Rev 1971 | Rev 1987 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1612 | dongfang | 1 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
2 | // + Copyright (c) 04.2007 Holger Buss |
||
3 | // + Nur für den privaten Gebrauch |
||
4 | // + www.MikroKopter.com |
||
5 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
6 | // + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation), |
||
1963 | - | 7 | // + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist. |
1612 | dongfang | 8 | // + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt |
9 | // + bzgl. der Nutzungsbedingungen aufzunehmen. |
||
10 | // + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen, |
||
11 | // + Verkauf von Luftbildaufnahmen, usw. |
||
12 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
13 | // + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht, |
||
14 | // + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen |
||
15 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
16 | // + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts |
||
1963 | - | 17 | // + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de" |
18 | // + eindeutig als Ursprung verlinkt und genannt werden |
||
1612 | dongfang | 19 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
20 | // + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion |
||
21 | // + Benutzung auf eigene Gefahr |
||
22 | // + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden |
||
23 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
24 | // + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur |
||
25 | // + mit unserer Zustimmung zulässig |
||
26 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
27 | // + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen |
||
28 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
29 | // + Redistributions of source code (with or without modifications) must retain the above copyright notice, |
||
30 | // + this list of conditions and the following disclaimer. |
||
31 | // + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived |
||
32 | // + from this software without specific prior written permission. |
||
33 | // + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet |
||
34 | // + for non-commercial use (directly or indirectly) |
||
1868 | - | 35 | // + Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted |
1612 | dongfang | 36 | // + with our written permission |
37 | // + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be |
||
38 | // + clearly linked as origin |
||
39 | // + * porting to systems other than hardware from www.mikrokopter.de is not allowed |
||
40 | // + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
||
41 | // + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
42 | // + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||
43 | // + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
||
44 | // + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
||
45 | // + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
||
46 | // + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
||
1963 | - | 47 | // + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
48 | // + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
||
1612 | dongfang | 49 | // + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
50 | // + POSSIBILITY OF SUCH DAMAGE. |
||
51 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
52 | #include <avr/io.h> |
||
53 | #include <avr/interrupt.h> |
||
54 | #include <avr/pgmspace.h> |
||
1864 | - | 55 | |
1612 | dongfang | 56 | #include "analog.h" |
1864 | - | 57 | #include "attitude.h" |
1612 | dongfang | 58 | #include "sensors.h" |
1964 | - | 59 | #include "printf_P.h" |
1612 | dongfang | 60 | |
61 | // for Delay functions |
||
62 | #include "timer0.h" |
||
63 | |||
1955 | - | 64 | // For debugOut |
1612 | dongfang | 65 | #include "uart0.h" |
66 | |||
67 | // For reading and writing acc. meter offsets. |
||
68 | #include "eeprom.h" |
||
69 | |||
1955 | - | 70 | // For debugOut.digital |
1796 | - | 71 | #include "output.h" |
72 | |||
1952 | - | 73 | // set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit |
