Subversion Repositories FlightCtrl

Rev

Rev 1991 | Rev 2017 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
1963 - 7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
1612 dongfang 8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
1963 - 17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
1612 dongfang 19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
1868 - 35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
1612 dongfang 36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
1963 - 47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
1612 dongfang 49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
#include <avr/io.h>
53
#include <avr/interrupt.h>
54
#include <avr/pgmspace.h>
1864 - 55
 
1612 dongfang 56
#include "analog.h"
1864 - 57
#include "attitude.h"
1612 dongfang 58
#include "sensors.h"
1964 - 59
#include "printf_P.h"
1612 dongfang 60
 
61
// for Delay functions
62
#include "timer0.h"
63
 
1955 - 64
// For debugOut
1612 dongfang 65
#include "uart0.h"
66
 
67
// For reading and writing acc. meter offsets.
68
#include "eeprom.h"
69
 
1955 - 70
// For debugOut.digital
1796 - 71
#include "output.h"
72
 
1952 - 73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
75
 
1969 - 76
const char* recal = ", recalibration needed.";
77
 
1854 - 78
/*
79
 * For each A/D conversion cycle, each analog channel is sampled a number of times
80
 * (see array channelsForStates), and the results for each channel are summed.
1645 - 81
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
1612 dongfang 82
 * They are exported in the analog.h file - but please do not use them! The only
83
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
84
 * the offsets with the DAC.
85
 */
1952 - 86
volatile uint16_t sensorInputs[8];
2015 - 87
int16_t acc[3];
88
int16_t filteredAcc[3] = { 0,0,0 };
1612 dongfang 89
 
90
/*
1645 - 91
 * These 4 exported variables are zero-offset. The "PID" ones are used
92
 * in the attitude control as rotation rates. The "ATT" ones are for
1854 - 93
 * integration to angles.
1612 dongfang 94
 */
2015 - 95
int16_t gyro_PID[2];
96
int16_t gyro_ATT[2];
97
int16_t gyroD[2];
98
int16_t yawGyro;
1612 dongfang 99
 
100
/*
101
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
102
 * standing still. They are used for adjusting the gyro and acc. meter values
1645 - 103
 * to be centered on zero.
1612 dongfang 104
 */
105
 
1969 - 106
sensorOffset_t gyroOffset;
107
sensorOffset_t accOffset;
108
sensorOffset_t gyroAmplifierOffset;
1960 - 109
 
1612 dongfang 110
/*
2015 - 111
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
112
 * If a sensor is used in an orientation where one but not both of the axes has
113
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
114
 * Transform:
115
 * pitch <- pp*pitch + pr*roll
116
 * roll  <- rp*pitch + rr*roll
117
 * Not reversed, GYRO_QUADRANT:
118
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
119
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
120
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
121
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
122
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
123
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
124
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
125
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
126
 * Reversed, GYRO_QUADRANT:
127
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
128
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
129
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
130
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
131
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
132
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
133
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
134
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
1612 dongfang 135
 */
136
 
2015 - 137
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
138
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
139
  // Pitch to Pitch part
140
  int8_t xx = (reverse & 1) ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
141
  // Roll to Pitch part
142
  int8_t xy = rotationTab[(quadrant+2)%8];
143
  // Pitch to Roll part
144
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
145
  // Roll to Roll part
146
  int8_t yy = rotationTab[quadrant];
147
 
148
  int16_t xIn = result[0];
149
  result[0] = xx*result[0] + xy*result[1];
150
  result[1] = yx*xIn + yy*result[1];
151
 
152
  if (quadrant & 1) {
153
        // A rotation was used above, where the factors were too large by sqrt(2).
154
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
155
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
156
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
157
        result[0] = (result[0]*11) >> 4;
158
        result[1] = (result[1]*11) >> 4;
159
  }
160
}
161
 
