Subversion Repositories FlightCtrl

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
 
52
/************************************************************************/
53
/* Flight Attitude                                                      */
54
/************************************************************************/
55
 
56
#include <stdlib.h>
57
#include <avr/io.h>
58
 
59
#include "attitude.h"
60
#include "dongfangMath.h"
61
 
1775 - 62
// For scope debugging only!
63
#include "rc.h"
64
 
1612 dongfang 65
// where our main data flow comes from.
66
#include "analog.h"
67
 
68
#include "configuration.h"
1775 - 69
#include "output.h"
1612 dongfang 70
 
71
// Some calculations are performed depending on some stick related things.
72
#include "controlMixer.h"
73
 
74
// For Servo_On / Off
75
// #include "timer2.h"
76
 
77
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
78
 
79
/*
80
 * Gyro readings, as read from the analog module. It would have been nice to flow
81
 * them around between the different calculations as a struct or array (doing
82
 * things functionally without side effects) but this is shorter and probably
83
 * faster too.
84
 * The variables are overwritten at each attitude calculation invocation - the values
85
 * are not preserved or reused.
86
 */
1775 - 87
int16_t rate_ATT[2], yawRate;
1612 dongfang 88
 
89
// With different (less) filtering
1645 - 90
int16_t rate_PID[2];
91
int16_t differential[2];
1612 dongfang 92
 
93
/*
94
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
95
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
96
 * coordinate system. If axis copling is disabled, the gyro readings will be
97
 * copied into these directly.
98
 * These are global for the same pragmatic reason as with the gyro readings.
99
 * The variables are overwritten at each attitude calculation invocation - the values
100
 * are not preserved or reused.
101
 */
1645 - 102
int16_t ACRate[2], ACYawRate;
1612 dongfang 103
 
104
/*
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
106
 * horizontal plane, yaw relative to yaw at start.
107
 */
1775 - 108
int32_t angle[2], yawAngleDiff;
1612 dongfang 109
 
110
int readingHeight = 0;
111
 
1805 - 112
// Yaw angle and compass stuff.
113
 
114
// This is updated/written from MM3. Negative angle indicates invalid data.
115
int16_t compassHeading = -1;
116
 
117
// This is NOT updated from MM3. Negative angle indicates invalid data.
118
int16_t compassCourse = -1;
119
 
120
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
121
// Not necessary. Never read anywhere.
122
// int16_t compassOffCourse = 0;
123
 
124
uint8_t updateCompassCourse = 0;
125
uint8_t compassCalState = 0;
126
uint16_t ignoreCompassTimer = 500;
127
 
1612 dongfang 128
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
1775 - 129
int16_t yawGyroDrift;
1612 dongfang 130
 
1616 dongfang 131
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
132
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
133
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
1612 dongfang 134
 
1805 - 135
int16_t correctionSum[2] = { 0, 0 };
1612 dongfang 136
 
1775 - 137
// For NaviCTRL use.
1805 - 138
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
1775 - 139
 
1612 dongfang 140
/*
141
 * Experiment: Compensating for dynamic-induced gyro biasing.
142
 */
1805 - 143
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
1612 dongfang 144
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
145
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
146
// int16_t dynamicCalCount;
147
 
148
/************************************************************************
149
 * Set inclination angles from the acc. sensor data.                    
150
 * If acc. sensors are not used, set to zero.                          
151
 * TODO: One could use inverse sine to calculate the angles more        
1616 dongfang 152
 * accurately, but since: 1) the angles are rather small at times when
153
 * it makes sense to set the integrals (standing on ground, or flying at  
1612 dongfang 154
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
155
 * it is hardly worth the trouble.                                      
156
 ************************************************************************/
157
 
1645 - 158
int32_t getAngleEstimateFromAcc(uint8_t axis) {
1805 - 159
        return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
1612 dongfang 160
}
161
 
162
void setStaticAttitudeAngles(void) {
163
#ifdef ATTITUDE_USE_ACC_SENSORS
1805 - 164
        angle[PITCH] = getAngleEstimateFromAcc(PITCH);
165
        angle[ROLL] = getAngleEstimateFromAcc(ROLL);
1612 dongfang 166
#else
1805 - 167
        angle[PITCH] = angle[ROLL] = 0;
1612 dongfang 168
#endif
169
}
170
 
171
/************************************************************************
172
 * Neutral Readings                                                    
173
 ************************************************************************/
174
void attitude_setNeutral(void) {
1805 - 175
        // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
176
        dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
1612 dongfang 177
 
1805 - 178
        driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
179
        correctionSum[PITCH] = correctionSum[ROLL] = 0;
1612 dongfang 180
 
1805 - 181
        // Calibrate hardware.
182
        analog_calibrate();
1612 dongfang 183
 