74 | #define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE)) |
||
75 | |||
1969 | - | 76 | const char* recal = ", recalibration needed."; |
77 | |||
1854 | - | 78 | /* |
79 | * For each A/D conversion cycle, each analog channel is sampled a number of times |
||
80 | * (see array channelsForStates), and the results for each channel are summed. |
||
1645 | - | 81 | * Here are those for the gyros and the acc. meters. They are not zero-offset. |
1612 | dongfang | 82 | * They are exported in the analog.h file - but please do not use them! The only |
83 | * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating |
||
84 | * the offsets with the DAC. |
||
85 | */ |
||
1952 | - | 86 | volatile uint16_t sensorInputs[8]; |
1646 | - | 87 | volatile int16_t rawGyroSum[3]; |
88 | volatile int16_t acc[3]; |
||
1979 | - | 89 | volatile int16_t filteredAcc[3] = { 0,0,0 }; |
1872 | - | 90 | // volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 }; |
1612 | dongfang | 91 | |
92 | /* |
||
1645 | - | 93 | * These 4 exported variables are zero-offset. The "PID" ones are used |
94 | * in the attitude control as rotation rates. The "ATT" ones are for |
||
1854 | - | 95 | * integration to angles. |
1612 | dongfang | 96 | */ |
1645 | - | 97 | volatile int16_t gyro_PID[2]; |
98 | volatile int16_t gyro_ATT[2]; |
||
99 | volatile int16_t gyroD[2]; |
||
1646 | - | 100 | volatile int16_t yawGyro; |
1612 | dongfang | 101 | |
102 | /* |
||
103 | * Offset values. These are the raw gyro and acc. meter sums when the copter is |
||
104 | * standing still. They are used for adjusting the gyro and acc. meter values |
||
1645 | - | 105 | * to be centered on zero. |
1612 | dongfang | 106 | */ |
107 | |||
1969 | - | 108 | sensorOffset_t gyroOffset; |
109 | sensorOffset_t accOffset; |
||
110 | sensorOffset_t gyroAmplifierOffset; |
||
1960 | - | 111 | |
1612 | dongfang | 112 | /* |
113 | * This allows some experimentation with the gyro filters. |
||
114 | * Should be replaced by #define's later on... |
||
115 | */ |
||
116 | |||
1645 | - | 117 | /* |
1775 | - | 118 | * Air pressure |
1645 | - | 119 | */ |
1970 | - | 120 | volatile uint8_t rangewidth = 105; |
1612 | dongfang | 121 | |
1775 | - | 122 | // Direct from sensor, irrespective of range. |
123 | // volatile uint16_t rawAirPressure; |
||
124 | |||
125 | // Value of 2 samples, with range. |
||
126 | volatile uint16_t simpleAirPressure; |
||
127 | |||
128 | // Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered. |
||
129 | volatile int32_t filteredAirPressure; |
||
130 | |||
131 | // Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples. |
||
132 | volatile int32_t airPressureSum; |
||
133 | |||
134 | // The number of samples summed into airPressureSum so far. |
||
135 | volatile uint8_t pressureMeasurementCount; |
||
136 | |||
1612 | dongfang | 137 | /* |
1854 | - | 138 | * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt. |
1612 | dongfang | 139 | * That is divided by 3 below, for a final 10.34 per volt. |
140 | * So the initial value of 100 is for 9.7 volts. |
||
141 | */ |
||
142 | volatile int16_t UBat = 100; |
||
143 | |||
144 | /* |
||
145 | * Control and status. |
||
146 | */ |
||
147 | volatile uint16_t ADCycleCount = 0; |
||
148 | volatile uint8_t analogDataReady = 1; |
||
149 | |||
150 | /* |
||
151 | * Experiment: Measuring vibration-induced sensor noise. |
||
152 | */ |
||
1979 | - | 153 | volatile uint16_t gyroNoisePeak[3]; |
154 | volatile uint16_t accNoisePeak[3]; |
||
1612 | dongfang | 155 | |
156 | // ADC channels |
||
1645 | - | 157 | #define AD_GYRO_YAW 0 |
158 | #define AD_GYRO_ROLL 1 |
||
1634 | - | 159 | #define AD_GYRO_PITCH 2 |
160 | #define AD_AIRPRESSURE 3 |
||
1645 | - | 161 | #define AD_UBAT 4 |
162 | #define AD_ACC_Z 5 |
||
163 | #define AD_ACC_ROLL 6 |
||
164 | #define AD_ACC_PITCH 7 |
||
1612 | dongfang | 165 | |
166 | /* |
||
167 | * Table of AD converter inputs for each state. |
||
1854 | - | 168 | * The number of samples summed for each channel is equal to |
1612 | dongfang | 169 | * the number of times the channel appears in the array. |
170 | * The max. number of samples that can be taken in 2 ms is: |