1645 - 162
/*
1775 - 163
 * Air pressure
1645 - 164
 */
1970 - 165
volatile uint8_t rangewidth = 105;
1612 dongfang 166
 
1775 - 167
// Direct from sensor, irrespective of range.
168
// volatile uint16_t rawAirPressure;
169
 
170
// Value of 2 samples, with range.
2015 - 171
uint16_t simpleAirPressure;
1775 - 172
 
173
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
2015 - 174
int32_t filteredAirPressure;
1775 - 175
 
176
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
2015 - 177
int32_t airPressureSum;
1775 - 178
 
179
// The number of samples summed into airPressureSum so far.
2015 - 180
uint8_t pressureMeasurementCount;
1775 - 181
 
1612 dongfang 182
/*
1854 - 183
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
1612 dongfang 184
 * That is divided by 3 below, for a final 10.34 per volt.
185
 * So the initial value of 100 is for 9.7 volts.
186
 */
2015 - 187
int16_t UBat = 100;
1612 dongfang 188
 
189
/*
190
 * Control and status.
191
 */
192
volatile uint16_t ADCycleCount = 0;
193
volatile uint8_t analogDataReady = 1;
194
 
195
/*
196
 * Experiment: Measuring vibration-induced sensor noise.
197
 */
2015 - 198
uint16_t gyroNoisePeak[3];
199
uint16_t accNoisePeak[3];
1612 dongfang 200
 
1986 - 201
volatile uint8_t adState;
1987 - 202
volatile uint8_t adChannel;
1986 - 203
 
1612 dongfang 204
// ADC channels
1645 - 205
#define AD_GYRO_YAW       0
206
#define AD_GYRO_ROLL      1
1634 - 207
#define AD_GYRO_PITCH     2
208
#define AD_AIRPRESSURE    3
1645 - 209
#define AD_UBAT           4
210
#define AD_ACC_Z          5
211
#define AD_ACC_ROLL       6
212
#define AD_ACC_PITCH      7
1612 dongfang 213
 
214
/*
215
 * Table of AD converter inputs for each state.
1854 - 216
 * The number of samples summed for each channel is equal to
1612 dongfang 217
 * the number of times the channel appears in the array.
218
 * The max. number of samples that can be taken in 2 ms is:
1854 - 219
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
220
 * loop needs a little time between reading AD values and
1612 dongfang 221
 * re-enabling ADC, the real limit is (how much?) lower.
222
 * The acc. sensor is sampled even if not used - or installed
223
 * at all. The cost is not significant.
224
 */
225
 
1870 - 226
const uint8_t channelsForStates[] PROGMEM = {
227
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
228
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
1612 dongfang 229
 
1870 - 230
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
231
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
232
 
233
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
234
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
235
  AD_AIRPRESSURE, // at 14, finish air pressure.
236
 
237
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
238
  AD_GYRO_ROLL,   // at 16, finish roll gyro
239
  AD_UBAT         // at 17, measure battery.
240
};
1612 dongfang 241
 
242
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
243
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
244
 
245
void analog_init(void) {
1821 - 246
        uint8_t sreg = SREG;
247
        // disable all interrupts before reconfiguration
248
        cli();
1612 dongfang 249
 
1821 - 250
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
251
        DDRA = 0x00;
252
        PORTA = 0x00;
253
        // Digital Input Disable Register 0
254
        // Disable digital input buffer for analog adc_channel pins
255
        DIDR0 = 0xFF;
256
        // external reference, adjust data to the right
1952 - 257
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
1821 - 258
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
1987 - 259
        ADMUX = (ADMUX & 0xE0);
1821 - 260
        //Set ADC Control and Status Register A
261
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
1952 - 262
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
1821 - 263
        //Set ADC Control and Status Register B
264
        //Trigger Source to Free Running Mode
1952 - 265
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
266
 
267
        startAnalogConversionCycle();
268
 
1821 - 269
        // restore global interrupt flags
270
        SREG = sreg;
1612 dongfang 271
}
272
 
