Subversion Repositories FlightCtrl

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
 
52
/************************************************************************/
53
/* Flight Attitude                                                      */
54
/************************************************************************/
55
 
56
#include <stdlib.h>
57
#include <avr/io.h>
58
 
59
#include "attitude.h"
60
#include "dongfangMath.h"
61
 
1775 - 62
// For scope debugging only!
63
#include "rc.h"
64
 
1612 dongfang 65
// where our main data flow comes from.
66
#include "analog.h"
67
 
68
#include "configuration.h"
1775 - 69
#include "output.h"
1612 dongfang 70
 
71
// Some calculations are performed depending on some stick related things.
72
#include "controlMixer.h"
73
 
74
// For Servo_On / Off
75
// #include "timer2.h"
76
 
77
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
78
 
79
/*
80
 * Gyro readings, as read from the analog module. It would have been nice to flow
81
 * them around between the different calculations as a struct or array (doing
82
 * things functionally without side effects) but this is shorter and probably
83
 * faster too.
84
 * The variables are overwritten at each attitude calculation invocation - the values
85
 * are not preserved or reused.
86
 */
1775 - 87
int16_t rate_ATT[2], yawRate;
1612 dongfang 88
 
89
// With different (less) filtering
1645 - 90
int16_t rate_PID[2];
91
int16_t differential[2];
1612 dongfang 92
 
93
/*
94
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
95
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
96
 * coordinate system. If axis copling is disabled, the gyro readings will be
97
 * copied into these directly.
98
 * These are global for the same pragmatic reason as with the gyro readings.
99
 * The variables are overwritten at each attitude calculation invocation - the values
100
 * are not preserved or reused.
101
 */
1645 - 102
int16_t ACRate[2], ACYawRate;
1612 dongfang 103
 
104
/*
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
106
 * horizontal plane, yaw relative to yaw at start.
107
 */
1775 - 108
int32_t angle[2], yawAngleDiff;
1612 dongfang 109
 
110
int readingHeight = 0;
111
 
1805 - 112
// Yaw angle and compass stuff.
113
 
114
// This is updated/written from MM3. Negative angle indicates invalid data.
115
int16_t compassHeading = -1;
116
 
117
// This is NOT updated from MM3. Negative angle indicates invalid data.
118
int16_t compassCourse = -1;
119
 
120
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
121
// Not necessary. Never read anywhere.
122
// int16_t compassOffCourse = 0;
123
 
124
uint8_t updateCompassCourse = 0;
125
uint8_t compassCalState = 0;
126
uint16_t ignoreCompassTimer = 500;
127
 
1612 dongfang 128
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
1775 - 129
int16_t yawGyroDrift;
1612 dongfang 130
 
1616 dongfang 131
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
132
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
133
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
1612 dongfang 134
 
1805 - 135
int16_t correctionSum[2] = { 0, 0 };
1612 dongfang 136
 
1775 - 137
// For NaviCTRL use.
1805 - 138
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
1775 - 139
 
1612 dongfang 140
/*
141
 * Experiment: Compensating for dynamic-induced gyro biasing.
142
 */
1805 - 143
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
1612 dongfang 144
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
145
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
146
// int16_t dynamicCalCount;
147
 
148
/************************************************************************
149
 * Set inclination angles from the acc. sensor data.                    
150
 * If acc. sensors are not used, set to zero.                          
151
 * TODO: One could use inverse sine to calculate the angles more        
1616 dongfang 152
 * accurately, but since: 1) the angles are rather small at times when
153
 * it makes sense to set the integrals (standing on ground, or flying at  
1612 dongfang 154
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
155
 * it is hardly worth the trouble.                                      
156
 ************************************************************************/
157
 
1645 - 158
int32_t getAngleEstimateFromAcc(uint8_t axis) {
1805 - 159
        return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
1612 dongfang 160
}
161
 
162
void setStaticAttitudeAngles(void) {
163
#ifdef ATTITUDE_USE_ACC_SENSORS
1805 - 164
        angle[PITCH] = getAngleEstimateFromAcc(PITCH);
165
        angle[ROLL] = getAngleEstimateFromAcc(ROLL);
1612 dongfang 166
#else
1805 - 167
        angle[PITCH] = angle[ROLL] = 0;
1612 dongfang 168
#endif
169
}
170
 
171
/************************************************************************
172
 * Neutral Readings                                                    
173
 ************************************************************************/
174
void attitude_setNeutral(void) {
1805 - 175
        // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
176
        dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
1612 dongfang 177
 
1805 - 178
        driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
179
        correctionSum[PITCH] = correctionSum[ROLL] = 0;
1612 dongfang 180
 
1805 - 181
        // Calibrate hardware.
182
        analog_calibrate();
1612 dongfang 183
 
