Rev 2086 | Rev 2095 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1612 | dongfang | 1 | #ifndef _ANALOG_H |
2 | #define _ANALOG_H |
||
3 | #include <inttypes.h> |
||
1965 | - | 4 | #include "configuration.h" |
1612 | dongfang | 5 | |
6 | /* |
||
1821 | - | 7 | About setting constants for different gyros: |
8 | Main parameters are positive directions and voltage/angular speed gain. |
||
9 | The "Positive direction" is the rotation direction around an axis where |
||
10 | the corresponding gyro outputs a voltage > the no-rotation voltage. |
||
11 | A gyro is considered, in this code, to be "forward" if its positive |
||
12 | direction is: |
||
13 | - Nose down for pitch |
||
14 | - Left hand side down for roll |
||
15 | - Clockwise seen from above for yaw. |
||
2018 | - | 16 | |
1821 | - | 17 | Setting gyro gain correctly: All sensor measurements in analog.c take |
18 | place in a cycle, each cycle comprising all sensors. Some sensors are |
||
2049 | - | 19 | sampled more than once (oversampled), and the results added. |
1821 | - | 20 | In the H&I code, the results for pitch and roll are multiplied by 2 (FC1.0) |
21 | or 4 (other versions), offset to zero, low pass filtered and then assigned |
||
22 | to the "HiResXXXX" and "AdWertXXXXFilter" variables, where XXXX is nick or |
||
2049 | - | 23 | roll. The factor 2 or 4 or whatever is called GYRO_FACTOR_PITCHROLL here. |
24 | */ |
||
25 | #define GYRO_FACTOR_PITCHROLL 1 |
||
1821 | - | 26 | |
2049 | - | 27 | /* |
28 | GYRO_HW_FACTOR is the relation between rotation rate and ADCValue: |
||
1821 | - | 29 | ADCValue [units] = |
30 | rotational speed [deg/s] * |
||
31 | gyro sensitivity [V / deg/s] * |
||
32 | amplifier gain [units] * |
||
33 | 1024 [units] / |
||
34 | 3V full range [V] |
||
1612 | dongfang | 35 | |
2049 | - | 36 | GYRO_HW_FACTOR is: |
1821 | - | 37 | gyro sensitivity [V / deg/s] * |
38 | amplifier gain [units] * |
||
39 | 1024 [units] / |
||
40 | 3V full range [V] |
||
1612 | dongfang | 41 | |
1821 | - | 42 | Examples: |
43 | FC1.3 has 0.67 mV/deg/s gyros and amplifiers with a gain of 5.7: |
||
2049 | - | 44 | GYRO_HW_FACTOR = 0.00067 V / deg / s * 5.7 * 1024 / 3V = 1.304 units/(deg/s). |
45 | |||
1821 | - | 46 | FC2.0 has 6*(3/5) mV/deg/s gyros (they are ratiometric) and no amplifiers: |
2049 | - | 47 | GYRO_HW_FACTOR = 0.006 V / deg / s * 1 * 1024 * 3V / (3V * 5V) = 1.2288 units/(deg/s). |
48 | |||
1821 | - | 49 | My InvenSense copter has 2mV/deg/s gyros and no amplifiers: |
2049 | - | 50 | GYRO_HW_FACTOR = 0.002 V / deg / s * 1 * 1024 / 3V = 0.6827 units/(deg/s) |
1821 | - | 51 | (only about half as sensitive as V1.3. But it will take about twice the |
52 | rotation rate!) |
||
1612 | dongfang | 53 | |
2049 | - | 54 | GYRO_HW_FACTOR is given in the makefile. |
55 | */ |
||
1612 | dongfang | 56 | |
57 | /* |
||
2049 | - | 58 | * How many samples are added in one ADC loop, for pitch&roll and yaw, |
1612 | dongfang | 59 | * respectively. This is = the number of occurences of each channel in the |
60 | * channelsForStates array in analog.c. |
||
61 | */ |
||
2019 | - | 62 | #define GYRO_OVERSAMPLING_PITCHROLL 4 |
63 | #define GYRO_OVERSAMPLING_YAW 2 |
||
1612 | dongfang | 64 | |
2019 | - | 65 | #define ACC_OVERSAMPLING_XY 2 |
66 | #define ACC_OVERSAMPLING_Z 1 |
||
1646 | - | 67 | |
1612 | dongfang | 68 | /* |
2049 | - | 69 | * The product of the 3 above constants. This represents the expected change in ADC value sums for 1 deg/s of rotation rate. |
1821 | - | 70 | */ |
2049 | - | 71 | #define GYRO_RATE_FACTOR_PITCHROLL (GYRO_HW_FACTOR * GYRO_OVERSAMPLING_PITCHROLL * GYRO_FACTOR_PITCHROLL) |
72 | #define GYRO_RATE_FACTOR_YAW (GYRO_HW_FACTOR * GYRO_OVERSAMPLING_YAW) |
||
1821 | - | 73 | |
1612 | dongfang | 74 | /* |