2015 - 273
uint16_t rawGyroValue(uint8_t axis) {
274
        return sensorInputs[AD_GYRO_PITCH-axis];
275
}
276
 
277
uint16_t rawAccValue(uint8_t axis) {
278
        return sensorInputs[AD_ACC_PITCH-axis];
279
}
280
 
1821 - 281
void measureNoise(const int16_t sensor,
282
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
283
        if (sensor > (int16_t) (*noiseMeasurement)) {
284
                *noiseMeasurement = sensor;
285
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
286
                *noiseMeasurement = -sensor;
287
        } else if (*noiseMeasurement > damping) {
288
                *noiseMeasurement -= damping;
289
        } else {
290
                *noiseMeasurement = 0;
291
        }
1612 dongfang 292
}
293
 
1796 - 294
/*
295
 * Min.: 0
296
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
297
 */
1775 - 298
uint16_t getSimplePressure(int advalue) {
1821 - 299
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
1634 - 300
}
301
 
1952 - 302
void startAnalogConversionCycle(void) {
1960 - 303
  analogDataReady = 0;
1952 - 304
  // Stop the sampling. Cycle is over.
305
  for (uint8_t i = 0; i < 8; i++) {
306
    sensorInputs[i] = 0;
307
  }
1986 - 308
  adState = 0;
1987 - 309
  adChannel = AD_GYRO_PITCH;
310
  ADMUX = (ADMUX & 0xE0) | adChannel;
1952 - 311
  startADC();
312
}
313
 
1645 - 314
/*****************************************************
1854 - 315
 * Interrupt Service Routine for ADC
1963 - 316
 * Runs at 312.5 kHz or 3.2 �s. When all states are
1952 - 317
 * processed further conversions are stopped.
1645 - 318
 *****************************************************/
1870 - 319
ISR(ADC_vect) {
1986 - 320
  sensorInputs[adChannel] += ADC;
1952 - 321
  // set up for next state.
1986 - 322
  adState++;
323
  if (adState < sizeof(channelsForStates)) {
324
    adChannel = pgm_read_byte(&channelsForStates[adState]);
325
    // set adc muxer to next adChannel
326
    ADMUX = (ADMUX & 0xE0) | adChannel;
1952 - 327
    // after full cycle stop further interrupts
328
    startADC();
329
  } else {
330
    ADCycleCount++;
331
    analogDataReady = 1;
332
    // do not restart ADC converter. 
333
  }
334
}
1612 dongfang 335
 
1952 - 336
void analog_updateGyros(void) {
337
  // for various filters...
2015 - 338
  int16_t tempOffsetGyro[2], tempGyro;
1952 - 339
 
1991 - 340
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
1952 - 341
  for (uint8_t axis=0; axis<2; axis++) {
2015 - 342
    tempGyro = rawGyroValue(axis);
343
 
1952 - 344
    /*
345
     * Process the gyro data for the PID controller.
346
     */
347
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
348
    //    gyro with a wider range, and helps counter saturation at full control.
349
 
1960 - 350
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
1952 - 351
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
2015 - 352
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
353
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
1952 - 354
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
2015 - 355
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
356
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
1952 - 357
      }
358
    }
2015 - 359
 
1952 - 360
    // 2) Apply sign and offset, scale before filtering.
2015 - 361
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
362
  }
363
 
364
  // 2.1: Transform axes.
365
  rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & 1);
366
 
367
  for (uint8_t axis=0; axis<2; axis++) {
368
        // 3) Filter.
369
    tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / staticParams.gyroPIDFilterConstant;
370
 
1952 - 371
    // 4) Measure noise.
2015 - 372
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
373
 
1952 - 374
    // 5) Differential measurement.
2015 - 375
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
376
 
1952 - 377
    // 6) Done.
2015 - 378
    gyro_PID[axis] = tempOffsetGyro[axis];
379
 
