLOVER360; |
||
282 | } else if (angle[axis] <= -PITCHROLLOVER180) { |
||
283 | angle[axis] += PITCHROLLOVER360; |
||
284 | } |
||
285 | } |
||
1612 | dongfang | 286 | } |
287 | |||
288 | /************************************************************************ |
||
289 | * A kind of 0'th order integral correction, that corrects the integrals |
||
290 | * directly. This is the "gyroAccFactor" stuff in the original code. |
||
1646 | - | 291 | * There is (there) also a drift compensation |
1612 | dongfang | 292 | * - it corrects the differential of the integral = the gyro offsets. |
293 | * That should only be necessary with drifty gyros like ENC-03. |
||
294 | ************************************************************************/ |
||
295 | void correctIntegralsByAcc0thOrder(void) { |
||
1805 | - | 296 | // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities |
297 | // are less than ....., or reintroduce Kalman. |
||
298 | // Well actually the Z axis acc. check is not so silly. |
||
299 | uint8_t axis; |
||
300 | int32_t correction; |
||
301 | if (!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z] |
||
302 | <= dynamicParams.UserParams[7]) { |
||
303 | DebugOut.Digital[0] |= DEBUG_ACC0THORDER; |
||
1775 | - | 304 | |
1805 | - | 305 | uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!! |
306 | uint8_t debugFullWeight = 1; |
||
307 | int32_t accDerived; |
||
1612 | dongfang | 308 | |
1805 | - | 309 | if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active |
310 | permilleAcc /= 2; |
||
311 | debugFullWeight = 0; |
||
312 | } |
||
1775 | - | 313 | |
1805 | - | 314 | if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands |
315 | permilleAcc /= 2; |
||
316 | debugFullWeight = 0; |
||
317 | } |
||
1775 | - | 318 | |
1805 | - | 319 | if (debugFullWeight) |
320 | DebugOut.Digital[1] |= DEBUG_ACC0THORDER; |
||
321 | else |
||
322 | DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER; |
||
323 | |||
324 | /* |
||
325 | * Add to each sum: The amount by which the angle is changed just below. |
||
326 | */ |
||
327 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
328 | accDerived = getAngleEstimateFromAcc(axis); |
||
1821 | - | 329 | DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL; |
1805 | - | 330 | |
331 | // 1000 * the correction amount that will be added to the gyro angle in next line. |
||
332 | correction = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000; |
||
333 | angle[axis] = ((int32_t) (1000L - permilleAcc) * angle[axis] |
||
334 | + (int32_t) permilleAcc * accDerived) / 1000L; |
||
335 | correctionSum[axis] += angle[axis] - correction; |
||
336 | DebugOut.Analog[16 + axis] = angle[axis] - correction; |
||
337 | } |
||
338 | } else { |
||
339 | DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER; |
||
340 | DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER; |
||
341 | DebugOut.Analog[9] = 0; |
||
342 | DebugOut.Analog[10] = 0; |
||
343 | |||
344 | DebugOut.Analog[16] = 0; |
||
345 | DebugOut.Analog[17] = 0; |
||
346 | // experiment: Kill drift compensation updates when not flying smooth. |
||
347 | correctionSum[PITCH] = correctionSum[ROLL] = 0; |
||
348 | } |
||
1612 | dongfang | 349 | } |
350 | |||
351 | /************************************************************************ |
||
352 | * This is an attempt to correct not the error in the angle integrals |
||
353 | * (that happens in correctIntegralsByAcc0thOrder above) but rather the |
||
354 | * cause of it: Gyro drift, vibration and rounding errors. |
||
355 | * All the corrections made in correctIntegralsByAcc0thOrder over |
||
1646 | - | 356 | * DRIFTCORRECTION_TIME cycles are summed up. This number is |
