Rev 1868 | Rev 1870 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1612 | dongfang | 1 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
2 | // + Copyright (c) 04.2007 Holger Buss |
||
3 | // + Nur für den privaten Gebrauch |
||
4 | // + www.MikroKopter.com |
||
5 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
6 | // + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation), |
||
7 | // + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist. |
||
8 | // + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt |
||
9 | // + bzgl. der Nutzungsbedingungen aufzunehmen. |
||
10 | // + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen, |
||
11 | // + Verkauf von Luftbildaufnahmen, usw. |
||
12 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
13 | // + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht, |
||
14 | // + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen |
||
15 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
16 | // + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts |
||
17 | // + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de" |
||
18 | // + eindeutig als Ursprung verlinkt werden |
||
19 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
20 | // + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion |
||
21 | // + Benutzung auf eigene Gefahr |
||
22 | // + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden |
||
23 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
24 | // + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur |
||
25 | // + mit unserer Zustimmung zulässig |
||
26 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
27 | // + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen |
||
28 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
29 | // + Redistributions of source code (with or without modifications) must retain the above copyright notice, |
||
30 | // + this list of conditions and the following disclaimer. |
||
31 | // + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived |
||
32 | // + from this software without specific prior written permission. |
||
33 | // + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet |
||
34 | // + for non-commercial use (directly or indirectly) |
||
1868 | - | 35 | // + Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted |
1612 | dongfang | 36 | // + with our written permission |
37 | // + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be |
||
38 | // + clearly linked as origin |
||
39 | // + * porting to systems other than hardware from www.mikrokopter.de is not allowed |
||
40 | // + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
||
41 | // + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
42 | // + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||
43 | // + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
||
44 | // + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
||
45 | // + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
||
46 | // + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
||
47 | // + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
||
48 | // + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
49 | // + POSSIBILITY OF SUCH DAMAGE. |
||
50 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
51 | #include <avr/io.h> |
||
52 | #include <avr/interrupt.h> |
||
53 | #include <avr/pgmspace.h> |
||
1864 | - | 54 | |
1612 | dongfang | 55 | #include "analog.h" |
1864 | - | 56 | #include "attitude.h" |
1612 | dongfang | 57 | #include "sensors.h" |
58 | |||
59 | // for Delay functions |
||
60 | #include "timer0.h" |
||
61 | |||
62 | // For DebugOut |
||
63 | #include "uart0.h" |
||
64 | |||
65 | // For reading and writing acc. meter offsets. |
||
66 | #include "eeprom.h" |
||
67 | |||
1796 | - | 68 | // For DebugOut.Digital |
69 | #include "output.h" |
||
70 | |||
1854 | - | 71 | /* |