||
1854 | - | 171 | * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control |
172 | * loop needs a little time between reading AD values and |
||
1612 | dongfang | 173 | * re-enabling ADC, the real limit is (how much?) lower. |
174 | * The acc. sensor is sampled even if not used - or installed |
||
175 | * at all. The cost is not significant. |
||
176 | */ |
||
177 | |||
1870 | - | 178 | const uint8_t channelsForStates[] PROGMEM = { |
179 | AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, |
||
180 | AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE, |
||
1612 | dongfang | 181 | |
1870 | - | 182 | AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc. |
183 | AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro |
||
184 | |||
185 | AD_ACC_PITCH, // at 12, finish pitch axis acc. |
||
186 | AD_ACC_ROLL, // at 13, finish roll axis acc. |
||
187 | AD_AIRPRESSURE, // at 14, finish air pressure. |
||
188 | |||
189 | AD_GYRO_PITCH, // at 15, finish pitch gyro |
||
190 | AD_GYRO_ROLL, // at 16, finish roll gyro |
||
191 | AD_UBAT // at 17, measure battery. |
||
192 | }; |
||
1612 | dongfang | 193 | |
194 | // Feature removed. Could be reintroduced later - but should work for all gyro types then. |
||
195 | // uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0; |
||
196 | |||
197 | void analog_init(void) { |
||
1821 | - | 198 | uint8_t sreg = SREG; |
199 | // disable all interrupts before reconfiguration |
||
200 | cli(); |
||
1612 | dongfang | 201 | |
1821 | - | 202 | //ADC0 ... ADC7 is connected to PortA pin 0 ... 7 |
203 | DDRA = 0x00; |
||
204 | PORTA = 0x00; |
||
205 | // Digital Input Disable Register 0 |
||
206 | // Disable digital input buffer for analog adc_channel pins |
||
207 | DIDR0 = 0xFF; |
||
208 | // external reference, adjust data to the right |
||
1952 | - | 209 | ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR)); |
1821 | - | 210 | // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice) |
1952 | - | 211 | ADMUX = (ADMUX & 0xE0) | channelsForStates[0]; |
1821 | - | 212 | //Set ADC Control and Status Register A |
213 | //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz |
||
1952 | - | 214 | ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0); |
1821 | - | 215 | //Set ADC Control and Status Register B |
216 | //Trigger Source to Free Running Mode |
||
1952 | - | 217 | ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0)); |
218 | |||
219 | startAnalogConversionCycle(); |
||
220 | |||
1821 | - | 221 | // restore global interrupt flags |
222 | SREG = sreg; |
||
1612 | dongfang | 223 | } |
224 | |||
1821 | - | 225 | void measureNoise(const int16_t sensor, |
226 | volatile uint16_t* const noiseMeasurement, const uint8_t damping) { |
||
227 | if (sensor > (int16_t) (*noiseMeasurement)) { |
||
228 | *noiseMeasurement = sensor; |
||
229 | } else if (-sensor > (int16_t) (*noiseMeasurement)) { |
||
230 | *noiseMeasurement = -sensor; |
||
231 | } else if (*noiseMeasurement > damping) { |
||
232 | *noiseMeasurement -= damping; |
||
233 | } else { |
||
234 | *noiseMeasurement = 0; |
||
235 | } |
||
1612 | dongfang | 236 | } |
237 | |||
1796 | - | 238 | /* |
239 | * Min.: 0 |
||
240 | * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type. |
||
241 | */ |
||
1775 | - | 242 | uint16_t getSimplePressure(int advalue) { |
1821 | - | 243 | return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue; |
1634 | - | 244 | } |
245 | |||
1952 | - | 246 | void startAnalogConversionCycle(void) { |
1960 | - | 247 | analogDataReady = 0; |
1952 | - | 248 | // Stop the sampling. Cycle is over. |
249 | for (uint8_t i = 0; i < 8; i++) { |
||
250 | sensorInputs[i] = 0; |
||
251 | } |
||
252 | ADMUX = (ADMUX & 0xE0) | channelsForStates[0]; |
||
253 | startADC(); |
||
254 | } |
||
255 | |||
1645 | - | 256 | /***************************************************** |
1854 | - | 257 | * Interrupt Service Routine for ADC |
1963 | - | 258 | * Runs at 312.5 kHz or 3.2 �s. When all states are |
1952 | - | 259 | * processed further conversions are stopped. |
1645 | - | 260 | *****************************************************/ |
1870 | - | 261 | ISR(ADC_vect) { |