380
    // Prepare tempOffsetGyro for next calculation below...
381
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
1952 - 382
  }
383
 
2015 - 384
  /*
385
   * Now process the data for attitude angles.
386
   */
387
   rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & 1);
388
 
389
  // 2) Filter. This should really be quite unnecessary. The integration should gobble up any noise anyway and the values are not used for anything else.
390
  // gyro_ATT[PITCH] = (gyro_ATT[PITCH] * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[PITCH]) / staticParams.attitudeGyroFilter;
391
  // gyro_ATT[ROLL]  = (gyro_ATT[ROLL]  * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[ROLL])  / staticParams.attitudeGyroFilter;
392
 
1952 - 393
  // Yaw gyro.
2015 - 394
  if (staticParams.imuReversedFlags & 2)
1960 - 395
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
1952 - 396
  else
1960 - 397
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
1952 - 398
}
1775 - 399
 
1952 - 400
void analog_updateAccelerometers(void) {
401
  // Pitch and roll axis accelerations.
402
  for (uint8_t axis=0; axis<2; axis++) {
2015 - 403
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
1979 - 404
  }
2015 - 405
 
406
  rotate(acc, staticParams.accQuadrant, staticParams.imuReversedFlags & 4);
407
 
408
  for(uint8_t axis=0; axis<3; axis++) {
1960 - 409
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
1952 - 410
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
411
  }
2015 - 412
 
413
  // Z acc.
414
  if (staticParams.imuReversedFlags & 8)
415
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
416
  else
417
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
1952 - 418
}
1645 - 419
 
1952 - 420
void analog_updateAirPressure(void) {
421
  static uint16_t pressureAutorangingWait = 25;
422
  uint16_t rawAirPressure;
423
  int16_t newrange;
424
  // air pressure
425
  if (pressureAutorangingWait) {
426
    //A range switch was done recently. Wait for steadying.
427
    pressureAutorangingWait--;
1955 - 428
    debugOut.analog[27] = (uint16_t) OCR0A;
429
    debugOut.analog[31] = simpleAirPressure;
1952 - 430
  } else {
431
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
432
    if (rawAirPressure < MIN_RAWPRESSURE) {
433
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
434
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
435
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
436
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
437
        OCR0A = newrange;
438
      } else {
439
        if (OCR0A) {
440
          OCR0A--;
441
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
1821 - 442
        }
1952 - 443
      }
444
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
445
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
446
      // If near the end, make a limited increase
447
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
448
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
449
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
450
        OCR0A = newrange;
451
      } else {
452
        if (OCR0A < 254) {
453
          OCR0A++;
454
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
455
        }
456
      }
457
    }
458
 
459
    // Even if the sample is off-range, use it.
460
    simpleAirPressure = getSimplePressure(rawAirPressure);
1955 - 461
    debugOut.analog[27] = (uint16_t) OCR0A;
462
    debugOut.analog[31] = simpleAirPressure;
1952 - 463
 
464
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
465
      // Danger: pressure near lower end of range. If the measurement saturates, the
466
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
1955 - 467
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 468
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
469
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
470
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
471
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
472
      // Danger: pressure near upper end of range. If the measurement saturates, the
473
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
1955 - 474
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 475
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
476
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
477
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
478
    } else {
479
      // normal case.
480
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
481
      // The 2 cases above (end of range) are ignored for this.
1955 - 482
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
1952 - 483
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
484
        airPressureSum += simpleAirPressure / 2;
485
      else
486
        airPressureSum += simpleAirPressure;
487
    }
488
 
489
    // 2 samples were added.
490
    pressureMeasurementCount += 2;
491
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
492
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
493
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
494
      pressureMeasurementCount = airPressureSum = 0;
495
    }
496
  }
497
}
1821 - 498
 