357 | * then divided by DRIFTCORRECTION_TIME to get the approx. |
||
1612 | dongfang | 358 | * correction that should have been applied to each iteration to fix |
359 | * the error. This is then added to the dynamic offsets. |
||
360 | ************************************************************************/ |
||
1646 | - | 361 | // 2 times / sec. = 488/2 |
362 | #define DRIFTCORRECTION_TIME 256L |
||
363 | void driftCorrection(void) { |
||
1805 | - | 364 | static int16_t timer = DRIFTCORRECTION_TIME; |
365 | int16_t deltaCorrection; |
||
366 | uint8_t axis; |
||
367 | if (!--timer) { |
||
368 | timer = DRIFTCORRECTION_TIME; |
||
369 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
370 | // Take the sum of corrections applied, add it to delta |
||
1821 | - | 371 | deltaCorrection = (correctionSum[axis] * HIRES_GYRO_INTEGRATION_FACTOR |
372 | + DRIFTCORRECTION_TIME / 2) / DRIFTCORRECTION_TIME; |
||
1805 | - | 373 | // Add the delta to the compensation. So positive delta means, gyro should have higher value. |
374 | driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim; |
||
375 | CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp); |
||
376 | // DebugOut.Analog[11 + axis] = correctionSum[axis]; |
||
1775 | - | 377 | |
1821 | - | 378 | DebugOut.Analog[18 + axis] = deltaCorrection / staticParams.GyroAccTrim; |
1805 | - | 379 | DebugOut.Analog[28 + axis] = driftComp[axis]; |
1775 | - | 380 | |
1805 | - | 381 | correctionSum[axis] = 0; |
382 | } |
||
383 | } |
||
1612 | dongfang | 384 | } |
385 | |||
386 | /************************************************************************ |
||
387 | * Main procedure. |
||
388 | ************************************************************************/ |
||
1805 | - | 389 | void calculateFlightAttitude(void) { |
390 | // part1: 550 usec. |
||
391 | // part1a: 550 usec. |
||
392 | // part1b: 60 usec. |
||
393 | getAnalogData(); |
||
394 | // end part1b |
||
395 | integrate(); |
||
396 | // end part1a |
||
1775 | - | 397 | |
1805 | - | 398 | |
399 | DebugOut.Analog[6] = ACRate[PITCH]; |
||
400 | DebugOut.Analog[7] = ACRate[ROLL]; |
||
401 | DebugOut.Analog[8] = ACYawRate; |
||
402 | |||
403 | DebugOut.Analog[3] = rate_PID[PITCH]; |
||
404 | DebugOut.Analog[4] = rate_PID[ROLL]; |
||
405 | DebugOut.Analog[5] = yawRate; |
||
406 | |||
1612 | dongfang | 407 | #ifdef ATTITUDE_USE_ACC_SENSORS |
1805 | - | 408 | correctIntegralsByAcc0thOrder(); |
409 | driftCorrection(); |
||
1612 | dongfang | 410 | #endif |
1805 | - | 411 | // end part1 |
1612 | dongfang | 412 | } |
413 | |||
1775 | - | 414 | void updateCompass(void) { |
1805 | - | 415 | int16_t w, v, r, correction, error; |
416 | |||
417 | if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) { |
||
418 | if (controlMixer_testCompassCalState()) { |
||
419 | compassCalState++; |
||
420 | if (compassCalState < 5) |
||
421 | beepNumber(compassCalState); |
||
422 | else |
||
423 | beep(1000); |
||
424 | } |
||
425 | } else { |
||
426 | // get maximum attitude angle |
||
427 | w = abs(angle[PITCH] / 512); |
||
428 | v = abs(angle[ROLL] / 512); |
||
429 | if (v > w) |
||
430 | w = v; |
||
1821 | - | 431 | correction = w / 8 + 1; |
1805 | - | 432 | // calculate the deviation of the yaw gyro heading and the compass heading |
433 | if (compassHeading < 0) |
||
434 | error = 0; // disable yaw drift compensation if compass heading is undefined |
||
1821 | - | 435 | else if (abs(yawRate) > 128) { // spinning fast |
1805 | - | 436 | error = 0; |
437 | } else { |
||
438 | // compassHeading - yawGyroHeading, on a -180..179 deg interval. |
||
1821 | - | 439 | error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) |
440 | % 360) - 180; |