72 | * For each A/D conversion cycle, each analog channel is sampled a number of times |
||
73 | * (see array channelsForStates), and the results for each channel are summed. |
||
1645 | - | 74 | * Here are those for the gyros and the acc. meters. They are not zero-offset. |
1612 | dongfang | 75 | * They are exported in the analog.h file - but please do not use them! The only |
76 | * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating |
||
77 | * the offsets with the DAC. |
||
78 | */ |
||
1646 | - | 79 | volatile int16_t rawGyroSum[3]; |
80 | volatile int16_t acc[3]; |
||
1869 | - | 81 | volatile int16_t filteredAcc[2] = { 0,0 }; |
82 | volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 }; |
||
1612 | dongfang | 83 | |
84 | /* |
||
1645 | - | 85 | * These 4 exported variables are zero-offset. The "PID" ones are used |
86 | * in the attitude control as rotation rates. The "ATT" ones are for |
||
1854 | - | 87 | * integration to angles. |
1612 | dongfang | 88 | */ |
1645 | - | 89 | volatile int16_t gyro_PID[2]; |
90 | volatile int16_t gyro_ATT[2]; |
||
91 | volatile int16_t gyroD[2]; |
||
1646 | - | 92 | volatile int16_t yawGyro; |
1612 | dongfang | 93 | |
94 | /* |
||
95 | * Offset values. These are the raw gyro and acc. meter sums when the copter is |
||
96 | * standing still. They are used for adjusting the gyro and acc. meter values |
||
1645 | - | 97 | * to be centered on zero. |
1612 | dongfang | 98 | */ |
1821 | - | 99 | volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 |
100 | * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW }; |
||
1612 | dongfang | 101 | |
1821 | - | 102 | volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512 |
103 | * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z }; |
||
1646 | - | 104 | |
1612 | dongfang | 105 | /* |
106 | * This allows some experimentation with the gyro filters. |
||
107 | * Should be replaced by #define's later on... |
||
108 | */ |
||
1646 | - | 109 | volatile uint8_t GYROS_PID_FILTER; |
110 | volatile uint8_t GYROS_ATT_FILTER; |
||
111 | volatile uint8_t GYROS_D_FILTER; |
||
1612 | dongfang | 112 | volatile uint8_t ACC_FILTER; |
113 | |||
1645 | - | 114 | /* |
1775 | - | 115 | * Air pressure |
1645 | - | 116 | */ |
1775 | - | 117 | volatile uint8_t rangewidth = 106; |
1612 | dongfang | 118 | |
1775 | - | 119 | // Direct from sensor, irrespective of range. |
120 | // volatile uint16_t rawAirPressure; |
||
121 | |||
122 | // Value of 2 samples, with range. |
||
123 | volatile uint16_t simpleAirPressure; |
||
124 | |||
125 | // Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered. |
||
126 | volatile int32_t filteredAirPressure; |
||
127 | |||
128 | // Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples. |
||
129 | volatile int32_t airPressureSum; |
||
130 | |||
131 | // The number of samples summed into airPressureSum so far. |
||
132 | volatile uint8_t pressureMeasurementCount; |
||
133 | |||
1612 | dongfang | 134 | /* |
1854 | - | 135 | * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt. |
1612 | dongfang | 136 | * That is divided by 3 below, for a final 10.34 per volt. |
137 | * So the initial value of 100 is for 9.7 volts. |
||
138 | */ |
||
139 | volatile int16_t UBat = 100; |
||
140 | |||
141 | /* |
||
142 | * Control and status. |
||
143 | */ |
||
144 | volatile uint16_t ADCycleCount = 0; |
||
145 | volatile uint8_t analogDataReady = 1; |
||
146 | |||
147 | /* |
||
148 | * Experiment: Measuring vibration-induced sensor noise. |
||
149 | */ |
||
1645 | - | 150 | volatile uint16_t gyroNoisePeak[2]; |
151 | volatile uint16_t accNoisePeak[2]; |
||
1612 | dongfang | 152 | |
153 | // ADC channels |
||
1645 | - | 154 | #define AD_GYRO_YAW 0 |
155 | #define AD_GYRO_ROLL 1 |
||
1634 | - | 156 | #define AD_GYRO_PITCH 2 |
157 | #define AD_AIRPRESSURE 3 |
||
1645 | - | 158 | #define AD_UBAT 4 |
