Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1612 | dongfang | 1 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
2 | // + Copyright (c) 04.2007 Holger Buss |
||
3 | // + Nur für den privaten Gebrauch |
||
4 | // + www.MikroKopter.com |
||
5 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
6 | // + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation), |
||
7 | // + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist. |
||
8 | // + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt |
||
9 | // + bzgl. der Nutzungsbedingungen aufzunehmen. |
||
10 | // + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen, |
||
11 | // + Verkauf von Luftbildaufnahmen, usw. |
||
12 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
13 | // + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht, |
||
14 | // + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen |
||
15 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
16 | // + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts |
||
17 | // + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de" |
||
18 | // + eindeutig als Ursprung verlinkt werden |
||
19 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
20 | // + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion |
||
21 | // + Benutzung auf eigene Gefahr |
||
22 | // + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden |
||
23 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
24 | // + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur |
||
25 | // + mit unserer Zustimmung zulässig |
||
26 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
27 | // + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen |
||
28 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
29 | // + Redistributions of source code (with or without modifications) must retain the above copyright notice, |
||
30 | // + this list of conditions and the following disclaimer. |
||
31 | // + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived |
||
32 | // + from this software without specific prior written permission. |
||
33 | // + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet |
||
34 | // + for non-commercial use (directly or indirectly) |
||
35 | // + Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted |
||
36 | // + with our written permission |
||
37 | // + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be |
||
38 | // + clearly linked as origin |
||
39 | // + * porting to systems other than hardware from www.mikrokopter.de is not allowed |
||
40 | // + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
||
41 | // + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
42 | // + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||
43 | // + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
||
44 | // + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
||
45 | // + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
||
46 | // + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
||
47 | // + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
||
48 | // + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
49 | // + POSSIBILITY OF SUCH DAMAGE. |
||
50 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
51 | |||
52 | /************************************************************************/ |
||
53 | /* Flight Attitude */ |
||
54 | /************************************************************************/ |
||
55 | |||
56 | #include <stdlib.h> |
||
57 | #include <avr/io.h> |
||
58 | |||
59 | #include "attitude.h" |
||
60 | #include "dongfangMath.h" |
||
61 | |||
1775 | - | 62 | // For scope debugging only! |
63 | #include "rc.h" |
||
64 | |||
1612 | dongfang | 65 | // where our main data flow comes from. |
66 | #include "analog.h" |
||
67 | |||
68 | #include "configuration.h" |
||
1775 | - | 69 | #include "output.h" |
1612 | dongfang | 70 | |
71 | // Some calculations are performed depending on some stick related things. |
||
72 | #include "controlMixer.h" |
||
73 | |||
74 | // For Servo_On / Off |