1805 - 184
        // reset gyro readings
185
        // rate_ATT[PITCH] = rate_ATT[ROLL] = yawRate = 0;
1646 - 186
 
1805 - 187
        // reset gyro integrals to acc guessing
188
        setStaticAttitudeAngles();
189
        yawAngleDiff = 0;
1612 dongfang 190
 
1805 - 191
        // update compass course to current heading
192
        compassCourse = compassHeading;
193
 
194
        // Inititialize YawGyroIntegral value with current compass heading
195
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
196
 
197
        // Servo_On(); //enable servo output
1612 dongfang 198
}
199
 
200
/************************************************************************
201
 * Get sensor data from the analog module, and release the ADC          
202
 * TODO: Ultimately, the analog module could do this (instead of dumping
1645 - 203
 * the values into variables).
204
 * The rate variable end up in a range of about [-1024, 1023].
1612 dongfang 205
 *************************************************************************/
206
void getAnalogData(void) {
1805 - 207
        uint8_t axis;
1612 dongfang 208
 
1805 - 209
        for (axis = PITCH; axis <= ROLL; axis++) {
210
                rate_PID[axis] = (gyro_PID[axis] + driftComp[axis])
211
                                / HIRES_GYRO_INTEGRATION_FACTOR;
212
                rate_ATT[axis] = (gyro_ATT[axis] + driftComp[axis])
213
                                / HIRES_GYRO_INTEGRATION_FACTOR;
214
                differential[axis] = gyroD[axis];
215
                averageAcc[axis] += acc[axis];
216
        }
1775 - 217
 
1805 - 218
        averageAccCount++;
219
        yawRate = yawGyro + driftCompYaw;
220
 
221
        // We are done reading variables from the analog module.
222
        // Interrupt-driven sensor reading may restart.
223
        analogDataReady = 0;
224
        analog_start();
1612 dongfang 225
}
226
 
227
/*
228
 * This is the standard flight-style coordinate system transformation
229
 * (from airframe-local axes to a ground-based system). For some reason
230
 * the MK uses a left-hand coordinate system. The tranformation has been
231
 * changed accordingly.
232
 */
233
void trigAxisCoupling(void) {
1805 - 234
        int16_t cospitch = int_cos(angle[PITCH]);
235
        int16_t cosroll = int_cos(angle[ROLL]);
236
        int16_t sinroll = int_sin(angle[ROLL]);
237
        int16_t tanpitch = int_tan(angle[PITCH]);
1775 - 238
#define ANTIOVF 512
1805 - 239
        ACRate[PITCH] = ((int32_t) rate_ATT[PITCH] * cosroll - (int32_t) yawRate
240
                        * sinroll) / (int32_t) MATH_UNIT_FACTOR;
241
        ACRate[ROLL] = rate_ATT[ROLL] + (((int32_t) rate_ATT[PITCH] * sinroll
1821 - 242
                        / ANTIOVF * tanpitch + (int32_t) yawRate * int_cos(angle[ROLL]) / ANTIOVF
243
                        * tanpitch) / ((int32_t) MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR));
1805 - 244
        ACYawRate = ((int32_t) rate_ATT[PITCH] * sinroll) / cospitch
245
                        + ((int32_t) yawRate * cosroll) / cospitch;
1612 dongfang 246
}
247
 
1775 - 248
// 480 usec with axis coupling - almost no time without.
1612 dongfang 249
void integrate(void) {
1805 - 250
        // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
251
        uint8_t axis;
252
        if (!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
253
                // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
254
                trigAxisCoupling();
255
        } else {
256
                ACRate[PITCH] = rate_ATT[PITCH];
257
                ACRate[ROLL] = rate_ATT[ROLL];
258
                ACYawRate = yawRate;
259
        }
1612 dongfang 260
 
1805 - 261
        /*
262
         * Yaw
263
         * Calculate yaw gyro integral (~ to rotation angle)
264
         * Limit yawGyroHeading proportional to 0 deg to 360 deg
265
         */
266
        yawGyroHeading += ACYawRate;
267
        yawAngleDiff += yawRate;
1612 dongfang 268
 
1805 - 269
        if (yawGyroHeading >= YAWOVER360) {
270
                yawGyroHeading -= YAWOVER360; // 360 deg. wrap
271
        } else if (yawGyroHeading < 0) {
272
                yawGyroHeading += YAWOVER360;
273
        }
274
 
275
        /*
276
         * Pitch axis integration and range boundary wrap.
277
         */
278
        for (axis = PITCH; axis <= ROLL; axis++) {
279
                angle[axis] += ACRate[axis];
280
                if (angle[axis] > PITCHROLLOVER180) {
281
                        angle[axis] -= PITCHROLLOVER360;
282
                } else if (angle[axis] <= -PITCHROLLOVER180) {
283
                        angle[axis] += PITCHROLLOVER360;
284
                }
285
        }
1612 dongfang 286
}
287
 