1952 | - | 262 | static uint8_t ad_channel = AD_GYRO_PITCH, state = 0; |
263 | sensorInputs[ad_channel] += ADC; |
||
264 | // set up for next state. |
||
265 | state++; |
||
266 | if (state < 18) { |
||
267 | ad_channel = pgm_read_byte(&channelsForStates[state]); |
||
268 | // set adc muxer to next ad_channel |
||
269 | ADMUX = (ADMUX & 0xE0) | ad_channel; |
||
270 | // after full cycle stop further interrupts |
||
271 | startADC(); |
||
272 | } else { |
||
273 | state = 0; |
||
274 | ADCycleCount++; |
||
275 | analogDataReady = 1; |
||
276 | // do not restart ADC converter. |
||
277 | } |
||
278 | } |
||
1612 | dongfang | 279 | |
1952 | - | 280 | void analog_updateGyros(void) { |
281 | // for various filters... |
||
282 | int16_t tempOffsetGyro, tempGyro; |
||
283 | |||
284 | for (uint8_t axis=0; axis<2; axis++) { |
||
285 | tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis]; |
||
1967 | - | 286 | |
1952 | - | 287 | /* |
288 | * Process the gyro data for the PID controller. |
||
289 | */ |
||
290 | // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a |
||
291 | // gyro with a wider range, and helps counter saturation at full control. |
||
292 | |||
1960 | - | 293 | if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) { |
1952 | - | 294 | if (tempGyro < SENSOR_MIN_PITCHROLL) { |
1955 | - | 295 | debugOut.digital[0] |= DEBUG_SENSORLIMIT; |
1952 | - | 296 | tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT; |
297 | } else if (tempGyro > SENSOR_MAX_PITCHROLL) { |
||
1955 | - | 298 | debugOut.digital[0] |= DEBUG_SENSORLIMIT; |
1952 | - | 299 | tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE |
300 | + SENSOR_MAX_PITCHROLL; |
||
301 | } else { |
||
1955 | - | 302 | debugOut.digital[0] &= ~DEBUG_SENSORLIMIT; |
1952 | - | 303 | } |
304 | } |
||
305 | |||
306 | // 2) Apply sign and offset, scale before filtering. |
||
307 | if (GYRO_REVERSED[axis]) { |
||
1960 | - | 308 | tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL; |
1952 | - | 309 | } else { |
1960 | - | 310 | tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL; |
1952 | - | 311 | } |
312 | |||
313 | // 3) Scale and filter. |
||
1960 | - | 314 | tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant; |
1952 | - | 315 | |
316 | // 4) Measure noise. |
||
317 | measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING); |
||
318 | |||
319 | // 5) Differential measurement. |
||
1960 | - | 320 | gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant; |
1952 | - | 321 | |
322 | // 6) Done. |
||
323 | gyro_PID[axis] = tempOffsetGyro; |
||
324 | |||
325 | /* |
||
326 | * Now process the data for attitude angles. |
||
327 | */ |
||
328 | tempGyro = rawGyroSum[axis]; |
||
329 | |||
330 | // 1) Apply sign and offset, scale before filtering. |
||
331 | if (GYRO_REVERSED[axis]) { |
||
1960 | - | 332 | tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL; |
1952 | - | 333 | } else { |
1960 | - | 334 | tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL; |
1952 | - | 335 | } |
336 | |||
337 | // 2) Filter. |
||
1960 | - | 338 | gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant; |
1952 | - | 339 | } |
340 | |||
341 | // Yaw gyro. |
||
342 | rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW]; |
||
343 | if (GYRO_REVERSED[YAW]) |
||
1960 | - | 344 | yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW]; |
1952 | - | 345 | else |
1960 | - | 346 | yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW]; |
1952 | - | 347 | } |
1775 | - | 348 | |
1952 | - | 349 | void analog_updateAccelerometers(void) { |
1979 | - | 350 | // Z acc. |
351 | if (ACC_REVERSED[Z]) |
||
352 | acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z]; |
||
353 | else |
||
354 | acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z]; |
||
355 | |||
1952 | - | 356 | // Pitch and roll axis accelerations. |
357 | for (uint8_t axis=0; axis<2; axis++) { |
||
358 | if (ACC_REVERSED[axis]) |
||
1960 | - | 359 | acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis]; |
1952 | - | 360 | else |
1960 | - | 361 | acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis]; |
1979 | - | 362 | } |
363 | |||