||
75 | // #include "timer2.h" |
||
76 | |||
77 | #ifdef USE_MK3MAG |
||
78 | #include "mk3mag.h" |
||
79 | #include "gps.h" |
||
80 | #endif |
||
81 | #define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;} |
||
82 | |||
83 | /* |
||
84 | * Gyro readings, as read from the analog module. It would have been nice to flow |
||
85 | * them around between the different calculations as a struct or array (doing |
||
86 | * things functionally without side effects) but this is shorter and probably |
||
87 | * faster too. |
||
88 | * The variables are overwritten at each attitude calculation invocation - the values |
||
89 | * are not preserved or reused. |
||
90 | */ |
||
1775 | - | 91 | int16_t rate_ATT[2], yawRate; |
1612 | dongfang | 92 | |
93 | // With different (less) filtering |
||
1645 | - | 94 | int16_t rate_PID[2]; |
95 | int16_t differential[2]; |
||
1612 | dongfang | 96 | |
97 | /* |
||
98 | * Gyro readings, after performing "axis coupling" - that is, the transfomation |
||
99 | * of rotation rates from the airframe-local coordinate system to a ground-fixed |
||
100 | * coordinate system. If axis copling is disabled, the gyro readings will be |
||
101 | * copied into these directly. |
||
102 | * These are global for the same pragmatic reason as with the gyro readings. |
||
103 | * The variables are overwritten at each attitude calculation invocation - the values |
||
104 | * are not preserved or reused. |
||
105 | */ |
||
1645 | - | 106 | int16_t ACRate[2], ACYawRate; |
1612 | dongfang | 107 | |
108 | /* |
||
109 | * Gyro integrals. These are the rotation angles of the airframe compared to the |
||
110 | * horizontal plane, yaw relative to yaw at start. |
||
111 | */ |
||
1775 | - | 112 | int32_t angle[2], yawAngleDiff; |
1612 | dongfang | 113 | |
114 | int readingHeight = 0; |
||
115 | |||
116 | // compass course |
||
1775 | - | 117 | int16_t compassHeading = -1; // negative angle indicates invalid data. |
118 | int16_t compassCourse = -1; |
||
119 | int16_t compassOffCourse = 0; |
||
1612 | dongfang | 120 | uint16_t updateCompassCourse = 0; |
1775 | - | 121 | uint8_t compassCalState = 0; |
1612 | dongfang | 122 | uint16_t badCompassHeading = 500; |
123 | int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass |
||
1775 | - | 124 | int16_t yawGyroDrift; |
1612 | dongfang | 125 | |
1616 | dongfang | 126 | #define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L) |
127 | #define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L) |
||
128 | #define YAWOVER360 (GYRO_DEG_FACTOR_YAW * 360L) |
||
1612 | dongfang | 129 | |
1646 | - | 130 | int16_t correctionSum[2] = {0,0}; |
1612 | dongfang | 131 | |
1775 | - | 132 | // For NaviCTRL use. |
133 | int16_t averageAcc[2] = {0,0}, averageAccCount = 0; |
||
134 | |||
1612 | dongfang | 135 | /* |
136 | * Experiment: Compensating for dynamic-induced gyro biasing. |
||
137 | */ |
||
1775 | - | 138 | int16_t driftComp[2] = {0,0}, driftCompYaw = 0; |
1612 | dongfang | 139 | // int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0; |
140 | // int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw; |
||
141 | // int16_t dynamicCalCount; |
||
142 | |||
143 | /************************************************************************ |
||
144 | * Set inclination angles from the acc. sensor data. |
||
145 | * If acc. sensors are not used, set to zero. |
||
146 | * TODO: One could use inverse sine to calculate the angles more |
||
1616 | dongfang | 147 | * accurately, but since: 1) the angles are rather small at times when |
148 | * it makes sense to set the integrals (standing on ground, or flying at |
||
1612 | dongfang | 149 | * constant speed, and 2) at small angles a, sin(a) ~= constant * a, |
150 | * it is hardly worth the trouble. |
||
151 | ************************************************************************/ |
||
152 | |||
1645 | - | 153 | int32_t getAngleEstimateFromAcc(uint8_t axis) { |
154 | return GYRO_ACC_FACTOR * (int32_t)filteredAcc[axis]; |
||
1612 | dongfang | 155 | } |
156 | |||
