Subversion Repositories FlightCtrl

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
 
52
/************************************************************************/
53
/* Flight Attitude                                                      */
54
/************************************************************************/
55
 
56
#include <stdlib.h>
57
#include <avr/io.h>
58
 
59
#include "attitude.h"
60
#include "dongfangMath.h"
61
 
62
// where our main data flow comes from.
63
#include "analog.h"
64
 
65
#include "configuration.h"
66
 
67
// Some calculations are performed depending on some stick related things.
68
#include "controlMixer.h"
69
 
70
// For Servo_On / Off
71
// #include "timer2.h"
72
 
73
#ifdef USE_MK3MAG
74
#include "mk3mag.h"
75
#include "gps.h"
76
#endif
77
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
78
 
79
/*
80
 * Gyro readings, as read from the analog module. It would have been nice to flow
81
 * them around between the different calculations as a struct or array (doing
82
 * things functionally without side effects) but this is shorter and probably
83
 * faster too.
84
 * The variables are overwritten at each attitude calculation invocation - the values
85
 * are not preserved or reused.
86
 */
87
int16_t pitchRate, rollRate, yawRate;
88
 
89
// With different (less) filtering
90
int16_t pitchRate_PID, rollRate_PID;
91
int16_t pitchDifferential, rollDifferential;
92
 
93
/*
94
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
95
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
96
 * coordinate system. If axis copling is disabled, the gyro readings will be
97
 * copied into these directly.
98
 * These are global for the same pragmatic reason as with the gyro readings.
99
 * The variables are overwritten at each attitude calculation invocation - the values
100
 * are not preserved or reused.
101
 */
102
int16_t ACPitchRate, ACRollRate, ACYawRate;
103
 
104
/*
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
106
 * horizontal plane, yaw relative to yaw at start.
107
 */
108
int32_t pitchAngle, rollAngle, yawAngle;
109
 
110
int readingHeight = 0;
111
 
112
// compass course
113
int16_t compassHeading = -1; // negative angle indicates invalid data.
114
int16_t compassCourse = -1;
115
int16_t compassOffCourse = 0;
116
uint16_t updateCompassCourse = 0;
117
uint8_t compassCalState = 0;
118
 
119
// uint8_t FunnelCourse = 0;
120
uint16_t badCompassHeading = 500;
121
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
122
 
1616 dongfang 123
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
124
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
125
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
1612 dongfang 126
 
127
int32_t pitchCorrectionSum = 0, rollCorrectionSum = 0;
128
 
129
/*
130
 * Experiment: Compensating for dynamic-induced gyro biasing.
131
 */
132
int16_t dynamicOffsetPitch = 0, dynamicOffsetRoll = 0, dynamicOffsetYaw = 0;
133
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
134
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
135
// int16_t dynamicCalCount;
136
 
137
/************************************************************************
138
 * Set inclination angles from the acc. sensor data.                    
139
 * If acc. sensors are not used, set to zero.                          
140
 * TODO: One could use inverse sine to calculate the angles more        
1616 dongfang 141
 * accurately, but since: 1) the angles are rather small at times when
142
 * it makes sense to set the integrals (standing on ground, or flying at  
1612 dongfang 143
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
144
 * it is hardly worth the trouble.                                      
145
 ************************************************************************/
146
 
147
int32_t getPitchAngleEstimateFromAcc(void) {
148
  return GYRO_ACC_FACTOR * (int32_t)filteredPitchAxisAcc;
149
}
150
 
151
int32_t getRollAngleEstimateFromAcc(void) {
152
  return GYRO_ACC_FACTOR * (int32_t)filteredRollAxisAcc;
153
}
154
 
155
void setStaticAttitudeAngles(void) {
156
#ifdef ATTITUDE_USE_ACC_SENSORS
157
  pitchAngle = getPitchAngleEstimateFromAcc();
158
  rollAngle = getRollAngleEstimateFromAcc();
159
#else
160
  pitchAngle = 0;
161
  rollAngle = 0;
162
#endif
163
}
164
 