364 | for (uint8_t axis=0; axis<3; axis++) { |
||
1960 | - | 365 | filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant; |
1952 | - | 366 | measureNoise(acc[axis], &accNoisePeak[axis], 1); |
367 | } |
||
368 | } |
||
1645 | - | 369 | |
1952 | - | 370 | void analog_updateAirPressure(void) { |
371 | static uint16_t pressureAutorangingWait = 25; |
||
372 | uint16_t rawAirPressure; |
||
373 | int16_t newrange; |
||
374 | // air pressure |
||
375 | if (pressureAutorangingWait) { |
||
376 | //A range switch was done recently. Wait for steadying. |
||
377 | pressureAutorangingWait--; |
||
1955 | - | 378 | debugOut.analog[27] = (uint16_t) OCR0A; |
379 | debugOut.analog[31] = simpleAirPressure; |
||
1952 | - | 380 | } else { |
381 | rawAirPressure = sensorInputs[AD_AIRPRESSURE]; |
||
382 | if (rawAirPressure < MIN_RAWPRESSURE) { |
||
383 | // value is too low, so decrease voltage on the op amp minus input, making the value higher. |
||
384 | newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1; |
||
385 | if (newrange > MIN_RANGES_EXTRAPOLATION) { |
||
386 | pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 + |
||
387 | OCR0A = newrange; |
||
388 | } else { |
||
389 | if (OCR0A) { |
||
390 | OCR0A--; |
||
391 | pressureAutorangingWait = AUTORANGE_WAIT_FACTOR; |
||
1821 | - | 392 | } |
1952 | - | 393 | } |
394 | } else if (rawAirPressure > MAX_RAWPRESSURE) { |
||
395 | // value is too high, so increase voltage on the op amp minus input, making the value lower. |
||
396 | // If near the end, make a limited increase |
||
397 | newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1; |
||
398 | if (newrange < MAX_RANGES_EXTRAPOLATION) { |
||
399 | pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR; |
||
400 | OCR0A = newrange; |
||
401 | } else { |
||
402 | if (OCR0A < 254) { |
||
403 | OCR0A++; |
||
404 | pressureAutorangingWait = AUTORANGE_WAIT_FACTOR; |
||
405 | } |
||
406 | } |
||
407 | } |
||
408 | |||
409 | // Even if the sample is off-range, use it. |
||
410 | simpleAirPressure = getSimplePressure(rawAirPressure); |
||
1955 | - | 411 | debugOut.analog[27] = (uint16_t) OCR0A; |
412 | debugOut.analog[31] = simpleAirPressure; |
||
1952 | - | 413 | |
414 | if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) { |
||
415 | // Danger: pressure near lower end of range. If the measurement saturates, the |
||
416 | // copter may climb uncontrolledly... Simulate a drastic reduction in pressure. |
||
1955 | - | 417 | debugOut.digital[1] |= DEBUG_SENSORLIMIT; |
1952 | - | 418 | airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth |
419 | + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION |
||
420 | * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF; |
||
421 | } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) { |
||
422 | // Danger: pressure near upper end of range. If the measurement saturates, the |
||
423 | // copter may descend uncontrolledly... Simulate a drastic increase in pressure. |
||
1955 | - | 424 | debugOut.digital[1] |= DEBUG_SENSORLIMIT; |
1952 | - | 425 | airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth |
426 | + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION |
||
427 | * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF; |
||
428 | } else { |
||
429 | // normal case. |
||
430 | // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample. |
||
431 | // The 2 cases above (end of range) are ignored for this. |
||
1955 | - | 432 | debugOut.digital[1] &= ~DEBUG_SENSORLIMIT; |
1952 | - | 433 | if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1) |
434 | airPressureSum += simpleAirPressure / 2; |
||
435 | else |
||
436 | airPressureSum += simpleAirPressure; |
||
437 | } |
||
438 | |||
439 | // 2 samples were added. |
||
440 | pressureMeasurementCount += 2; |
||
441 | if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) { |
||
442 | filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1) |
||
443 | + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER; |
||
444 | pressureMeasurementCount = airPressureSum = 0; |
||
445 | } |
||
446 | } |
||
447 | } |
||
1821 | - | 448 | |
1952 | - | 449 | void analog_updateBatteryVoltage(void) { |