157 | void setStaticAttitudeAngles(void) { |
||
158 | #ifdef ATTITUDE_USE_ACC_SENSORS |
||
1645 | - | 159 | angle[PITCH] = getAngleEstimateFromAcc(PITCH); |
160 | angle[ROLL] = getAngleEstimateFromAcc(ROLL); |
||
1612 | dongfang | 161 | #else |
1645 | - | 162 | angle[PITCH] = angle[ROLL] = 0; |
1612 | dongfang | 163 | #endif |
164 | } |
||
165 | |||
166 | /************************************************************************ |
||
167 | * Neutral Readings |
||
168 | ************************************************************************/ |
||
169 | void attitude_setNeutral(void) { |
||
170 | // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway. |
||
171 | dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0; |
||
172 | |||
1775 | - | 173 | driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0; |
1646 | - | 174 | correctionSum[PITCH] = correctionSum[ROLL] = 0; |
1612 | dongfang | 175 | |
176 | // Calibrate hardware. |
||
177 | analog_calibrate(); |
||
1775 | - | 178 | |
1612 | dongfang | 179 | // reset gyro readings |
1775 | - | 180 | // rate_ATT[PITCH] = rate_ATT[ROLL] = yawRate = 0; |
1612 | dongfang | 181 | |
182 | // reset gyro integrals to acc guessing |
||
183 | setStaticAttitudeAngles(); |
||
1775 | - | 184 | yawAngleDiff = 0; |
1612 | dongfang | 185 | |
186 | // update compass course to current heading |
||
187 | compassCourse = compassHeading; |
||
1646 | - | 188 | |
1612 | dongfang | 189 | // Inititialize YawGyroIntegral value with current compass heading |
190 | yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW; |
||
191 | |||
192 | // Servo_On(); //enable servo output |
||
193 | } |
||
194 | |||
195 | /************************************************************************ |
||
196 | * Get sensor data from the analog module, and release the ADC |
||
197 | * TODO: Ultimately, the analog module could do this (instead of dumping |
||
1645 | - | 198 | * the values into variables). |
199 | * The rate variable end up in a range of about [-1024, 1023]. |
||
1612 | dongfang | 200 | *************************************************************************/ |
201 | void getAnalogData(void) { |
||
1645 | - | 202 | uint8_t axis; |
203 | |||
204 | for (axis=PITCH; axis <=ROLL; axis++) { |
||
1775 | - | 205 | rate_PID[axis] = (gyro_PID[axis] + driftComp[axis]) / HIRES_GYRO_INTEGRATION_FACTOR; |
206 | rate_ATT[axis] = (gyro_ATT[axis] + driftComp[axis]) / HIRES_GYRO_INTEGRATION_FACTOR; |
||
1645 | - | 207 | differential[axis] = gyroD[axis]; |
1775 | - | 208 | averageAcc[axis] += acc[axis]; |
1645 | - | 209 | } |
1612 | dongfang | 210 | |
1775 | - | 211 | averageAccCount++; |
212 | yawRate = yawGyro + driftCompYaw; |
||
213 | |||
1645 | - | 214 | // We are done reading variables from the analog module. |
215 | // Interrupt-driven sensor reading may restart. |
||
1612 | dongfang | 216 | analogDataReady = 0; |
217 | analog_start(); |
||
218 | } |
||
219 | |||
220 | /* |
||
221 | * This is the standard flight-style coordinate system transformation |
||
222 | * (from airframe-local axes to a ground-based system). For some reason |
||
223 | * the MK uses a left-hand coordinate system. The tranformation has been |
||
224 | * changed accordingly. |
||
225 | */ |
||
226 | void trigAxisCoupling(void) { |
||
1645 | - | 227 | int16_t cospitch = int_cos(angle[PITCH]); |
228 | int16_t cosroll = int_cos(angle[ROLL]); |
||
229 | int16_t sinroll = int_sin(angle[ROLL]); |
||
230 | int16_t tanpitch = int_tan(angle[PITCH]); |
||
1775 | - | 231 | #define ANTIOVF 512 |
232 | ACRate[PITCH] = ((int32_t) rate_ATT[PITCH] * cosroll - (int32_t)yawRate * sinroll) / (int32_t)MATH_UNIT_FACTOR; |
||
233 | ACRate[ROLL] = rate_ATT[ROLL] + (((int32_t)rate_ATT[PITCH] * sinroll / ANTIOVF * tanpitch + (int32_t)yawRate * int_cos(angle[ROLL]) / ANTIOVF * tanpitch) / ((int32_t)MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR)); |
||
234 | ACYawRate = ((int32_t) rate_ATT[PITCH] * sinroll) / cospitch + ((int32_t)yawRate * cosroll) / cospitch; |
||
1612 | dongfang | 235 | } |