165
/************************************************************************
166
 * Neutral Readings                                                    
167
 ************************************************************************/
168
void attitude_setNeutral(void) {
169
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
170
  dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
171
 
172
  dynamicOffsetPitch = dynamicOffsetRoll = 0;
173
 
174
  // Calibrate hardware.
175
  analog_calibrate();
176
 
177
  // reset gyro readings
178
  pitchRate = rollRate = yawRate = 0;
179
 
180
  // reset gyro integrals to acc guessing
181
  setStaticAttitudeAngles();
182
  yawAngle = 0;
183
 
184
  // update compass course to current heading
185
  compassCourse = compassHeading;
186
  // Inititialize YawGyroIntegral value with current compass heading
187
  yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
188
 
189
  // Servo_On(); //enable servo output
190
}
191
 
192
/************************************************************************
193
 * Get sensor data from the analog module, and release the ADC          
194
 * TODO: Ultimately, the analog module could do this (instead of dumping
195
 * the values into variables).                                          
196
 *************************************************************************/
197
void getAnalogData(void) {
198
  // For the differential calculation. Diff. is not supported right now.
199
  // int16_t d2Pitch, d2Roll;
200
  pitchRate_PID = (hiResPitchGyro + dynamicOffsetPitch) / HIRES_GYRO_INTEGRATION_FACTOR;
201
  pitchRate = (filteredHiResPitchGyro + dynamicOffsetPitch) / HIRES_GYRO_INTEGRATION_FACTOR;
202
  pitchDifferential = pitchGyroD;
203
 
204
  rollRate_PID = (hiResRollGyro + dynamicOffsetRoll) / HIRES_GYRO_INTEGRATION_FACTOR;
205
  rollRate = (filteredHiResRollGyro + dynamicOffsetRoll) / HIRES_GYRO_INTEGRATION_FACTOR;
206
  rollDifferential = rollGyroD;
207
 
208
  yawRate = yawGyro + dynamicOffsetYaw;
209
 
210
  // We are done reading variables from the analog module. Interrupt-driven sensor reading may restart.
211
  analogDataReady = 0;
212
  analog_start();
213
}
214
 
215
/************************************************************************
216
 * Axis coupling, H&I Style                                            
217
 * Currently not working (and there is a bug in it,
218
 * which causes unstable flight in heading-hold mode).
219
 ************************************************************************/
220
void H_and_I_axisCoupling(void) {
221
  int32_t tmpl = 0, tmpl2 = 0, tmp13 = 0, tmp14 = 0;
222
  int16_t CouplingNickRoll = 0, CouplingRollNick = 0;
223
 
224
  tmp13 = (rollRate * pitchAngle) / 2048L;
225
  tmp13 *= dynamicParams.AxisCoupling2; // 65
226
  tmp13 /= 4096L;
227
  CouplingNickRoll = tmp13;
228
 
229
  tmp14 = (pitchRate * rollAngle) / 2048L;
230
  tmp14 *= dynamicParams.AxisCoupling2; // 65
231
  tmp14 /= 4096L;
232
  CouplingRollNick = tmp14;
233
 
234
  tmp14 -= tmp13;
235
 
236
  ACYawRate = yawRate + tmp14;
237
 
238
  /*
239
  if(!dynamicParams.AxisCouplingYawCorrection) ACYawRate = yawRate - tmp14 / 2; // force yaw
240
  else ACYawRate
241
  */
242
 
243
  tmpl = ((yawRate + tmp14) * pitchAngle) / 2048L;
244
  tmpl *= dynamicParams.AxisCoupling1;
245
  tmpl /= 4096L;
246
 
247
  tmpl2 = ((yawRate + tmp14) * rollAngle) / 2048L;
248
  tmpl2 *= dynamicParams.AxisCoupling1;
249
  tmpl2 /= 4096L;
250
 
251
  // if(abs(yawRate > 64)) {
252
  // if(labs(tmpl) > 128 || labs(tmpl2) > 128) FunnelCourse = 1;
253
  // }
254
 
