Rev 2119 | Rev 2135 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1910 | - | 1 | #include <avr/io.h> |
2 | #include <avr/interrupt.h> |
||
3 | #include "eeprom.h" |
||
2102 | - | 4 | #include "output.h" |
5 | #include "flight.h" |
||
1910 | - | 6 | #include "attitude.h" |
2104 | - | 7 | #include "timer2.h" |
1910 | - | 8 | |
2102 | - | 9 | // #define COARSERESOLUTION 1 |
1910 | - | 10 | |
2099 | - | 11 | #ifdef COARSERESOLUTION |
12 | #define NEUTRAL_PULSELENGTH 938 |
||
13 | #define STABILIZATION_LOG_DIVIDER 6 |
||
14 | #define SERVOLIMIT 500 |
||
15 | #define SCALE_FACTOR 4 |
||
16 | #define CS2 ((1<<CS21)|(1<<CS20)) |
||
1910 | - | 17 | |
2099 | - | 18 | #else |
19 | #define NEUTRAL_PULSELENGTH 3750 |
||
20 | #define STABILIZATION_LOG_DIVIDER 4 |
||
21 | #define SERVOLIMIT 2000 |
||
22 | #define SCALE_FACTOR 16 |
||
23 | #define CS2 (1<<CS21) |
||
24 | #endif |
||
1910 | - | 25 | |
2099 | - | 26 | #define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128) |
27 | #define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT) |
||
28 | #define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT) |
||
29 | |||
30 | volatile uint8_t recalculateServoTimes = 0; |
||
31 | volatile uint16_t servoValues[MAX_SERVOS]; |
||
32 | volatile uint16_t previousManualValues[2]; |
||
33 | |||
34 | #define HEF4017R_ON PORTC |= (1<<PORTC6) |
||
35 | #define HEF4017R_OFF PORTC &= ~(1<<PORTC6) |
||
36 | |||
2109 | - | 37 | //#define HEF4017R_ON ; |
38 | //#define HEF4017R_OFF ; |
||
39 | |||
1910 | - | 40 | /***************************************************** |
2099 | - | 41 | * Initialize Timer 2 |
1910 | - | 42 | *****************************************************/ |
43 | void timer2_init(void) { |
||
2099 | - | 44 | uint8_t sreg = SREG; |
1910 | - | 45 | |
2099 | - | 46 | // disable all interrupts before reconfiguration |
47 | cli(); |
||
48 | |||
49 | // set PD7 as output of the PWM for pitch servo |
||
50 | DDRD |= (1 << DDD7); |
||
51 | PORTD &= ~(1 << PORTD7); // set PD7 to low |
||
52 | |||
53 | DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017) |
||
2109 | - | 54 | HEF4017R_ON; // reset |
2099 | - | 55 | |
56 | // Timer/Counter 2 Control Register A |
||
57 | // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0) |
||
58 | // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0) |
||
59 | // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0) |
||
60 | TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22)); |
||
61 | TCCR2A |= (1 << COM2A1) | (1 << WGM21); |
||
62 | |||
63 | // Timer/Counter 2 Control Register B |
||
64 | |||
65 | // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz |
||
66 | // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us |
||
67 | // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms |
||
68 | |||
69 | TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22)); |
||
70 | TCCR2B |= CS2; |
||
71 | |||
72 | // Initialize the Timer/Counter 2 Register |
||
73 | TCNT2 = 0; |
||
74 | |||
75 | // Initialize the Output Compare Register A used for signal generation on port PD7. |
||
76 | OCR2A = 255; |
||
77 | |||
78 | // Timer/Counter 2 Interrupt Mask Register |
||
79 | // Enable timer output compare match A Interrupt only |
||
80 | TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2)); |
||
81 | TIMSK2 |= (1 << OCIE2A); |
||
82 | |||
83 | for (uint8_t axis=0; axis<2; axis++) |
||
2119 | - | 84 | previousManualValues[axis] = dynamicParams.gimbalServoManualControl[axis] * SCALE_FACTOR; |
2099 | - | 85 | |
86 | SREG = sreg; |
||
1910 | - | 87 | } |
88 | |||
89 | /***************************************************** |
||
2102 | - | 90 | * Control (camera gimbal etc.) servos |
1910 | - | 91 | *****************************************************/ |
2099 | - | 92 | int16_t calculateStabilizedServoAxis(uint8_t axis) { |
93 | int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about |
||
94 | // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000. |
||
95 | // That is a divisor of about 1<<14. Same conclusion as H&I. |
||
2119 | - | 96 | value *= staticParams.gimbalServoConfigurations[axis].stabilizationFactor; |
2099 | - | 97 | value = value >> 8; |
2119 | - | 98 | if (staticParams.gimbalServoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE) |
2099 | - | 99 | return -value; |
100 | return value; |
||
101 | } |
||
102 | |||
103 | // With constant-speed limitation. |
||
104 | uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) { |
||
105 | int16_t diff = manualValue - previousManualValues[axis]; |
||
2119 | - | 106 | uint8_t maxSpeed = staticParams.gimbalServoMaxManualSpeed; |