236 | |||
1775 | - | 237 | // 480 usec with axis coupling - almost no time without. |
1612 | dongfang | 238 | void integrate(void) { |
239 | // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate. |
||
1645 | - | 240 | uint8_t axis; |
1612 | dongfang | 241 | if(!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) { |
242 | // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead. |
||
1775 | - | 243 | trigAxisCoupling(); |
1612 | dongfang | 244 | } else { |
1775 | - | 245 | ACRate[PITCH] = rate_ATT[PITCH]; |
246 | ACRate[ROLL] = rate_ATT[ROLL]; |
||
247 | ACYawRate = yawRate; |
||
1612 | dongfang | 248 | } |
249 | |||
250 | /* |
||
251 | * Yaw |
||
252 | * Calculate yaw gyro integral (~ to rotation angle) |
||
253 | * Limit yawGyroHeading proportional to 0 deg to 360 deg |
||
254 | */ |
||
255 | yawGyroHeading += ACYawRate; |
||
1775 | - | 256 | yawAngleDiff += yawRate; |
1617 | dongfang | 257 | |
258 | if(yawGyroHeading >= YAWOVER360) { |
||
259 | yawGyroHeading -= YAWOVER360; // 360 deg. wrap |
||
260 | } else if(yawGyroHeading < 0) { |
||
261 | yawGyroHeading += YAWOVER360; |
||
262 | } |
||
1612 | dongfang | 263 | |
264 | /* |
||
265 | * Pitch axis integration and range boundary wrap. |
||
266 | */ |
||
1645 | - | 267 | for (axis=PITCH; axis<=ROLL; axis++) { |
268 | angle[axis] += ACRate[axis]; |
||
269 | if(angle[axis] > PITCHROLLOVER180) { |
||
270 | angle[axis] -= PITCHROLLOVER360; |
||
271 | } else if (angle[axis] <= -PITCHROLLOVER180) { |
||
272 | angle[axis] += PITCHROLLOVER360; |
||
273 | } |
||
1612 | dongfang | 274 | } |
275 | } |
||
276 | |||
277 | /************************************************************************ |
||
278 | * A kind of 0'th order integral correction, that corrects the integrals |
||
279 | * directly. This is the "gyroAccFactor" stuff in the original code. |
||
1646 | - | 280 | * There is (there) also a drift compensation |
1612 | dongfang | 281 | * - it corrects the differential of the integral = the gyro offsets. |
282 | * That should only be necessary with drifty gyros like ENC-03. |
||
283 | ************************************************************************/ |
||
284 | void correctIntegralsByAcc0thOrder(void) { |
||
285 | // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities |
||
286 | // are less than ....., or reintroduce Kalman. |
||
287 | // Well actually the Z axis acc. check is not so silly. |
||
1645 | - | 288 | uint8_t axis; |
1646 | - | 289 | int32_t correction; |
290 | if(!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z] <= dynamicParams.UserParams[7]) { |
||
1775 | - | 291 | DebugOut.Digital[0] |= DEBUG_ACC0THORDER; |
1612 | dongfang | 292 | |
293 | uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!! |
||
294 | uint8_t debugFullWeight = 1; |
||
1646 | - | 295 | int32_t accDerived; |
1612 | dongfang | 296 | |
1775 | - | 297 | if((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active |
1612 | dongfang | 298 | permilleAcc /= 2; |
299 | debugFullWeight = 0; |
||
300 | } |
||
1775 | - | 301 | |
302 | if((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands |
||
1612 | dongfang | 303 | permilleAcc /= 2; |
304 | debugFullWeight = 0; |
||
305 | } |
||
1775 | - | 306 | |
307 | if (debugFullWeight) |
||
308 | DebugOut.Digital[1] |= DEBUG_ACC0THORDER; |
||
309 | else |
||
310 | DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER; |
||
1612 | dongfang | 311 | |
312 | /* |
||
313 | * Add to each sum: The amount by which the angle is changed just below. |
||
314 | */ |
||
1645 | - | 315 | for (axis=PITCH; axis<=ROLL; axis++) { |
1646 | - | 316 | accDerived = getAngleEstimateFromAcc(axis); |
317 | DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL; |
||
1775 | - | 318 | |
1646 | - | 319 | // 1000 * the correction amount that will be added to the gyro angle in next line. |
320 | correction = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000; |
||
1775 | - | 321 | angle[axis] = ((int32_t)(1000L - permilleAcc) * angle[axis] + (int32_t)permilleAcc * accDerived) / 1000L; |