255
  ACPitchRate = pitchRate - tmpl2 + tmpl / 100L;
256
  ACRollRate = rollRate + tmpl - tmpl2 / 100L;
257
}
258
 
259
/*
260
 * This is the standard flight-style coordinate system transformation
261
 * (from airframe-local axes to a ground-based system). For some reason
262
 * the MK uses a left-hand coordinate system. The tranformation has been
263
 * changed accordingly.
264
 */
265
void trigAxisCoupling(void) {
266
  int16_t cospitch = int_cos(pitchAngle);
267
  int16_t cosroll =  int_cos(rollAngle);
268
  int16_t sinroll =  int_sin(rollAngle);
269
  int16_t tanpitch = int_tan(pitchAngle);
270
#define ANTIOVF 1024
1617 dongfang 271
  ACPitchRate =            ((int32_t)pitchRate * cosroll - (int32_t)yawRate * sinroll) / (int32_t)MATH_UNIT_FACTOR;
272
  ACRollRate = rollRate + (((int32_t)pitchRate * sinroll / ANTIOVF * tanpitch + (int32_t)yawRate * int_cos(rollAngle) / ANTIOVF * tanpitch) / ((int32_t)MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR));
273
  ACYawRate =             ((int32_t)pitchRate * sinroll) / cospitch + ((int32_t)yawRate * cosroll) / cospitch;
1612 dongfang 274
}
275
 
276
void integrate(void) {
277
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
278
  if(!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
279
    // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
280
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER)
281
      trigAxisCoupling();    
282
    else
283
      H_and_I_axisCoupling();
284
  } else {
285
    ACPitchRate = pitchRate;
286
    ACRollRate = rollRate;
287
    ACYawRate = yawRate;
288
  }
289
 
290
  DebugOut.Analog[3] = pitchRate;
291
  DebugOut.Analog[3 + 3] = ACPitchRate;
292
  DebugOut.Analog[4] = rollRate;
293
  DebugOut.Analog[4 + 3] = ACRollRate;
294
  DebugOut.Analog[5] = yawRate;
295
  DebugOut.Analog[5 + 3] = ACYawRate;
296
 
297
  /*
298
  DebugOut.Analog[9] = int_cos(pitchAngle);
299
  DebugOut.Analog[10] = int_sin(pitchAngle);
300
  DebugOut.Analog[11] = int_tan(pitchAngle);
301
  */
302
 
303
  /*
304
   * Yaw
305
   * Calculate yaw gyro integral (~ to rotation angle)
306
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
307
   */
1617 dongfang 308
 
1612 dongfang 309
  yawGyroHeading += ACYawRate;
1617 dongfang 310
 
311
  // Why is yawAngle not wrapped 'round?
1612 dongfang 312
  yawAngle += ACYawRate;
1617 dongfang 313
 
314
  if(yawGyroHeading >= YAWOVER360) {
315
    yawGyroHeading -= YAWOVER360;  // 360 deg. wrap
316
  } else if(yawGyroHeading < 0) {
317
    yawGyroHeading += YAWOVER360;
318
  }
1612 dongfang 319
 
320
  /*
321
   * Pitch axis integration and range boundary wrap.
322
   */
323
  pitchAngle += ACPitchRate;
1616 dongfang 324
  if(pitchAngle > PITCHROLLOVER180) {
325
    pitchAngle -= PITCHROLLOVER360;
326
  } else if (pitchAngle <= -PITCHROLLOVER180) {
327
    pitchAngle += PITCHROLLOVER360;
1612 dongfang 328
  }
329
 
330
  /*
331
   * Pitch axis integration and range boundary wrap.
332
   */
333
  rollAngle  += ACRollRate;
1616 dongfang 334
  if(rollAngle > PITCHROLLOVER180) {
335
    rollAngle -= PITCHROLLOVER360;
336
  } else if (rollAngle <= -PITCHROLLOVER180) {
337
    rollAngle += PITCHROLLOVER360;
1612 dongfang 338
  }
339
}
340
 