||
1805 | - | 441 | } |
442 | if (!ignoreCompassTimer && w < 25) { |
||
443 | yawGyroDrift += error; |
||
444 | // Basically this gets set if we are in "fix" mode, and when starting. |
||
445 | if (updateCompassCourse) { |
||
446 | beep(200); |
||
447 | yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW; |
||
448 | compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW); |
||
449 | updateCompassCourse = 0; |
||
450 | } |
||
451 | } |
||
452 | yawGyroHeading += (error * 8) / correction; |
||
453 | |||
454 | /* |
||
1821 | - | 455 | w = (w * dynamicParams.CompassYawEffect) / 32; |
456 | w = dynamicParams.CompassYawEffect - w; |
||
457 | */ |
||
458 | w = dynamicParams.CompassYawEffect - (w * dynamicParams.CompassYawEffect) |
||
459 | / 32; |
||
1805 | - | 460 | |
461 | // As readable formula: |
||
462 | // w = dynamicParams.CompassYawEffect * (1-w/32); |
||
463 | |||
464 | if (w >= 0) { // maxAttitudeAngle < 32 |
||
465 | if (!ignoreCompassTimer) { |
||
466 | v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8; |
||
467 | // yawGyroHeading - compassCourse on a -180..179 degree interval. |
||
1821 | - | 468 | r |
469 | = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse) |
||
470 | % 360) - 180; |
||
1805 | - | 471 | v = (r * w) / v; // align to compass course |
472 | // limit yaw rate |
||
473 | w = 3 * dynamicParams.CompassYawEffect; |
||
474 | if (v > w) |
||
475 | v = w; |
||
476 | else if (v < -w) |
||
477 | v = -w; |
||
478 | yawAngleDiff += v; |
||
479 | } else { // wait a while |
||
480 | ignoreCompassTimer--; |
||
481 | } |
||
482 | } else { // ignore compass at extreme attitudes for a while |
||
483 | ignoreCompassTimer = 500; |
||
484 | } |
||
1775 | - | 485 | } |
486 | } |
||
1612 | dongfang | 487 | |
488 | /* |
||
489 | * This is part of an experiment to measure average sensor offsets caused by motor vibration, |
||
490 | * and to compensate them away. It brings about some improvement, but no miracles. |
||
491 | * As long as the left stick is kept in the start-motors position, the dynamic compensation |
||
492 | * will measure the effect of vibration, to use for later compensation. So, one should keep |
||
493 | * the stick in the start-motors position for a few seconds, till all motors run (at the wrong |
||
494 | * speed unfortunately... must find a better way) |
||
495 | */ |
||
496 | /* |
||
1805 | - | 497 | void attitude_startDynamicCalibration(void) { |
498 | dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0; |
||
499 | savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000; |
||
500 | } |
||
1612 | dongfang | 501 | |
1805 | - | 502 | void attitude_continueDynamicCalibration(void) { |
503 | // measure dynamic offset now... |
||
504 | dynamicCalPitch += hiResPitchGyro; |
||
505 | dynamicCalRoll += hiResRollGyro; |
||
506 | dynamicCalYaw += rawYawGyroSum; |
||
507 | dynamicCalCount++; |
||
508 | |||
509 | // Param6: Manual mode. The offsets are taken from Param7 and Param8. |
||
510 | if (dynamicParams.UserParam6 || 1) { // currently always enabled. |
||
511 | // manual mode |
||
512 | driftCompPitch = dynamicParams.UserParam7 - 128; |
||
513 | driftCompRoll = dynamicParams.UserParam8 - 128; |
||
514 | } else { |
||
515 | // use the sampled value (does not seem to work so well....) |
||
516 | driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount; |
||
517 | driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount; |
||
518 | driftCompYaw = -dynamicCalYaw / dynamicCalCount; |
||
519 | } |
||
520 | |||
521 | // keep resetting these meanwhile, to avoid accumulating errors. |
||
522 | setStaticAttitudeIntegrals(); |
||
523 | yawAngle = 0; |
||
524 | } |
||
525 | */ |