322 | correctionSum[axis] += angle[axis] - correction; |
||
323 | DebugOut.Analog[16+axis] = angle[axis] - correction; |
||
1645 | - | 324 | } |
1612 | dongfang | 325 | } else { |
1775 | - | 326 | DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER; |
327 | DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER; |
||
328 | DebugOut.Analog[9] = 0; |
||
329 | DebugOut.Analog[10] = 0; |
||
330 | |||
331 | DebugOut.Analog[16] = 0; |
||
332 | DebugOut.Analog[17] = 0; |
||
333 | // experiment: Kill drift compensation updates when not flying smooth. |
||
334 | correctionSum[PITCH] = correctionSum[ROLL] = 0; |
||
1612 | dongfang | 335 | } |
336 | } |
||
337 | |||
338 | /************************************************************************ |
||
339 | * This is an attempt to correct not the error in the angle integrals |
||
340 | * (that happens in correctIntegralsByAcc0thOrder above) but rather the |
||
341 | * cause of it: Gyro drift, vibration and rounding errors. |
||
342 | * All the corrections made in correctIntegralsByAcc0thOrder over |
||
1646 | - | 343 | * DRIFTCORRECTION_TIME cycles are summed up. This number is |
344 | * then divided by DRIFTCORRECTION_TIME to get the approx. |
||
1612 | dongfang | 345 | * correction that should have been applied to each iteration to fix |
346 | * the error. This is then added to the dynamic offsets. |
||
347 | ************************************************************************/ |
||
1646 | - | 348 | // 2 times / sec. = 488/2 |
349 | #define DRIFTCORRECTION_TIME 256L |
||
350 | void driftCorrection(void) { |
||
1612 | dongfang | 351 | static int16_t timer = DRIFTCORRECTION_TIME; |
1646 | - | 352 | int16_t deltaCorrection; |
1645 | - | 353 | uint8_t axis; |
1612 | dongfang | 354 | if (! --timer) { |
355 | timer = DRIFTCORRECTION_TIME; |
||
1645 | - | 356 | for (axis=PITCH; axis<=ROLL; axis++) { |
1646 | - | 357 | // Take the sum of corrections applied, add it to delta |
1775 | - | 358 | deltaCorrection = (correctionSum[axis] * HIRES_GYRO_INTEGRATION_FACTOR + DRIFTCORRECTION_TIME / 2) / DRIFTCORRECTION_TIME; |
1646 | - | 359 | // Add the delta to the compensation. So positive delta means, gyro should have higher value. |
1775 | - | 360 | driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim; |
361 | CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp); |
||
362 | // DebugOut.Analog[11 + axis] = correctionSum[axis]; |
||
363 | |||
364 | DebugOut.Analog[18+axis] = deltaCorrection / staticParams.GyroAccTrim; |
||
365 | DebugOut.Analog[28+axis] = driftComp[axis]; |
||
366 | |||
1645 | - | 367 | correctionSum[axis] = 0; |
368 | } |
||
1612 | dongfang | 369 | } |
370 | } |
||
371 | |||
372 | /************************************************************************ |
||
373 | * Main procedure. |
||
374 | ************************************************************************/ |
||
375 | void calculateFlightAttitude(void) { |
||
1775 | - | 376 | // part1: 550 usec. |
377 | // part1a: 550 usec. |
||
378 | // part1b: 60 usec. |
||
1612 | dongfang | 379 | getAnalogData(); |
1775 | - | 380 | // end part1b |
1612 | dongfang | 381 | integrate(); |
1775 | - | 382 | // end part1a |
383 | |||
1646 | - | 384 | |
385 | DebugOut.Analog[6] = ACRate[PITCH]; |
||
386 | DebugOut.Analog[7] = ACRate[ROLL]; |
||
387 | DebugOut.Analog[8] = ACYawRate; |
||
388 | |||
389 | DebugOut.Analog[3] = rate_PID[PITCH]; |
||
390 | DebugOut.Analog[4] = rate_PID[ROLL]; |
||
391 | DebugOut.Analog[5] = yawRate; |
||
392 | |||
1612 | dongfang | 393 | #ifdef ATTITUDE_USE_ACC_SENSORS |
394 | correctIntegralsByAcc0thOrder(); |
||
1646 | - | 395 | driftCorrection(); |
1612 | dongfang | 396 | #endif |
1775 | - | 397 | // end part1 |
1612 | dongfang | 398 | } |
399 | |||
1775 | - | 400 | void updateCompass(void) { |
1612 | dongfang | 401 | int16_t w, v, r,correction, error; |
402 | |||
403 | if(compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) { |
||
1775 | - | 404 | if (controlMixer_testCompassCalState()) { |
405 | compassCalState++; |
||