159 | #define AD_ACC_Z 5 |
||
160 | #define AD_ACC_ROLL 6 |
||
161 | #define AD_ACC_PITCH 7 |
||
1612 | dongfang | 162 | |
163 | /* |
||
164 | * Table of AD converter inputs for each state. |
||
1854 | - | 165 | * The number of samples summed for each channel is equal to |
1612 | dongfang | 166 | * the number of times the channel appears in the array. |
167 | * The max. number of samples that can be taken in 2 ms is: |
||
1854 | - | 168 | * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control |
169 | * loop needs a little time between reading AD values and |
||
1612 | dongfang | 170 | * re-enabling ADC, the real limit is (how much?) lower. |
171 | * The acc. sensor is sampled even if not used - or installed |
||
172 | * at all. The cost is not significant. |
||
173 | */ |
||
174 | |||
1821 | - | 175 | const uint8_t channelsForStates[] PROGMEM = { AD_GYRO_PITCH, AD_GYRO_ROLL, |
176 | AD_GYRO_YAW, |
||
1612 | dongfang | 177 | |
1821 | - | 178 | AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE, |
1612 | dongfang | 179 | |
1821 | - | 180 | AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc. |
1612 | dongfang | 181 | |
1821 | - | 182 | AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro |
1612 | dongfang | 183 | |
1821 | - | 184 | AD_ACC_PITCH, // at 12, finish pitch axis acc. |
185 | AD_ACC_ROLL, // at 13, finish roll axis acc. |
||
186 | AD_AIRPRESSURE, // at 14, finish air pressure. |
||
1612 | dongfang | 187 | |
1821 | - | 188 | AD_GYRO_PITCH, // at 15, finish pitch gyro |
189 | AD_GYRO_ROLL, // at 16, finish roll gyro |
||
190 | AD_UBAT // at 17, measure battery. |
||
191 | }; |
||
192 | |||
1612 | dongfang | 193 | // Feature removed. Could be reintroduced later - but should work for all gyro types then. |
194 | // uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0; |
||
195 | |||
196 | void analog_init(void) { |
||
1821 | - | 197 | uint8_t sreg = SREG; |
198 | // disable all interrupts before reconfiguration |
||
199 | cli(); |
||
1612 | dongfang | 200 | |
1821 | - | 201 | //ADC0 ... ADC7 is connected to PortA pin 0 ... 7 |
202 | DDRA = 0x00; |
||
203 | PORTA = 0x00; |
||
204 | // Digital Input Disable Register 0 |
||
205 | // Disable digital input buffer for analog adc_channel pins |
||
206 | DIDR0 = 0xFF; |
||
207 | // external reference, adjust data to the right |
||
208 | ADMUX &= ~((1 << REFS1) | (1 << REFS0) | (1 << ADLAR)); |
||
209 | // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice) |
||
210 | ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH; |
||
211 | //Set ADC Control and Status Register A |
||
212 | //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz |
||
213 | ADCSRA = (0 << ADEN) | (0 << ADSC) | (0 << ADATE) | (1 << ADPS2) | (1 |
||
214 | << ADPS1) | (1 << ADPS0) | (0 << ADIE); |
||
215 | //Set ADC Control and Status Register B |
||
216 | //Trigger Source to Free Running Mode |
||
217 | ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0)); |
||
218 | // Start AD conversion |
||
219 | analog_start(); |
||
220 | // restore global interrupt flags |
||
221 | SREG = sreg; |
||
1612 | dongfang | 222 | } |
223 | |||
1821 | - | 224 | void measureNoise(const int16_t sensor, |
225 | volatile uint16_t* const noiseMeasurement, const uint8_t damping) { |
||
226 | if (sensor > (int16_t) (*noiseMeasurement)) { |
||
227 | *noiseMeasurement = sensor; |
||
228 | } else if (-sensor > (int16_t) (*noiseMeasurement)) { |
||
229 | *noiseMeasurement = -sensor; |
||
230 | } else if (*noiseMeasurement > damping) { |
||
231 | *noiseMeasurement -= damping; |
||
232 | } else { |
||
233 | *noiseMeasurement = 0; |
||
234 | } |
||
1612 | dongfang | 235 | } |
236 | |||
1796 | - | 237 | /* |
238 | * Min.: 0 |
||
239 | * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type. |
||
240 | */ |
||
1775 | - | 241 | uint16_t getSimplePressure(int advalue) { |