1805 - 184
        // reset gyro readings
185
        // rate_ATT[PITCH] = rate_ATT[ROLL] = yawRate = 0;
1646 - 186
 
1805 - 187
        // reset gyro integrals to acc guessing
188
        setStaticAttitudeAngles();
189
        yawAngleDiff = 0;
1612 dongfang 190
 
1805 - 191
        // update compass course to current heading
192
        compassCourse = compassHeading;
193
 
194
        // Inititialize YawGyroIntegral value with current compass heading
195
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
196
 
197
        // Servo_On(); //enable servo output
1612 dongfang 198
}
199
 
200
/************************************************************************
201
 * Get sensor data from the analog module, and release the ADC          
202
 * TODO: Ultimately, the analog module could do this (instead of dumping
1645 - 203
 * the values into variables).
204
 * The rate variable end up in a range of about [-1024, 1023].
1612 dongfang 205
 *************************************************************************/
206
void getAnalogData(void) {
1805 - 207
        uint8_t axis;
1612 dongfang 208
 
1805 - 209
        for (axis = PITCH; axis <= ROLL; axis++) {
210
                rate_PID[axis] = (gyro_PID[axis] + driftComp[axis])
211
                                / HIRES_GYRO_INTEGRATION_FACTOR;
212
                rate_ATT[axis] = (gyro_ATT[axis] + driftComp[axis])
213
                                / HIRES_GYRO_INTEGRATION_FACTOR;
214
                differential[axis] = gyroD[axis];
215
                averageAcc[axis] += acc[axis];
216
        }
1775 - 217
 
1805 - 218
        averageAccCount++;
219
        yawRate = yawGyro + driftCompYaw;
220
 
221
        // We are done reading variables from the analog module.
222
        // Interrupt-driven sensor reading may restart.
223
        analogDataReady = 0;
224
        analog_start();
1612 dongfang 225
}
226
 
227
/*
228
 * This is the standard flight-style coordinate system transformation
229
 * (from airframe-local axes to a ground-based system). For some reason
230
 * the MK uses a left-hand coordinate system. The tranformation has been
231
 * changed accordingly.
232
 */
233
void trigAxisCoupling(void) {
1805 - 234
        int16_t cospitch = int_cos(angle[PITCH]);
235
        int16_t cosroll = int_cos(angle[ROLL]);
236
        int16_t sinroll = int_sin(angle[ROLL]);
237
        int16_t tanpitch = int_tan(angle[PITCH]);
1775 - 238
#define ANTIOVF 512
1805 - 239
        ACRate[PITCH] = ((int32_t) rate_ATT[PITCH] * cosroll - (int32_t) yawRate
240
                        * sinroll) / (int32_t) MATH_UNIT_FACTOR;
241
        ACRate[ROLL] = rate_ATT[ROLL] + (((int32_t) rate_ATT[PITCH] * sinroll
242
                        / ANTIOVF * tanpitch + (int32_t) yawRate * int_cos(angle[ROLL])
243
                        / ANTIOVF * tanpitch) / ((int32_t) MATH_UNIT_FACTOR / ANTIOVF
244
                        * MATH_UNIT_FACTOR));
245
        ACYawRate = ((int32_t) rate_ATT[PITCH] * sinroll) / cospitch
246
                        + ((int32_t) yawRate * cosroll) / cospitch;
1612 dongfang 247
}
248
 
1775 - 249
// 480 usec with axis coupling - almost no time without.
1612 dongfang 250
void integrate(void) {
1805 - 251
        // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
252
        uint8_t axis;
253
        if (!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
254
                // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
255
                trigAxisCoupling();
256
        } else {
257
                ACRate[PITCH] = rate_ATT[PITCH];
258
                ACRate[ROLL] = rate_ATT[ROLL];
259
                ACYawRate = yawRate;
260
        }
1612 dongfang 261
 
1805 - 262
        /*
263
         * Yaw
264
         * Calculate yaw gyro integral (~ to rotation angle)
265
         * Limit yawGyroHeading proportional to 0 deg to 360 deg
266
         */
267
        yawGyroHeading += ACYawRate;
268
        yawAngleDiff += yawRate;
1612 dongfang 269
 
1805 - 270
        if (yawGyroHeading >= YAWOVER360) {
271
                yawGyroHeading -= YAWOVER360; // 360 deg. wrap
272
        } else if (yawGyroHeading < 0) {
273
                yawGyroHeading += YAWOVER360;
274
        }
275
 
276
        /*
277
         * Pitch axis integration and range boundary wrap.
278
         */
279
        for (axis = PITCH; axis <= ROLL; axis++) {
280
                angle[axis] += ACRate[axis];
281
                if (angle[axis] > PITCHROLLOVER180) {
282
                        angle[axis] -= PITCHROLLOVER360;
283
                } else if (angle[axis] <= -PITCHROLLOVER180) {
284
                        angle[axis] += PITCHROLLOVER360;
285
                }
286
        }
1612 dongfang 287
}
288
 