450 | // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v). |
||
451 | // This is divided by 3 --> 10.34 counts per volt. |
||
452 | UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4; |
||
1955 | - | 453 | debugOut.analog[11] = UBat; |
1952 | - | 454 | } |
1821 | - | 455 | |
1952 | - | 456 | void analog_update(void) { |
457 | analog_updateGyros(); |
||
458 | analog_updateAccelerometers(); |
||
459 | analog_updateAirPressure(); |
||
460 | analog_updateBatteryVoltage(); |
||
1612 | dongfang | 461 | } |
462 | |||
1961 | - | 463 | void analog_setNeutral() { |
1967 | - | 464 | if (gyroAmplifierOffset_readFromEEProm()) { |
1969 | - | 465 | printf("gyro amp invalid%s",recal); |
1971 | - | 466 | gyro_loadAmplifierOffsets(1); |
1969 | - | 467 | } else |
1971 | - | 468 | gyro_loadAmplifierOffsets(0); |
1967 | - | 469 | |
1961 | - | 470 | if (gyroOffset_readFromEEProm()) { |
1969 | - | 471 | printf("gyro offsets invalid%s",recal); |
1961 | - | 472 | gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL; |
473 | gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW; |
||
474 | } |
||
1964 | - | 475 | |
1961 | - | 476 | if (accOffset_readFromEEProm()) { |
1969 | - | 477 | printf("acc. meter offsets invalid%s",recal); |
1961 | - | 478 | accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL; |
1979 | - | 479 | accOffset.offsets[Z] = 717 * ACC_SUMMATION_FACTOR_Z; |
1961 | - | 480 | } |
481 | |||
482 | // Noise is relative to offset. So, reset noise measurements when changing offsets. |
||
483 | gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0; |
||
484 | accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0; |
||
485 | |||
486 | // Setting offset values has an influence in the analog.c ISR |
||
487 | // Therefore run measurement for 100ms to achive stable readings |
||
1967 | - | 488 | delay_ms_with_adc_measurement(100); |
1961 | - | 489 | |
490 | // Rough estimate. Hmm no nothing happens at calibration anyway. |
||
491 | // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2); |
||
492 | // pressureMeasurementCount = 0; |
||
493 | } |
||
494 | |||
495 | void analog_calibrateGyros(void) { |
||
1612 | dongfang | 496 | #define GYRO_OFFSET_CYCLES 32 |
1952 | - | 497 | uint8_t i, axis; |
1963 | - | 498 | int32_t offsets[3] = { 0, 0, 0 }; |
1952 | - | 499 | gyro_calibrate(); |
500 | |||
501 | // determine gyro bias by averaging (requires that the copter does not rotate around any axis!) |
||
502 | for (i = 0; i < GYRO_OFFSET_CYCLES; i++) { |
||
1967 | - | 503 | delay_ms_with_adc_measurement(20); |
1952 | - | 504 | for (axis = PITCH; axis <= YAW; axis++) { |
1963 | - | 505 | offsets[axis] += rawGyroSum[axis]; |
1952 | - | 506 | } |
507 | } |
||
508 | |||
509 | for (axis = PITCH; axis <= YAW; axis++) { |
||
1963 | - | 510 | gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES; |
1952 | - | 511 | } |
1961 | - | 512 | |
513 | gyroOffset_writeToEEProm(); |
||
1612 | dongfang | 514 | } |
515 | |||
516 | /* |
||
517 | * Find acc. offsets for a neutral reading, and write them to EEPROM. |
||
518 | * Does not (!} update the local variables. This must be done with a |
||
519 | * call to analog_calibrate() - this always (?) is done by the caller |
||
520 | * anyway. There would be nothing wrong with updating the variables |
||
521 | * directly from here, though. |
||
522 | */ |
||
523 | void analog_calibrateAcc(void) { |
||
524 | #define ACC_OFFSET_CYCLES 10 |
||
1960 | - | 525 | uint8_t i, axis; |
526 | int32_t deltaOffset[3] = { 0, 0, 0 }; |
||
527 | int16_t filteredDelta; |
||
528 | |||
529 | for (i = 0; i < ACC_OFFSET_CYCLES; i++) { |
||
1967 | - | 530 | delay_ms_with_adc_measurement(10); |
1960 | - | 531 | for (axis = PITCH; axis <= YAW; axis++) { |
532 | deltaOffset[axis] += acc[axis]; |
||
533 | } |
||
534 | } |
||
535 | |||
536 | for (axis = PITCH; axis <= YAW; axis++) { |
||
537 | filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2) |
||
538 | / ACC_OFFSET_CYCLES; |
||
539 | accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta; |
||
540 | } |
||
1961 | - | 541 | |
1960 | - | 542 | accOffset_writeToEEProm(); |
1612 | dongfang | 543 | } |