341
/************************************************************************
342
 * A kind of 0'th order integral correction, that corrects the integrals
343
 * directly. This is the "gyroAccFactor" stuff in the original code.
344
 * There is (there) also what I would call a  "minus 1st order correction"
345
 * - it corrects the differential of the integral = the gyro offsets.
346
 * That should only be necessary with drifty gyros like ENC-03.
347
 ************************************************************************/
348
void correctIntegralsByAcc0thOrder(void) {
349
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
350
  // are less than ....., or reintroduce Kalman.
351
  // Well actually the Z axis acc. check is not so silly.
352
  if(!looping && //((ZAxisAcc >= -4) || (MKFlags & MKFLAG_MOTOR_RUN))) { // if not looping in any direction
353
     ZAxisAcc >= -dynamicParams.UserParams[7] && ZAxisAcc <= dynamicParams.UserParams[7]) {
354
    DebugOut.Digital[0] = 1;
355
 
356
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
357
    uint8_t debugFullWeight = 1;
358
 
359
    int32_t accDerivedPitch = getPitchAngleEstimateFromAcc();
360
    int32_t accDerivedRoll = getRollAngleEstimateFromAcc();
361
 
362
    if((maxControlPitch > 64) || (maxControlRoll > 64)) { // reduce effect during stick commands
363
      permilleAcc /= 2;
364
      debugFullWeight = 0;
365
    }
366
 
367
    if(abs(controlYaw) > 25) { // reduce further if yaw stick is active
368
      permilleAcc /= 2;
369
      debugFullWeight = 0;
370
    }
371
 
372
    /*
373
     * Add to each sum: The amount by which the angle is changed just below.
374
     */
375
    pitchCorrectionSum += permilleAcc * (accDerivedPitch - pitchAngle);
376
    rollCorrectionSum += permilleAcc * (accDerivedRoll - rollAngle);
377
 
378
    // There should not be a risk of overflow here, since the integrals do not exceed a few 100000.
379
    pitchAngle = ((int32_t)(1000 - permilleAcc) * pitchAngle + (int32_t)permilleAcc * accDerivedPitch) / 1000L;
380
    rollAngle = ((int32_t)(1000 - permilleAcc) * rollAngle + (int32_t)permilleAcc * accDerivedRoll) / 1000L;
381
 
382
    DebugOut.Digital[1] = debugFullWeight;
383
  } else {
384
    DebugOut.Digital[0] = 0;
385
  }
386
}
387
 
388
/************************************************************************
389
 * This is an attempt to correct not the error in the angle integrals
390
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
391
 * cause of it: Gyro drift, vibration and rounding errors.
392
 * All the corrections made in correctIntegralsByAcc0thOrder over
393
 * MINUSFIRSTORDERCORRECTION_TIME cycles are summed up. This number is
394
 * then divided by MINUSFIRSTORDERCORRECTION_TIME to get the approx.
395
 * correction that should have been applied to each iteration to fix
396
 * the error. This is then added to the dynamic offsets.
397
 ************************************************************************/
398
// 2 times / sec.
399
#define DRIFTCORRECTION_TIME 488/2
400
void driftCompensation(void) {
401
  static int16_t timer = DRIFTCORRECTION_TIME;
402
  int16_t deltaCompensation;
403
  if (! --timer) {
404
    timer = DRIFTCORRECTION_TIME;
405
    deltaCompensation = ((pitchCorrectionSum + 1000L * DRIFTCORRECTION_TIME / 2) / 1000 / DRIFTCORRECTION_TIME);
406
    CHECK_MIN_MAX(deltaCompensation, -staticParams.DriftComp, staticParams.DriftComp);
407
    dynamicOffsetPitch += deltaCompensation / staticParams.GyroAccTrim;
408
 
409
    deltaCompensation = ((rollCorrectionSum + 1000L * DRIFTCORRECTION_TIME / 2) / 1000 / DRIFTCORRECTION_TIME);
410
    CHECK_MIN_MAX(deltaCompensation, -staticParams.DriftComp, staticParams.DriftComp);
411
    dynamicOffsetRoll += deltaCompensation / staticParams.GyroAccTrim;
412
 