1952 - 499
void analog_updateBatteryVoltage(void) {
500
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
501
  // This is divided by 3 --> 10.34 counts per volt.
502
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
1955 - 503
  debugOut.analog[11] = UBat;
1986 - 504
  debugOut.analog[21] = sensorInputs[AD_UBAT];
1952 - 505
}
1821 - 506
 
1952 - 507
void analog_update(void) {
508
  analog_updateGyros();
509
  analog_updateAccelerometers();
510
  analog_updateAirPressure();
511
  analog_updateBatteryVoltage();
1612 dongfang 512
}
513
 
1961 - 514
void analog_setNeutral() {
1967 - 515
  if (gyroAmplifierOffset_readFromEEProm()) {
1969 - 516
    printf("gyro amp invalid%s",recal);
1971 - 517
    gyro_loadAmplifierOffsets(1);
1969 - 518
  } else
1971 - 519
      gyro_loadAmplifierOffsets(0);
1967 - 520
 
1961 - 521
  if (gyroOffset_readFromEEProm()) {
1969 - 522
    printf("gyro offsets invalid%s",recal);
1961 - 523
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
524
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
525
  }
1964 - 526
 
1961 - 527
  if (accOffset_readFromEEProm()) {
1969 - 528
    printf("acc. meter offsets invalid%s",recal);
1961 - 529
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
1979 - 530
    accOffset.offsets[Z] = 717 * ACC_SUMMATION_FACTOR_Z;
1961 - 531
  }
532
 
533
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
534
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
535
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
536
 
537
  // Setting offset values has an influence in the analog.c ISR
538
  // Therefore run measurement for 100ms to achive stable readings
2015 - 539
  delay_ms_with_adc_measurement(100, 0);
1961 - 540
 
541
  // Rough estimate. Hmm no nothing happens at calibration anyway.
542
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
543
  // pressureMeasurementCount = 0;
544
}
545
 
546
void analog_calibrateGyros(void) {
1612 dongfang 547
#define GYRO_OFFSET_CYCLES 32
1952 - 548
  uint8_t i, axis;
1963 - 549
  int32_t offsets[3] = { 0, 0, 0 };
1952 - 550
  gyro_calibrate();
551
 
552
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
553
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
2015 - 554
    delay_ms_with_adc_measurement(10, 1);
1952 - 555
    for (axis = PITCH; axis <= YAW; axis++) {
2015 - 556
      offsets[axis] += rawGyroValue(axis);
1952 - 557
    }
558
  }
559
 
560
  for (axis = PITCH; axis <= YAW; axis++) {
1963 - 561
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
1952 - 562
  }
1961 - 563
 
564
  gyroOffset_writeToEEProm();  
2015 - 565
  startAnalogConversionCycle();
1612 dongfang 566
}
567
 
568
/*
569
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
570
 * Does not (!} update the local variables. This must be done with a
571
 * call to analog_calibrate() - this always (?) is done by the caller
572
 * anyway. There would be nothing wrong with updating the variables
573
 * directly from here, though.
574
 */
575
void analog_calibrateAcc(void) {
2015 - 576
#define ACC_OFFSET_CYCLES 32
1960 - 577
  uint8_t i, axis;
2015 - 578
  int32_t offsets[3] = { 0, 0, 0 };
1960 - 579
  int16_t filteredDelta;
2015 - 580
 
1960 - 581
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
2015 - 582
    delay_ms_with_adc_measurement(10, 1);
1960 - 583
    for (axis = PITCH; axis <= YAW; axis++) {
2015 - 584
      offsets[axis] += rawAccValue(axis);
1960 - 585
    }
586
  }
2015 - 587
 
1960 - 588
  for (axis = PITCH; axis <= YAW; axis++) {
2015 - 589
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
1960 - 590
  }
1961 - 591
 
2015 - 592
  accOffset_writeToEEProm();
593
  startAnalogConversionCycle();
1612 dongfang 594
}