288
/************************************************************************
289
 * A kind of 0'th order integral correction, that corrects the integrals
290
 * directly. This is the "gyroAccFactor" stuff in the original code.
1646 - 291
 * There is (there) also a drift compensation
1612 dongfang 292
 * - it corrects the differential of the integral = the gyro offsets.
293
 * That should only be necessary with drifty gyros like ENC-03.
294
 ************************************************************************/
295
void correctIntegralsByAcc0thOrder(void) {
1805 - 296
        // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
297
        // are less than ....., or reintroduce Kalman.
298
        // Well actually the Z axis acc. check is not so silly.
299
        uint8_t axis;
300
        int32_t correction;
301
        if (!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z]
302
                        <= dynamicParams.UserParams[7]) {
303
                DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
1775 - 304
 
1805 - 305
                uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
306
                uint8_t debugFullWeight = 1;
307
                int32_t accDerived;
1612 dongfang 308
 
1805 - 309
                if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
310
                        permilleAcc /= 2;
311
                        debugFullWeight = 0;
312
                }
1775 - 313
 
1805 - 314
                if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
315
                        permilleAcc /= 2;
316
                        debugFullWeight = 0;
317
                }
1775 - 318
 
1805 - 319
                if (debugFullWeight)
320
                        DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
321
                else
322
                        DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
323
 
324
                /*
325
                 * Add to each sum: The amount by which the angle is changed just below.
326
                 */
327
                for (axis = PITCH; axis <= ROLL; axis++) {
328
                        accDerived = getAngleEstimateFromAcc(axis);
1821 - 329
                        DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
1805 - 330
 
331
                        // 1000 * the correction amount that will be added to the gyro angle in next line.
332
                        correction = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
333
                        angle[axis] = ((int32_t) (1000L - permilleAcc) * angle[axis]
334
                                        + (int32_t) permilleAcc * accDerived) / 1000L;
335
                        correctionSum[axis] += angle[axis] - correction;
336
                        DebugOut.Analog[16 + axis] = angle[axis] - correction;
337
                }
338
        } else {
339
                DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER;
340
                DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
341
                DebugOut.Analog[9] = 0;
342
                DebugOut.Analog[10] = 0;
343
 
344
                DebugOut.Analog[16] = 0;
345
                DebugOut.Analog[17] = 0;
346
                // experiment: Kill drift compensation updates when not flying smooth.
347
                correctionSum[PITCH] = correctionSum[ROLL] = 0;
348
        }
1612 dongfang 349
}
350
 
351
/************************************************************************
352
 * This is an attempt to correct not the error in the angle integrals
353
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
354
 * cause of it: Gyro drift, vibration and rounding errors.
355
 * All the corrections made in correctIntegralsByAcc0thOrder over
1646 - 356
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
357
 * then divided by DRIFTCORRECTION_TIME to get the approx.
1612 dongfang 358
 * correction that should have been applied to each iteration to fix
359
 * the error. This is then added to the dynamic offsets.
360
 ************************************************************************/
1646 - 361
// 2 times / sec. = 488/2
362
#define DRIFTCORRECTION_TIME 256L
363
void driftCorrection(void) {
1805 - 364
        static int16_t timer = DRIFTCORRECTION_TIME;
365
        int16_t deltaCorrection;
366
        uint8_t axis;
367
        if (!--timer) {
368
                timer = DRIFTCORRECTION_TIME;
369
                for (axis = PITCH; axis <= ROLL; axis++) {
370
                        // Take the sum of corrections applied, add it to delta
1821 - 371
                        deltaCorrection = (correctionSum[axis] * HIRES_GYRO_INTEGRATION_FACTOR
372
                                        + DRIFTCORRECTION_TIME / 2) / DRIFTCORRECTION_TIME;
1805 - 373
                        // Add the delta to the compensation. So positive delta means, gyro should have higher value.
374
                        driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
375
                        CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
376
                        // DebugOut.Analog[11 + axis] = correctionSum[axis];
1775 - 377
 
1821 - 378
                        DebugOut.Analog[18 + axis] = deltaCorrection / staticParams.GyroAccTrim;
1805 - 379
                        DebugOut.Analog[28 + axis] = driftComp[axis];
1775 - 380
 
1805 - 381
                        correctionSum[axis] = 0;
382
                }
383
        }
1612 dongfang 384
}
385
 
386
/************************************************************************
387
 * Main procedure.
388
 ************************************************************************/
1805 - 389
void calculateFlightAttitude(void) {
390
        // part1: 550 usec.
391
        // part1a: 550 usec.
392
        // part1b: 60 usec.
393
        getAnalogData();
394
        // end part1b
395
        integrate();
396
        // end part1a
1775 - 397
 
