Subversion Repositories FlightCtrl

Rev

Rev 2135 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1910 - 1
#include <avr/io.h>
2
#include <avr/interrupt.h>
3
#include "eeprom.h"
2102 - 4
#include "output.h"
5
#include "flight.h"
1910 - 6
#include "attitude.h"
2104 - 7
#include "timer2.h"
1910 - 8
 
2102 - 9
// #define COARSERESOLUTION 1
1910 - 10
 
2099 - 11
#ifdef COARSERESOLUTION
2135 - 12
#define NEUTRAL_PULSELENGTH ((int16_t)(F_CPU/32000*1.5f + 0.5f))
2142 - 13
#define SERVO_NORMAL_LIMIT ((int16_t)(F_CPU/32000*0.5f + 0.5f))
14
#define SERVO_ABS_LIMIT ((int16_t)(F_CPU/32000*0.8f + 0.5f))
15
//#define SCALE_FACTOR 4
2099 - 16
#define CS2 ((1<<CS21)|(1<<CS20))
1910 - 17
 
2099 - 18
#else
2135 - 19
#define NEUTRAL_PULSELENGTH ((int16_t)(F_CPU/8000.0f * 1.5f + 0.5f))
2142 - 20
#define SERVO_NORMAL_LIMIT ((int16_t)(F_CPU/8000.0f * 0.5f + 0.5f))
21
#define SERVO_ABS_LIMIT ((int16_t)(F_CPU/8000.0f * 0.8f + 0.5f))
22
//#define SCALE_FACTOR 16
2099 - 23
#define CS2 (1<<CS21)
24
#endif
1910 - 25
 
2142 - 26
#define FRAMELENGTH ((uint16_t)(NEUTRAL_PULSELENGTH + SERVO_ABS_LIMIT) * (uint16_t)staticParams.servoCount + 128)
2099 - 27
 
28
volatile uint16_t servoValues[MAX_SERVOS];
2142 - 29
//volatile uint8_t recalculateServoTimes = 0;
30
//volatile uint16_t previousManualValues[2];
2099 - 31
 
32
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
33
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
34
 
1910 - 35
/*****************************************************
2099 - 36
 *              Initialize Timer 2
1910 - 37
 *****************************************************/
38
void timer2_init(void) {
2099 - 39
    uint8_t sreg = SREG;
1910 - 40
 
2099 - 41
    // disable all interrupts before reconfiguration
42
    cli();
43
 
44
    // set PD7 as output of the PWM for pitch servo
45
    DDRD |= (1 << DDD7);
46
    PORTD &= ~(1 << PORTD7); // set PD7 to low
47
 
48
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
2109 - 49
    HEF4017R_ON; // reset
2099 - 50
 
51
    // Timer/Counter 2 Control Register A
52
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
53
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
54
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
55
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
56
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
57
 
58
    // Timer/Counter 2 Control Register B
59
 
60
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
61
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
62
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
63
 
64
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
65
    TCCR2B |= CS2;
66
 
67
    // Initialize the Timer/Counter 2 Register
68
    TCNT2 = 0;
69
 
70
    // Initialize the Output Compare Register A used for signal generation on port PD7.
71
    OCR2A = 255;
72
 
73
    // Timer/Counter 2 Interrupt Mask Register
74
    // Enable timer output compare match A Interrupt only
75
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
76
    TIMSK2 |= (1 << OCIE2A);
77
 
2142 - 78
    for (uint8_t i=0; i<MAX_SERVOS; i++)
79
        servoValues[i] = NEUTRAL_PULSELENGTH;
2099 - 80
 
81
    SREG = sreg;
1910 - 82
}
83
 
84
/*****************************************************
2102 - 85
 * Control (camera gimbal etc.) servos
1910 - 86
 *****************************************************/
2142 - 87
/*
2099 - 88
int16_t calculateStabilizedServoAxis(uint8_t axis) {
89
  int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about
90
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
91
  // That is a divisor of about 1<<14. Same conclusion as H&I.
2119 - 92
  value *= staticParams.gimbalServoConfigurations[axis].stabilizationFactor;
2099 - 93
  value = value >> 8;
2119 - 94
  if (staticParams.gimbalServoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
2099 - 95
    return -value;
96
  return value;
97
}
98
 
99
// With constant-speed limitation.
100
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
101
  int16_t diff = manualValue - previousManualValues[axis];
2119 - 102
  uint8_t maxSpeed = staticParams.gimbalServoMaxManualSpeed;
2099 - 103
  if (diff > maxSpeed) diff = maxSpeed;
104
  else if (diff < -maxSpeed) diff = -maxSpeed;
105
  manualValue = previousManualValues[axis] + diff;
106
  previousManualValues[axis] = manualValue;
107
  return manualValue;
108
}
2142 - 109
*/
2099 - 110
 