1821 | - | 242 | return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue; |
1634 | - | 243 | } |
244 | |||
1645 | - | 245 | /***************************************************** |
1854 | - | 246 | * Interrupt Service Routine for ADC |
247 | * Runs at 312.5 kHz or 3.2 µs. When all states are |
||
248 | * processed the interrupt is disabled and further |
||
1645 | - | 249 | * AD conversions are stopped. |
250 | *****************************************************/ |
||
1821 | - | 251 | ISR(ADC_vect) |
252 | { |
||
253 | static uint8_t ad_channel = AD_GYRO_PITCH, state = 0; |
||
254 | static uint16_t sensorInputs[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; |
||
255 | static uint16_t pressureAutorangingWait = 25; |
||
256 | uint16_t rawAirPressure; |
||
257 | uint8_t i, axis; |
||
258 | int16_t newrange; |
||
1612 | dongfang | 259 | |
1821 | - | 260 | // for various filters... |
261 | int16_t tempOffsetGyro, tempGyro; |
||
1775 | - | 262 | |
1821 | - | 263 | sensorInputs[ad_channel] += ADC; |
1646 | - | 264 | |
1821 | - | 265 | /* |
266 | * Actually we don't need this "switch". We could do all the sampling into the |
||
267 | * sensorInputs array first, and all the processing after the last sample. |
||
268 | */ |
||
269 | switch (state++) { |
||
1645 | - | 270 | |
1821 | - | 271 | case 8: // Z acc |
272 | if (ACC_REVERSED[Z]) |
||
273 | acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z]; |
||
274 | else |
||
275 | acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z]; |
||
1869 | - | 276 | |
277 | stronglyFilteredAcc[Z] = |
||
278 | (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100; |
||
279 | |||
1821 | - | 280 | break; |
1796 | - | 281 | |
1821 | - | 282 | case 11: // yaw gyro |
283 | rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW]; |
||
284 | if (GYRO_REVERSED[YAW]) |
||
285 | yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW]; |
||
286 | else |
||
287 | yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW]; |
||
288 | break; |
||
1775 | - | 289 | |
1821 | - | 290 | case 12: // pitch axis acc. |
291 | if (ACC_REVERSED[PITCH]) |
||
292 | acc[PITCH] = accOffset[PITCH] - sensorInputs[AD_ACC_PITCH]; |
||
293 | else |
||
294 | acc[PITCH] = sensorInputs[AD_ACC_PITCH] - accOffset[PITCH]; |
||
1796 | - | 295 | |
1869 | - | 296 | filteredAcc[PITCH] = |
297 | (filteredAcc[PITCH] * (ACC_FILTER - 1) + acc[PITCH]) / ACC_FILTER; |
||
298 | |||
299 | stronglyFilteredAcc[PITCH] = |
||
300 | (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100; |
||
301 | |||
302 | |||
1821 | - | 303 | measureNoise(acc[PITCH], &accNoisePeak[PITCH], 1); |
304 | break; |
||
1796 | - | 305 | |
1821 | - | 306 | case 13: // roll axis acc. |
307 | if (ACC_REVERSED[ROLL]) |
||
308 | acc[ROLL] = accOffset[ROLL] - sensorInputs[AD_ACC_ROLL]; |
||
309 | else |
||
310 | acc[ROLL] = sensorInputs[AD_ACC_ROLL] - accOffset[ROLL]; |
||
1869 | - | 311 | filteredAcc[ROLL] = |
312 | (filteredAcc[ROLL] * (ACC_FILTER - 1) + acc[ROLL]) / ACC_FILTER; |
||
313 | |||
314 | stronglyFilteredAcc[ROLL] = |
||
315 | (stronglyFilteredAcc[ROLL] * 99 + acc[ROLL] * 10) / 100; |
||
316 | |||
1821 | - | 317 | measureNoise(acc[ROLL], &accNoisePeak[ROLL], 1); |
318 | break; |
||
1775 | - | 319 | |
1821 | - | 320 | case 14: // air pressure |
321 | if (pressureAutorangingWait) { |
||
322 | //A range switch was done recently. Wait for steadying. |
||
323 | pressureAutorangingWait--; |
||
324 | DebugOut.Analog[27] = (uint16_t) OCR0A; |
||
325 | DebugOut.Analog[31] = simpleAirPressure; |
||
326 | break; |
||
327 | } |
||
1634 | - | 328 | |
1821 | - | 329 | rawAirPressure = sensorInputs[AD_AIRPRESSURE]; |
330 | if (rawAirPressure < MIN_RAWPRESSURE) { |
||
331 | // value is too low, so decrease voltage on the op amp minus input, making the value higher. |
||
332 | newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1; |