2099 | - | 107 | if (diff > maxSpeed) diff = maxSpeed; |
108 | else if (diff < -maxSpeed) diff = -maxSpeed; |
||
109 | manualValue = previousManualValues[axis] + diff; |
||
110 | previousManualValues[axis] = manualValue; |
||
111 | return manualValue; |
||
112 | } |
||
113 | |||
114 | // add stabilization and manual, apply soft position limits. |
||
115 | // All in a [0..255*SCALE_FACTOR] space (despite signed types used internally) |
||
116 | int16_t featuredServoValue(uint8_t axis) { |
||
2119 | - | 117 | int16_t value = calculateManualServoAxis(axis, dynamicParams.gimbalServoManualControl[axis] * SCALE_FACTOR); |
2099 | - | 118 | value += calculateStabilizedServoAxis(axis); |
2119 | - | 119 | int16_t limit = staticParams.gimbalServoConfigurations[axis].minValue * SCALE_FACTOR; |
2099 | - | 120 | if (value < limit) value = limit; |
2119 | - | 121 | limit = staticParams.gimbalServoConfigurations[axis].maxValue * SCALE_FACTOR; |
2099 | - | 122 | if (value > limit) value = limit; |
123 | value -= (128 * SCALE_FACTOR); |
||
124 | if (value < -SERVOLIMIT) value = -SERVOLIMIT; |
||
125 | else if (value > SERVOLIMIT) value = SERVOLIMIT; |
||
126 | // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space. |
||
127 | return value + NEUTRAL_PULSELENGTH; |
||
128 | } |
||
129 | |||
2102 | - | 130 | void calculateControlServoValues(void) { |
131 | int16_t value; |
||
2119 | - | 132 | //int16_t minLimit = staticParams.controlServoMinValue * SCALE_FACTOR; |
133 | //int16_t maxLimit = staticParams.controlServoMaxValue * SCALE_FACTOR; |
||
2103 | - | 134 | for (uint8_t axis=0; axis<4; axis++) { |
2102 | - | 135 | value = controlServos[axis]; |
2119 | - | 136 | if (value < -SERVOLIMIT) value = -SERVOLIMIT; |
137 | else if (value > SERVOLIMIT) value = SERVOLIMIT; |
||
2102 | - | 138 | servoValues[axis] = value + NEUTRAL_PULSELENGTH; |
139 | } |
||
140 | } |
||
141 | |||
142 | void calculateFeaturedServoValues(void) { |
||
143 | int16_t value; |
||
144 | uint8_t axis; |
||
145 | |||
146 | // Save the computation cost of computing a new value before the old one is used. |
||
2099 | - | 147 | if (!recalculateServoTimes) return; |
2102 | - | 148 | |
2104 | - | 149 | for (axis= MAX_CONTROL_SERVOS; axis<MAX_CONTROL_SERVOS+2; axis++) { |
150 | value = featuredServoValue(axis-MAX_CONTROL_SERVOS); |
||
151 | servoValues[axis] = value; |
||
2099 | - | 152 | } |
2104 | - | 153 | for (axis=MAX_CONTROL_SERVOS+2; axis<MAX_SERVOS; axis++) { |
2102 | - | 154 | value = 128 * SCALE_FACTOR; |
2104 | - | 155 | servoValues[axis] = value; |
2102 | - | 156 | } |
157 | |||
2099 | - | 158 | recalculateServoTimes = 0; |
159 | } |
||
160 | |||
1910 | - | 161 | ISR(TIMER2_COMPA_vect) { |
2099 | - | 162 | static uint16_t remainingPulseTime; |
1910 | - | 163 | static uint8_t servoIndex = 0; |
164 | static uint16_t sumOfPulseTimes = 0; |
||
165 | |||
166 | if (!remainingPulseTime) { |
||
167 | // Pulse is over, and the next pulse has already just started. Calculate length of next pulse. |
||
2099 | - | 168 | if (servoIndex < staticParams.servoCount) { |
1910 | - | 169 | // There are more signals to output. |
2099 | - | 170 | sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]); |
1910 | - | 171 | servoIndex++; |
172 | } else { |
||
173 | // There are no more signals. Reset the counter and make this pulse cover the missing frame time. |
||
174 | remainingPulseTime = FRAMELEN - sumOfPulseTimes; |
||
175 | sumOfPulseTimes = servoIndex = 0; |
||
2099 | - | 176 | recalculateServoTimes = 1; |
177 | HEF4017R_ON; |
||
1910 | - | 178 | } |
179 | } |
||
180 | |||
181 | // Schedule the next OCR2A event. The counter is already reset at this time. |
||
2099 | - | 182 | if (remainingPulseTime > 256+128) { |
183 | // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again, |
||
1910 | - | 184 | // as long as it happens once per pulse. This will, because all pulses are > 255+128 long. |
2099 | - | 185 | OCR2A = 255; |
1910 | - | 186 | TCCR2A &= ~(1<<COM2A0); |
2099 | - | 187 | remainingPulseTime-=256; |
188 | } else if (remainingPulseTime > 256) { |
||
189 | // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard |
||
190 | // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt |
||
1910 | - | 191 | // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK. |
2099 | - | 192 | remainingPulseTime-=128; |
193 | OCR2A=127; |
||
1910 | - | 194 | } else { |
195 | // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low |
||
196 | TCCR2A |= (1<<COM2A0); |
||
2099 | - | 197 | OCR2A = remainingPulseTime-1; |
198 | remainingPulseTime=0; |
||
199 | HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0. |
||
1910 | - | 200 | } |
201 | } |