1645 | - | 75 | * The value of gyro[PITCH/ROLL] for one deg/s = The hardware factor H * the number of samples * multiplier factor. |
1612 | dongfang | 76 | * Will be about 10 or so for InvenSense, and about 33 for ADXRS610. |
77 | */ |
||
78 | |||
79 | /* |
||
1645 | - | 80 | * Gyro saturation prevention. |
81 | */ |
||
82 | // How far from the end of its range a gyro is considered near-saturated. |
||
83 | #define SENSOR_MIN_PITCHROLL 32 |
||
84 | // Other end of the range (calculated) |
||
2019 | - | 85 | #define SENSOR_MAX_PITCHROLL (GYRO_OVERSAMPLING_PITCHROLL * 1023 - SENSOR_MIN_PITCHROLL) |
1645 | - | 86 | // Max. boost to add "virtually" to gyro signal at total saturation. |
87 | #define EXTRAPOLATION_LIMIT 2500 |
||
88 | // Slope of the boost (calculated) |
||
89 | #define EXTRAPOLATION_SLOPE (EXTRAPOLATION_LIMIT/SENSOR_MIN_PITCHROLL) |
||
90 | |||
91 | /* |
||
1612 | dongfang | 92 | * This value is subtracted from the gyro noise measurement in each iteration, |
93 | * making it return towards zero. |
||
94 | */ |
||
95 | #define GYRO_NOISE_MEASUREMENT_DAMPING 5 |
||
96 | |||
1645 | - | 97 | #define PITCH 0 |
98 | #define ROLL 1 |
||
1646 | - | 99 | #define YAW 2 |
100 | #define Z 2 |
||
1612 | dongfang | 101 | /* |
102 | * The values that this module outputs |
||
1645 | - | 103 | * These first 2 exported arrays are zero-offset. The "PID" ones are used |
104 | * in the attitude control as rotation rates. The "ATT" ones are for |
||
105 | * integration to angles. For the same axis, the PID and ATT variables |
||
106 | * generally have about the same values. There are just some differences |
||
107 | * in filtering, and when a gyro becomes near saturated. |
||
108 | * Maybe this distinction is not really necessary. |
||
1612 | dongfang | 109 | */ |
2015 | - | 110 | extern int16_t gyro_PID[2]; |
111 | extern int16_t gyro_ATT[2]; |
||
2086 | - | 112 | #define GYRO_D_WINDOW_LENGTH 3 |
2015 | - | 113 | extern int16_t gyroD[2]; |
114 | extern int16_t yawGyro; |
||
1612 | dongfang | 115 | extern volatile uint16_t ADCycleCount; |
2015 | - | 116 | extern int16_t UBat; |
1612 | dongfang | 117 | |
1775 | - | 118 | // 1:11 voltage divider, 1024 counts per 3V, and result is divided by 3. |
1869 | - | 119 | #define UBAT_AT_5V (int16_t)((5.0 * (1.0/11.0)) * 1024 / (3.0 * 3)) |
1775 | - | 120 | |
1969 | - | 121 | extern sensorOffset_t gyroOffset; |
122 | extern sensorOffset_t accOffset; |
||
123 | extern sensorOffset_t gyroAmplifierOffset; |
||
1960 | - | 124 | |
1612 | dongfang | 125 | /* |
126 | * This is not really for external use - but the ENC-03 gyro modules needs it. |
||
127 | */ |
||
2015 | - | 128 | //extern volatile int16_t rawGyroSum[3]; |
1612 | dongfang | 129 | |
130 | /* |
||
1645 | - | 131 | * The acceleration values that this module outputs. They are zero based. |
1612 | dongfang | 132 | */ |
2015 | - | 133 | extern int16_t acc[3]; |
134 | extern int16_t filteredAcc[3]; |
||
1872 | - | 135 | // extern volatile int32_t stronglyFilteredAcc[3]; |
1612 | dongfang | 136 | |
137 | /* |
||
1775 | - | 138 | * Diagnostics: Gyro noise level because of motor vibrations. The variables |
139 | * only really reflect the noise level when the copter stands still but with |
||
140 | * its motors running. |
||
141 | */ |
||
2015 | - | 142 | extern uint16_t gyroNoisePeak[3]; |
143 | extern uint16_t accNoisePeak[3]; |
||
1775 | - | 144 | |
145 | /* |
||
146 | * Air pressure. |
||
1961 | - | 147 | * The sensor has a sensitivity of 45 mV/kPa. |
1970 | - | 148 | * An approximate p(h) formula is = p(h[m])[kPa] = p_0 - 11.95 * 10^-3 * h |
149 | * p(h[m])[kPa] = 101.3 - 11.95 * 10^-3 * h |
||
150 | * 11.95 * 10^-3 * h = 101.3 - p[kPa] |
||
151 | * h = (101.3 - p[kPa])/0.01195 |
||
152 | * That is: dV = -45 mV * 11.95 * 10^-3 dh = -0.53775 mV / m. |