||
333 | if (newrange > MIN_RANGES_EXTRAPOLATION) { |
||
334 | pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 + |
||
335 | OCR0A = newrange; |
||
336 | } else { |
||
337 | if (OCR0A) { |
||
338 | OCR0A--; |
||
339 | pressureAutorangingWait = AUTORANGE_WAIT_FACTOR; |
||
340 | } |
||
341 | } |
||
342 | } else if (rawAirPressure > MAX_RAWPRESSURE) { |
||
343 | // value is too high, so increase voltage on the op amp minus input, making the value lower. |
||
344 | // If near the end, make a limited increase |
||
345 | newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1; |
||
346 | if (newrange < MAX_RANGES_EXTRAPOLATION) { |
||
347 | pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR; |
||
348 | OCR0A = newrange; |
||
349 | } else { |
||
350 | if (OCR0A < 254) { |
||
351 | OCR0A++; |
||
352 | pressureAutorangingWait = AUTORANGE_WAIT_FACTOR; |
||
353 | } |
||
354 | } |
||
355 | } |
||
1645 | - | 356 | |
1821 | - | 357 | // Even if the sample is off-range, use it. |
358 | simpleAirPressure = getSimplePressure(rawAirPressure); |
||
359 | DebugOut.Analog[27] = (uint16_t) OCR0A; |
||
360 | DebugOut.Analog[31] = simpleAirPressure; |
||
1645 | - | 361 | |
1821 | - | 362 | if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) { |
363 | // Danger: pressure near lower end of range. If the measurement saturates, the |
||
364 | // copter may climb uncontrolledly... Simulate a drastic reduction in pressure. |
||
1854 | - | 365 | DebugOut.Digital[1] |= DEBUG_SENSORLIMIT; |
1821 | - | 366 | airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth |
367 | + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION |
||
368 | * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF; |
||
369 | } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) { |
||
370 | // Danger: pressure near upper end of range. If the measurement saturates, the |
||
371 | // copter may descend uncontrolledly... Simulate a drastic increase in pressure. |
||
1854 | - | 372 | DebugOut.Digital[1] |= DEBUG_SENSORLIMIT; |
1821 | - | 373 | airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth |
374 | + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION |
||
375 | * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF; |
||
376 | } else { |
||
377 | // normal case. |
||
378 | // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample. |
||
379 | // The 2 cases above (end of range) are ignored for this. |
||
1854 | - | 380 | DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT; |
1821 | - | 381 | if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1) |
382 | airPressureSum += simpleAirPressure / 2; |
||
383 | else |
||
384 | airPressureSum += simpleAirPressure; |
||
385 | } |
||
1645 | - | 386 | |
1821 | - | 387 | // 2 samples were added. |
388 | pressureMeasurementCount += 2; |
||
389 | if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) { |
||
390 | filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1) |
||
391 | + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER; |
||
392 | pressureMeasurementCount = airPressureSum = 0; |
||
393 | } |
||
1645 | - | 394 | |
1821 | - | 395 | break; |
1645 | - | 396 | |
1821 | - | 397 | case 15: |
398 | case 16: // pitch or roll gyro. |
||
399 | axis = state - 16; |
||
400 | tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis]; |
||
401 | // DebugOut.Analog[6 + 3 * axis ] = tempGyro; |
||
402 | /* |
||
403 | * Process the gyro data for the PID controller. |
||
404 | */ |
||
405 | // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a |
||
406 | // gyro with a wider range, and helps counter saturation at full control. |
||
1645 | - | 407 | |
1821 | - | 408 | if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) { |
409 | if (tempGyro < SENSOR_MIN_PITCHROLL) { |
||
1854 | - | 410 | DebugOut.Digital[0] |= DEBUG_SENSORLIMIT; |