406 | if(compassCalState < 5) beepNumber(compassCalState); |
||
407 | else beep(1000); |
||
408 | } |
||
1612 | dongfang | 409 | } else { |
1775 | - | 410 | // get maximum attitude angle |
411 | w = abs(angle[PITCH] / 512); |
||
412 | v = abs(angle[ROLL] / 512); |
||
413 | if(v > w) w = v; |
||
414 | correction = w / 8 + 1; |
||
415 | // calculate the deviation of the yaw gyro heading and the compass heading |
||
416 | if (compassHeading < 0) error = 0; // disable yaw drift compensation if compass heading is undefined |
||
417 | else error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180; |
||
418 | if(abs(yawRate) > 128) { // spinning fast |
||
419 | error = 0; |
||
420 | } |
||
421 | if(!badCompassHeading && w < 25) { |
||
422 | yawGyroDrift += error; |
||
423 | if(updateCompassCourse) { |
||
424 | beep(200); |
||
425 | yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW; |
||
426 | compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW); |
||
427 | updateCompassCourse = 0; |
||
428 | } |
||
429 | } |
||
430 | yawGyroHeading += (error * 8) / correction; |
||
431 | w = (w * dynamicParams.CompassYawEffect) / 32; |
||
432 | w = dynamicParams.CompassYawEffect - w; |
||
433 | if(w >= 0) { |
||
434 | if(!badCompassHeading) { |
||
435 | v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8; |
||
436 | // calc course deviation |
||
437 | r = ((540 + (yawGyroHeading / GYRO_DEG_FACTOR_YAW) - compassCourse) % 360) - 180; |
||
438 | v = (r * w) / v; // align to compass course |
||
439 | // limit yaw rate |
||
440 | w = 3 * dynamicParams.CompassYawEffect; |
||
441 | if (v > w) v = w; |
||
442 | else if (v < -w) v = -w; |
||
443 | yawAngleDiff += v; |
||
444 | } |
||
445 | else |
||
446 | { // wait a while |
||
447 | badCompassHeading--; |
||
448 | } |
||
449 | } else { // ignore compass at extreme attitudes for a while |
||
450 | badCompassHeading = 500; |
||
451 | } |
||
1612 | dongfang | 452 | } |
1775 | - | 453 | } |
1612 | dongfang | 454 | |
455 | /* |
||
456 | * This is part of an experiment to measure average sensor offsets caused by motor vibration, |
||
457 | * and to compensate them away. It brings about some improvement, but no miracles. |
||
458 | * As long as the left stick is kept in the start-motors position, the dynamic compensation |
||
459 | * will measure the effect of vibration, to use for later compensation. So, one should keep |
||
460 | * the stick in the start-motors position for a few seconds, till all motors run (at the wrong |
||
461 | * speed unfortunately... must find a better way) |
||
462 | */ |
||
463 | /* |
||
1645 | - | 464 | void attitude_startDynamicCalibration(void) { |
1612 | dongfang | 465 | dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0; |
466 | savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000; |
||
1645 | - | 467 | } |
1612 | dongfang | 468 | |
1645 | - | 469 | void attitude_continueDynamicCalibration(void) { |
1612 | dongfang | 470 | // measure dynamic offset now... |
471 | dynamicCalPitch += hiResPitchGyro; |
||
472 | dynamicCalRoll += hiResRollGyro; |
||
473 | dynamicCalYaw += rawYawGyroSum; |
||
474 | dynamicCalCount++; |
||
475 | |||
476 | // Param6: Manual mode. The offsets are taken from Param7 and Param8. |
||
477 | if (dynamicParams.UserParam6 || 1) { // currently always enabled. |
||
1645 | - | 478 | // manual mode |
1775 | - | 479 | driftCompPitch = dynamicParams.UserParam7 - 128; |
480 | driftCompRoll = dynamicParams.UserParam8 - 128; |
||
1612 | dongfang | 481 | } else { |
1645 | - | 482 | // use the sampled value (does not seem to work so well....) |
1775 | - | 483 | driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount; |
484 | driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount; |
||
485 | driftCompYaw = -dynamicCalYaw / dynamicCalCount; |
||
1612 | dongfang | 486 | } |
487 | |||
488 | // keep resetting these meanwhile, to avoid accumulating errors. |
||
489 | setStaticAttitudeIntegrals(); |
||
490 | yawAngle = 0; |
||
1645 | - | 491 | } |
1612 | dongfang | 492 | */ |