||
153 | * That is, with 38.02 * 1.024 / 3 steps per mV: -7 steps / m |
||
154 | |||
155 | Display pressures |
||
156 | 4165 mV-->1084.7 |
||
157 | 4090 mV-->1602.4 517.7 |
||
158 | 3877 mV-->3107.8 1503.4 |
||
159 | |||
160 | 4165 mV-->1419.1 |
||
161 | 3503 mV-->208.1 |
||
162 | Diff.: 1211.0 |
||
163 | |||
164 | Calculated Vout = 5V(.009P-0.095) --> 5V .009P = Vout + 5V 0.095 --> P = (Vout + 5V 0.095)/(5V 0.009) |
||
165 | 4165 mV = 5V(0.009P-0.095) P = 103.11 kPa h = -151.4m |
||
166 | 4090 mV = 5V(0.009P-0.095) P = 101.44 kPa h = -11.7m 139.7m |
||
167 | 3877 mV = 5V(0.009P-0.095) P = 96.7 kPa h = 385m 396.7m |
||
168 | |||
169 | 4165 mV = 5V(0.009P-0.095) P = 103.11 kPa h = -151.4m |
||
170 | 3503 mV = 5V(0.009P-0.095) P = 88.4 kPa h = 384m Diff: 1079.5m |
||
171 | Pressure at sea level: 101.3 kPa. voltage: 5V * (0.009P-0.095) = 4.0835V |
||
172 | This is OCR2 = 143.15 at 1.5V in --> simple pressure = |
||
173 | */ |
||
174 | |||
2019 | - | 175 | #define AIRPRESSURE_OVERSAMPLING 14 |
1775 | - | 176 | #define AIRPRESSURE_FILTER 8 |
177 | // Minimum A/D value before a range change is performed. |
||
178 | #define MIN_RAWPRESSURE (200 * 2) |
||
179 | // Maximum A/D value before a range change is performed. |
||
180 | #define MAX_RAWPRESSURE (1023 * 2 - MIN_RAWPRESSURE) |
||
181 | |||
1796 | - | 182 | #define MIN_RANGES_EXTRAPOLATION 15 |
183 | #define MAX_RANGES_EXTRAPOLATION 240 |
||
1775 | - | 184 | |
185 | #define PRESSURE_EXTRAPOLATION_COEFF 25L |
||
186 | #define AUTORANGE_WAIT_FACTOR 1 |
||
187 | |||
1970 | - | 188 | #define ABS_ALTITUDE_OFFSET 108205 |
189 | |||
2015 | - | 190 | extern uint16_t simpleAirPressure; |
1775 | - | 191 | /* |
192 | * At saturation, the filteredAirPressure may actually be (simulated) negative. |
||
193 | */ |
||
2015 | - | 194 | extern int32_t filteredAirPressure; |
1775 | - | 195 | |
2051 | - | 196 | extern int16_t magneticHeading; |
197 | |||
2089 | - | 198 | extern uint32_t gyroActivity; |
2055 | - | 199 | |
1775 | - | 200 | /* |
1612 | dongfang | 201 | * Flag: Interrupt handler has done all A/D conversion and processing. |
202 | */ |
||
203 | extern volatile uint8_t analogDataReady; |
||
204 | |||
2051 | - | 205 | |
1612 | dongfang | 206 | void analog_init(void); |
207 | |||
1952 | - | 208 | /* |
2015 | - | 209 | * This is really only for use for the ENC-03 code module, which needs to get the raw value |
210 | * for its calibration. The raw value should not be used for anything else. |
||
211 | */ |
||
212 | uint16_t rawGyroValue(uint8_t axis); |
||
213 | |||
214 | /* |
||
1952 | - | 215 | * Start the conversion cycle. It will stop automatically. |
216 | */ |
||
217 | void startAnalogConversionCycle(void); |
||
1612 | dongfang | 218 | |
1952 | - | 219 | /* |
220 | * Process the sensor data to update the exported variables. Must be called after each measurement cycle and before the data is used. |
||
221 | */ |
||
1955 | - | 222 | void analog_update(void); |
1612 | dongfang | 223 | |
224 | /* |
||
1961 | - | 225 | * Read gyro and acc.meter calibration from EEPROM. |
1612 | dongfang | 226 | */ |
1961 | - | 227 | void analog_setNeutral(void); |
1612 | dongfang | 228 | |
229 | /* |
||
1961 | - | 230 | * Zero-offset gyros and write the calibration data to EEPROM. |
1612 | dongfang | 231 | */ |
1961 | - | 232 | void analog_calibrateGyros(void); |
233 | |||
234 | /* |
||
235 | * Zero-offset accelerometers and write the calibration data to EEPROM. |
||
236 | */ |
||
1612 | dongfang | 237 | void analog_calibrateAcc(void); |
2033 | - | 238 | |
239 | |||
2035 | - | 240 | void analog_setGround(void); |
2033 | - | 241 | |
242 | int32_t analog_getHeight(void); |
||
243 | int16_t analog_getDHeight(void); |
||
244 | |||
1612 | dongfang | 245 | #endif //_ANALOG_H |