289
/************************************************************************
290
 * A kind of 0'th order integral correction, that corrects the integrals
291
 * directly. This is the "gyroAccFactor" stuff in the original code.
1646 - 292
 * There is (there) also a drift compensation
1612 dongfang 293
 * - it corrects the differential of the integral = the gyro offsets.
294
 * That should only be necessary with drifty gyros like ENC-03.
295
 ************************************************************************/
296
void correctIntegralsByAcc0thOrder(void) {
1805 - 297
        // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
298
        // are less than ....., or reintroduce Kalman.
299
        // Well actually the Z axis acc. check is not so silly.
300
        uint8_t axis;
301
        int32_t correction;
302
        if (!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z]
303
                        <= dynamicParams.UserParams[7]) {
304
                DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
1775 - 305
 
1805 - 306
                uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
307
                uint8_t debugFullWeight = 1;
308
                int32_t accDerived;
1612 dongfang 309
 
1805 - 310
                if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
311
                        permilleAcc /= 2;
312
                        debugFullWeight = 0;
313
                }
1775 - 314
 
1805 - 315
                if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
316
                        permilleAcc /= 2;
317
                        debugFullWeight = 0;
318
                }
1775 - 319
 
1805 - 320
                if (debugFullWeight)
321
                        DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
322
                else
323
                        DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
324
 
325
                /*
326
                 * Add to each sum: The amount by which the angle is changed just below.
327
                 */
328
                for (axis = PITCH; axis <= ROLL; axis++) {
329
                        accDerived = getAngleEstimateFromAcc(axis);
330
                        DebugOut.Analog[9 + axis] = (10 * accDerived)
331
                                        / GYRO_DEG_FACTOR_PITCHROLL;
332
 
333
                        // 1000 * the correction amount that will be added to the gyro angle in next line.
334
                        correction = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
335
                        angle[axis] = ((int32_t) (1000L - permilleAcc) * angle[axis]
336
                                        + (int32_t) permilleAcc * accDerived) / 1000L;
337
                        correctionSum[axis] += angle[axis] - correction;
338
                        DebugOut.Analog[16 + axis] = angle[axis] - correction;
339
                }
340
        } else {
341
                DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER;
342
                DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
343
                DebugOut.Analog[9] = 0;
344
                DebugOut.Analog[10] = 0;
345
 
346
                DebugOut.Analog[16] = 0;
347
                DebugOut.Analog[17] = 0;
348
                // experiment: Kill drift compensation updates when not flying smooth.
349
                correctionSum[PITCH] = correctionSum[ROLL] = 0;
350
        }
1612 dongfang 351
}
352
 
353
/************************************************************************
354
 * This is an attempt to correct not the error in the angle integrals
355
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
356
 * cause of it: Gyro drift, vibration and rounding errors.
357
 * All the corrections made in correctIntegralsByAcc0thOrder over
1646 - 358
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
359
 * then divided by DRIFTCORRECTION_TIME to get the approx.
1612 dongfang 360
 * correction that should have been applied to each iteration to fix
361
 * the error. This is then added to the dynamic offsets.
362
 ************************************************************************/
1646 - 363
// 2 times / sec. = 488/2
364
#define DRIFTCORRECTION_TIME 256L
365
void driftCorrection(void) {
1805 - 366
        static int16_t timer = DRIFTCORRECTION_TIME;
367
        int16_t deltaCorrection;
368
        uint8_t axis;
369
        if (!--timer) {
370
                timer = DRIFTCORRECTION_TIME;
371
                for (axis = PITCH; axis <= ROLL; axis++) {
372
                        // Take the sum of corrections applied, add it to delta
373
                        deltaCorrection = (correctionSum[axis]
374
                                        * HIRES_GYRO_INTEGRATION_FACTOR + DRIFTCORRECTION_TIME / 2)
375
                                        / DRIFTCORRECTION_TIME;
376
                        // Add the delta to the compensation. So positive delta means, gyro should have higher value.
377
                        driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
378
                        CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
379
                        // DebugOut.Analog[11 + axis] = correctionSum[axis];
1775 - 380
 
1805 - 381
                        DebugOut.Analog[18 + axis] = deltaCorrection
382
                                        / staticParams.GyroAccTrim;
383
                        DebugOut.Analog[28 + axis] = driftComp[axis];
1775 - 384
 
1805 - 385
                        correctionSum[axis] = 0;
386
                }
387
        }
1612 dongfang 388
}
389
 
390
/************************************************************************
391
 * Main procedure.
392
 ************************************************************************/
1805 - 393
void calculateFlightAttitude(void) {
394
        // part1: 550 usec.
395
        // part1a: 550 usec.
396
        // part1b: 60 usec.
397
        getAnalogData();
398
        // end part1b
399
        integrate();
400
        // end part1a
1775 - 401
 