1821 | - | 411 | tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT; |
412 | } else if (tempGyro > SENSOR_MAX_PITCHROLL) { |
||
1854 | - | 413 | DebugOut.Digital[0] |= DEBUG_SENSORLIMIT; |
1821 | - | 414 | tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE |
415 | + SENSOR_MAX_PITCHROLL; |
||
1854 | - | 416 | } else { |
417 | DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT; |
||
1821 | - | 418 | } |
419 | } |
||
1645 | - | 420 | |
1821 | - | 421 | // 2) Apply sign and offset, scale before filtering. |
422 | if (GYRO_REVERSED[axis]) { |
||
423 | tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL; |
||
424 | } else { |
||
425 | tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL; |
||
426 | } |
||
1612 | dongfang | 427 | |
1821 | - | 428 | // 3) Scale and filter. |
429 | tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro) |
||
430 | / GYROS_PID_FILTER; |
||
431 | |||
432 | // 4) Measure noise. |
||
433 | measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], |
||
434 | GYRO_NOISE_MEASUREMENT_DAMPING); |
||
435 | |||
436 | // 5) Differential measurement. |
||
437 | gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro |
||
438 | - gyro_PID[axis])) / GYROS_D_FILTER; |
||
439 | |||
440 | // 6) Done. |
||
441 | gyro_PID[axis] = tempOffsetGyro; |
||
442 | |||
443 | /* |
||
444 | * Now process the data for attitude angles. |
||
445 | */ |
||
446 | tempGyro = rawGyroSum[axis]; |
||
447 | |||
448 | // 1) Apply sign and offset, scale before filtering. |
||
449 | if (GYRO_REVERSED[axis]) { |
||
450 | tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL; |
||
451 | } else { |
||
452 | tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL; |
||
453 | } |
||
454 | |||
455 | // 2) Filter. |
||
456 | gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro) |
||
457 | / GYROS_ATT_FILTER; |
||
458 | break; |
||
459 | |||
460 | case 17: |
||
461 | // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v). |
||
462 | // This is divided by 3 --> 10.34 counts per volt. |
||
463 | UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4; |
||
1866 | - | 464 | DebugOut.Analog[11] = UBat; |
1821 | - | 465 | analogDataReady = 1; // mark |
466 | ADCycleCount++; |
||
467 | // Stop the sampling. Cycle is over. |
||
468 | state = 0; |
||
469 | for (i = 0; i < 8; i++) { |
||
470 | sensorInputs[i] = 0; |
||
471 | } |
||
472 | break; |
||
473 | default: { |
||
474 | } // do nothing. |
||
475 | } |
||
476 | |||
477 | // set up for next state. |
||
478 | ad_channel = pgm_read_byte(&channelsForStates[state]); |
||
479 | // ad_channel = channelsForStates[state]; |
||
480 | |||
481 | // set adc muxer to next ad_channel |
||
482 | ADMUX = (ADMUX & 0xE0) | ad_channel; |
||
483 | // after full cycle stop further interrupts |
||
484 | if (state) |
||
485 | analog_start(); |
||
1612 | dongfang | 486 | } |
487 | |||
488 | void analog_calibrate(void) { |
||
489 | #define GYRO_OFFSET_CYCLES 32 |
||
1821 | - | 490 | uint8_t i, axis; |
491 | int32_t deltaOffsets[3] = { 0, 0, 0 }; |
||
1612 | dongfang | 492 | |
1821 | - | 493 | // Set the filters... to be removed again, once some good settings are found. |
494 | GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1; |
||
495 | GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1; |
||
496 | GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1; |
||
497 | ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1; |
||
1612 | dongfang | 498 | |
1821 | - | 499 | gyro_calibrate(); |
1612 | dongfang | 500 | |
1821 | - | 501 | // determine gyro bias by averaging (requires that the copter does not rotate around any axis!) |
502 | for (i = 0; i < GYRO_OFFSET_CYCLES; i++) { |
||
503 | Delay_ms_Mess(20); |
||
504 | for (axis = PITCH; axis <= YAW; axis++) { |
||
505 | deltaOffsets[axis] += rawGyroSum[axis]; |
||
506 | } |
||
507 | } |