413
    pitchCorrectionSum = rollCorrectionSum = 0;
414
 
415
    DebugOut.Analog[28] = dynamicOffsetPitch;
416
    DebugOut.Analog[29] = dynamicOffsetRoll;
417
  }
418
}
419
 
420
/************************************************************************
421
 * Main procedure.
422
 ************************************************************************/
423
void calculateFlightAttitude(void) {  
424
  getAnalogData();
425
  integrate();
426
#ifdef ATTITUDE_USE_ACC_SENSORS
427
  correctIntegralsByAcc0thOrder();
428
  driftCompensation();
429
#endif
430
}
431
 
432
/*
433
void updateCompass(void) {
434
  int16_t w, v, r,correction, error;
435
 
436
  if(compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
437
    setCompassCalState();
438
  } else {
439
    // get maximum attitude angle
440
    w = abs(pitchAngle / 512);
441
    v = abs(rollAngle / 512);
442
    if(v > w) w = v;
443
    correction = w / 8 + 1;
444
    // calculate the deviation of the yaw gyro heading and the compass heading
445
    if (compassHeading < 0) error = 0; // disable yaw drift compensation if compass heading is undefined
446
    else error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
447
    if(abs(yawRate) > 128) { // spinning fast
448
      error = 0;
449
    }
450
    if(!badCompassHeading && w < 25) {
451
      if(updateCompassCourse) {
452
        beep(200);
453
        yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
454
        compassCourse = (int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
455
        updateCompassCourse = 0;
456
      }
457
    }
458
    yawGyroHeading += (error * 8) / correction;
459
    w = (w * dynamicParams.CompassYawEffect) / 32;
460
    w = dynamicParams.CompassYawEffect - w;
461
    if(w >= 0) {
462
      if(!badCompassHeading) {
463
        v = 64 + (maxControlPitch + maxControlRoll) / 8;
464
        // calc course deviation
465
        r = ((540 + (yawGyroHeading / GYRO_DEG_FACTOR_YAW) - compassCourse) % 360) - 180;
466
        v = (r * w) / v; // align to compass course
467
        // limit yaw rate
468
        w = 3 * dynamicParams.CompassYawEffect;
469
        if (v > w) v = w;
470
        else if (v < -w) v = -w;
471
        yawAngle += v;
472
      }
473
      else
474
        { // wait a while
475
          badCompassHeading--;
476
        }
477
    }
478
    else {  // ignore compass at extreme attitudes for a while
479
      badCompassHeading = 500;
480
    }
481
  }
482
}
483
*/
484
 
485
/*
486
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
487
 * and to compensate them away. It brings about some improvement, but no miracles.
488
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
489
 * will measure the effect of vibration, to use for later compensation. So, one should keep
490
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
491
 * speed unfortunately... must find a better way)
492
 */
493
/*
494
void attitude_startDynamicCalibration(void) {
495
  dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
496
  savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
497
}
498
 
499
void attitude_continueDynamicCalibration(void) {
500
  // measure dynamic offset now...
501
  dynamicCalPitch += hiResPitchGyro;
502
  dynamicCalRoll += hiResRollGyro;
503
  dynamicCalYaw += rawYawGyroSum;
504
  dynamicCalCount++;
505
 
506
  // Param6: Manual mode. The offsets are taken from Param7 and Param8.
507
  if (dynamicParams.UserParam6 || 1) { // currently always enabled.
508
    // manual mode
509
    dynamicOffsetPitch = dynamicParams.UserParam7 - 128;
510
    dynamicOffsetRoll = dynamicParams.UserParam8 - 128;
511
  } else {
512
    // use the sampled value (does not seem to work so well....)
513
    dynamicOffsetPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
514
    dynamicOffsetRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
515
    dynamicOffsetYaw = -dynamicCalYaw / dynamicCalCount;
516
  }
517
 
518
  // keep resetting these meanwhile, to avoid accumulating errors.
519
  setStaticAttitudeIntegrals();
520
  yawAngle = 0;
521
}
522
*/