2142 - 111
/*
2099 - 112
// add stabilization and manual, apply soft position limits.
113
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
114
int16_t featuredServoValue(uint8_t axis) {
2119 - 115
  int16_t value = calculateManualServoAxis(axis, dynamicParams.gimbalServoManualControl[axis] * SCALE_FACTOR);
2099 - 116
  value += calculateStabilizedServoAxis(axis);
2119 - 117
  int16_t limit = staticParams.gimbalServoConfigurations[axis].minValue * SCALE_FACTOR;
2099 - 118
  if (value < limit) value = limit;
2119 - 119
  limit = staticParams.gimbalServoConfigurations[axis].maxValue * SCALE_FACTOR;
2099 - 120
  if (value > limit) value = limit;
121
  value -= (128 * SCALE_FACTOR);
122
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
123
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
124
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
125
  return value + NEUTRAL_PULSELENGTH;
126
}
2142 - 127
*/
2099 - 128
 
2102 - 129
void calculateControlServoValues(void) {
130
  int16_t value;
2103 - 131
  for (uint8_t axis=0; axis<4; axis++) {
2102 - 132
        value = controlServos[axis];
2142 - 133
 
134
        // Apply configurable limits. These are signed: +-128 is twice the normal +- 0.5 ms limit and +- 64 is normal.
135
        int16_t min = (staticParams.servos[axis].minValue * SERVO_NORMAL_LIMIT) >> 6;
136
        int16_t max = (staticParams.servos[axis].maxValue * SERVO_NORMAL_LIMIT) >> 6;
137
 
138
        if (value < min) value = min;
139
        else if (value > max) value = max;
140
 
141
        if (value < -SERVO_ABS_LIMIT) value = -SERVO_ABS_LIMIT;
142
        else if (value > SERVO_ABS_LIMIT) value = SERVO_ABS_LIMIT;
143
 
2102 - 144
        servoValues[axis] = value + NEUTRAL_PULSELENGTH;
145
  }
146
}
147
 
2142 - 148
/*
2102 - 149
void calculateFeaturedServoValues(void) {
150
  int16_t value;
151
  uint8_t axis;
152
 
153
  // Save the computation cost of computing a new value before the old one is used.
2099 - 154
  if (!recalculateServoTimes) return;
2102 - 155
 
2104 - 156
  for (axis= MAX_CONTROL_SERVOS; axis<MAX_CONTROL_SERVOS+2; axis++) {
157
        value = featuredServoValue(axis-MAX_CONTROL_SERVOS);
158
        servoValues[axis] = value;
2099 - 159
  }
2104 - 160
  for (axis=MAX_CONTROL_SERVOS+2; axis<MAX_SERVOS; axis++) {
2102 - 161
        value = 128 * SCALE_FACTOR;
2104 - 162
        servoValues[axis] = value;
2102 - 163
  }
164
 
2099 - 165
  recalculateServoTimes = 0;
166
}
2142 - 167
*/
2099 - 168
 
1910 - 169
ISR(TIMER2_COMPA_vect) {
2099 - 170
  static uint16_t remainingPulseTime;
1910 - 171
  static uint8_t servoIndex = 0;
172
  static uint16_t sumOfPulseTimes = 0;
173
 
174
  if (!remainingPulseTime) {
175
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
2099 - 176
    if (servoIndex < staticParams.servoCount) {
1910 - 177
      // There are more signals to output.
2099 - 178
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]);
1910 - 179
      servoIndex++;
180
    } else {
181
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
2135 - 182
      remainingPulseTime = FRAMELENGTH - sumOfPulseTimes;
1910 - 183
      sumOfPulseTimes = servoIndex = 0;
2142 - 184
      //recalculateServoTimes = 1;
2099 - 185
      HEF4017R_ON;
1910 - 186
    }
187
  }
188
 
189
  // Schedule the next OCR2A event. The counter is already reset at this time.
2099 - 190
  if (remainingPulseTime > 256+128) {
191
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
1910 - 192
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
2099 - 193
    OCR2A = 255;
1910 - 194
    TCCR2A &= ~(1<<COM2A0);
2099 - 195
    remainingPulseTime-=256;
196
  } else if (remainingPulseTime > 256) {
197
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
198
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
1910 - 199
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
2099 - 200
    remainingPulseTime-=128;
201
    OCR2A=127;
1910 - 202
  } else {
203
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
204
    TCCR2A |= (1<<COM2A0);
2099 - 205
    OCR2A = remainingPulseTime-1;
206
    remainingPulseTime=0;
207
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
1910 - 208
  }
209
}