||
1646 | - | 508 | |
1821 | - | 509 | for (axis = PITCH; axis <= YAW; axis++) { |
1866 | - | 510 | gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES; |
511 | // DebugOut.Analog[20 + axis] = gyroOffset[axis]; |
||
1821 | - | 512 | } |
1646 | - | 513 | |
1869 | - | 514 | // Noise is relativ to offset. So, reset noise measurements when changing offsets. |
1821 | - | 515 | gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0; |
1612 | dongfang | 516 | |
1821 | - | 517 | accOffset[PITCH] = GetParamWord(PID_ACC_PITCH); |
518 | accOffset[ROLL] = GetParamWord(PID_ACC_ROLL); |
||
519 | accOffset[Z] = GetParamWord(PID_ACC_Z); |
||
1646 | - | 520 | |
1821 | - | 521 | // Rough estimate. Hmm no nothing happens at calibration anyway. |
522 | // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2); |
||
523 | // pressureMeasurementCount = 0; |
||
1775 | - | 524 | |
1821 | - | 525 | Delay_ms_Mess(100); |
1612 | dongfang | 526 | } |
527 | |||
528 | /* |
||
529 | * Find acc. offsets for a neutral reading, and write them to EEPROM. |
||
530 | * Does not (!} update the local variables. This must be done with a |
||
531 | * call to analog_calibrate() - this always (?) is done by the caller |
||
532 | * anyway. There would be nothing wrong with updating the variables |
||
533 | * directly from here, though. |
||
534 | */ |
||
535 | void analog_calibrateAcc(void) { |
||
536 | #define ACC_OFFSET_CYCLES 10 |
||
1821 | - | 537 | uint8_t i, axis; |
538 | int32_t deltaOffset[3] = { 0, 0, 0 }; |
||
539 | int16_t filteredDelta; |
||
540 | // int16_t pressureDiff, savedRawAirPressure; |
||
1612 | dongfang | 541 | |
1821 | - | 542 | for (i = 0; i < ACC_OFFSET_CYCLES; i++) { |
543 | Delay_ms_Mess(10); |
||
544 | for (axis = PITCH; axis <= YAW; axis++) { |
||
545 | deltaOffset[axis] += acc[axis]; |
||
546 | } |
||
547 | } |
||
1612 | dongfang | 548 | |
1821 | - | 549 | for (axis = PITCH; axis <= YAW; axis++) { |
550 | filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2) |
||
551 | / ACC_OFFSET_CYCLES; |
||
552 | accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta; |
||
553 | } |
||
1646 | - | 554 | |
1821 | - | 555 | // Save ACC neutral settings to eeprom |
556 | SetParamWord(PID_ACC_PITCH, accOffset[PITCH]); |
||
557 | SetParamWord(PID_ACC_ROLL, accOffset[ROLL]); |
||
558 | SetParamWord(PID_ACC_Z, accOffset[Z]); |
||
1612 | dongfang | 559 | |
1821 | - | 560 | // Noise is relative to offset. So, reset noise measurements when |
561 | // changing offsets. |
||
562 | accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0; |
||
1645 | - | 563 | |
1821 | - | 564 | // Setting offset values has an influence in the analog.c ISR |
565 | // Therefore run measurement for 100ms to achive stable readings |
||
566 | Delay_ms_Mess(100); |
||
567 | |||
568 | // Set the feedback so that air pressure ends up in the middle of the range. |
||
569 | // (raw pressure high --> OCR0A also high...) |
||
570 | /* |
||
571 | OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1; |
||
572 | Delay_ms_Mess(1000); |
||
573 | |||
574 | pressureDiff = 0; |
||
575 | // DebugOut.Analog[16] = rawAirPressure; |
||
576 | |||
577 | #define PRESSURE_CAL_CYCLE_COUNT 5 |
||
578 | for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) { |
||
579 | savedRawAirPressure = rawAirPressure; |
||
580 | OCR0A+=2; |
||
581 | Delay_ms_Mess(500); |
||
582 | // raw pressure will decrease. |
||
583 | pressureDiff += (savedRawAirPressure - rawAirPressure); |
||
584 | savedRawAirPressure = rawAirPressure; |
||
585 | OCR0A-=2; |
||
586 | Delay_ms_Mess(500); |
||
587 | // raw pressure will increase. |
||
588 | pressureDiff += (rawAirPressure - savedRawAirPressure); |
||
589 | } |
||
590 | |||
591 | rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2); |
||
592 | DebugOut.Analog[27] = rangewidth; |
||
593 | */ |
||
1612 | dongfang | 594 | } |