1805 - 398
 
399
        DebugOut.Analog[6] = ACRate[PITCH];
400
        DebugOut.Analog[7] = ACRate[ROLL];
401
        DebugOut.Analog[8] = ACYawRate;
402
 
403
        DebugOut.Analog[3] = rate_PID[PITCH];
404
        DebugOut.Analog[4] = rate_PID[ROLL];
405
        DebugOut.Analog[5] = yawRate;
406
 
1612 dongfang 407
#ifdef ATTITUDE_USE_ACC_SENSORS
1805 - 408
        correctIntegralsByAcc0thOrder();
409
        driftCorrection();
1612 dongfang 410
#endif
1805 - 411
        // end part1
1612 dongfang 412
}
413
 
1775 - 414
void updateCompass(void) {
1805 - 415
        int16_t w, v, r, correction, error;
416
 
417
        if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
418
                if (controlMixer_testCompassCalState()) {
419
                        compassCalState++;
420
                        if (compassCalState < 5)
421
                                beepNumber(compassCalState);
422
                        else
423
                                beep(1000);
424
                }
425
        } else {
426
                // get maximum attitude angle
427
                w = abs(angle[PITCH] / 512);
428
                v = abs(angle[ROLL] / 512);
429
                if (v > w)
430
                        w = v;
1821 - 431
                correction = w / 8 + 1;
1805 - 432
                // calculate the deviation of the yaw gyro heading and the compass heading
433
                if (compassHeading < 0)
434
                        error = 0; // disable yaw drift compensation if compass heading is undefined
1821 - 435
                else if (abs(yawRate) > 128) { // spinning fast
1805 - 436
                        error = 0;
437
                } else {
438
                        // compassHeading - yawGyroHeading, on a -180..179 deg interval.
1821 - 439
                        error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW))
440
                                        % 360) - 180;
1805 - 441
                }
442
                if (!ignoreCompassTimer && w < 25) {
443
                        yawGyroDrift += error;
444
                        // Basically this gets set if we are in "fix" mode, and when starting.
445
                        if (updateCompassCourse) {
446
                                beep(200);
447
                                yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
448
                                compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
449
                                updateCompassCourse = 0;
450
                        }
451
                }
452
                yawGyroHeading += (error * 8) / correction;
453
 
454
                /*
1821 - 455
                 w = (w * dynamicParams.CompassYawEffect) / 32;
456
                 w = dynamicParams.CompassYawEffect - w;
457
                 */
458
                w = dynamicParams.CompassYawEffect - (w * dynamicParams.CompassYawEffect)
459
                                / 32;
1805 - 460
 
461
                // As readable formula:
462
                // w = dynamicParams.CompassYawEffect * (1-w/32);
463
 
464
                if (w >= 0) { // maxAttitudeAngle < 32
465
                        if (!ignoreCompassTimer) {
466
                                v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;
467
                                // yawGyroHeading - compassCourse on a -180..179 degree interval.
1821 - 468
                                r
469
                                                = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse)
470
                                                                % 360) - 180;
1805 - 471
                                v = (r * w) / v; // align to compass course
472
                                // limit yaw rate
473
                                w = 3 * dynamicParams.CompassYawEffect;
474
                                if (v > w)
475
                                        v = w;
476
                                else if (v < -w)
477
                                        v = -w;
478
                                yawAngleDiff += v;
479
                        } else { // wait a while
480
                                ignoreCompassTimer--;
481
                        }
482
                } else { // ignore compass at extreme attitudes for a while
483
                        ignoreCompassTimer = 500;
484
                }
1775 - 485
        }
486
}
1612 dongfang 487
 
488
/*
489
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
490
 * and to compensate them away. It brings about some improvement, but no miracles.
491
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
492
 * will measure the effect of vibration, to use for later compensation. So, one should keep
493
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
494
 * speed unfortunately... must find a better way)
495
 */
496
/*
1805 - 497
 void attitude_startDynamicCalibration(void) {
498
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
499
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
500
 }
1612 dongfang 501
 
1805 - 502
 void attitude_continueDynamicCalibration(void) {
503
 // measure dynamic offset now...
504
 dynamicCalPitch += hiResPitchGyro;
505
 dynamicCalRoll += hiResRollGyro;
506
 dynamicCalYaw += rawYawGyroSum;
507
 dynamicCalCount++;
508
 
509
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
510
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
511
 // manual mode
512
 driftCompPitch = dynamicParams.UserParam7 - 128;
513
 driftCompRoll = dynamicParams.UserParam8 - 128;
514
 } else {
515
 // use the sampled value (does not seem to work so well....)
516
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
517
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
518
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
519
 }
520
 
521
 // keep resetting these meanwhile, to avoid accumulating errors.
522
 setStaticAttitudeIntegrals();
523
 yawAngle = 0;
524
 }
525
 */