1805 - 402
 
403
        DebugOut.Analog[6] = ACRate[PITCH];
404
        DebugOut.Analog[7] = ACRate[ROLL];
405
        DebugOut.Analog[8] = ACYawRate;
406
 
407
        DebugOut.Analog[3] = rate_PID[PITCH];
408
        DebugOut.Analog[4] = rate_PID[ROLL];
409
        DebugOut.Analog[5] = yawRate;
410
 
1612 dongfang 411
#ifdef ATTITUDE_USE_ACC_SENSORS
1805 - 412
        correctIntegralsByAcc0thOrder();
413
        driftCorrection();
1612 dongfang 414
#endif
1805 - 415
        // end part1
1612 dongfang 416
}
417
 
1775 - 418
void updateCompass(void) {
1805 - 419
        int16_t w, v, r, correction, error;
420
 
421
        if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
422
                if (controlMixer_testCompassCalState()) {
423
                        compassCalState++;
424
                        if (compassCalState < 5)
425
                                beepNumber(compassCalState);
426
                        else
427
                                beep(1000);
428
                }
429
        } else {
430
                // get maximum attitude angle
431
                w = abs(angle[PITCH] / 512);
432
                v = abs(angle[ROLL] / 512);
433
                if (v > w)
434
                        w = v;
435
                correction = w/8 + 1;
436
                // calculate the deviation of the yaw gyro heading and the compass heading
437
                if (compassHeading < 0)
438
                        error = 0; // disable yaw drift compensation if compass heading is undefined
439
                else
440
                if (abs(yawRate) > 128) { // spinning fast
441
                        error = 0;
442
                } else {
443
                        // compassHeading - yawGyroHeading, on a -180..179 deg interval.
444
                        error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
445
                }
446
                if (!ignoreCompassTimer && w < 25) {
447
                        yawGyroDrift += error;
448
                        // Basically this gets set if we are in "fix" mode, and when starting.
449
                        if (updateCompassCourse) {
450
                                beep(200);
451
                                yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
452
                                compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
453
                                updateCompassCourse = 0;
454
                        }
455
                }
456
                yawGyroHeading += (error * 8) / correction;
457
 
458
                /*
459
                w = (w * dynamicParams.CompassYawEffect) / 32;
460
                w = dynamicParams.CompassYawEffect - w;
461
                */
462
                w = dynamicParams.CompassYawEffect - (w * dynamicParams.CompassYawEffect) / 32;
463
 
464
                // As readable formula:
465
                // w = dynamicParams.CompassYawEffect * (1-w/32);
466
 
467
                if (w >= 0) { // maxAttitudeAngle < 32
468
                        if (!ignoreCompassTimer) {
469
                                v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;
470
                                // yawGyroHeading - compassCourse on a -180..179 degree interval.
471
                                r = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse) % 360) - 180;
472
                                v = (r * w) / v; // align to compass course
473
                                // limit yaw rate
474
                                w = 3 * dynamicParams.CompassYawEffect;
475
                                if (v > w)
476
                                        v = w;
477
                                else if (v < -w)
478
                                        v = -w;
479
                                yawAngleDiff += v;
480
                        } else { // wait a while
481
                                ignoreCompassTimer--;
482
                        }
483
                } else { // ignore compass at extreme attitudes for a while
484
                        ignoreCompassTimer = 500;
485
                }
1775 - 486
        }
487
}
1612 dongfang 488
 
489
/*
490
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
491
 * and to compensate them away. It brings about some improvement, but no miracles.
492
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
493
 * will measure the effect of vibration, to use for later compensation. So, one should keep
494
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
495
 * speed unfortunately... must find a better way)
496
 */
497
/*
1805 - 498
 void attitude_startDynamicCalibration(void) {
499
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
500
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
501
 }
1612 dongfang 502
 
1805 - 503
 void attitude_continueDynamicCalibration(void) {
504
 // measure dynamic offset now...
505
 dynamicCalPitch += hiResPitchGyro;
506
 dynamicCalRoll += hiResRollGyro;
507
 dynamicCalYaw += rawYawGyroSum;
508
 dynamicCalCount++;
509
 
510
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
511
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
512
 // manual mode
513
 driftCompPitch = dynamicParams.UserParam7 - 128;
514
 driftCompRoll = dynamicParams.UserParam8 - 128;
515
 } else {
516
 // use the sampled value (does not seem to work so well....)
517
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
518
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
519
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
520
 }
521
 
522
 // keep resetting these meanwhile, to avoid accumulating errors.
523
 setStaticAttitudeIntegrals();
524
 yawAngle = 0;
525
 }
526
 */