Rev 2122 | Rev 2135 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1910 | - | 1 | #include <stdlib.h> |
2 | #include <avr/io.h> |
||
3 | #include <avr/interrupt.h> |
||
4 | |||
5 | #include "rc.h" |
||
6 | #include "controlMixer.h" |
||
7 | #include "configuration.h" |
||
8 | #include "commands.h" |
||
2099 | - | 9 | #include "output.h" |
1910 | - | 10 | |
2099 | - | 11 | // The channel array is 0-based! |
1910 | - | 12 | volatile int16_t PPM_in[MAX_CHANNELS]; |
2124 | - | 13 | volatile uint16_t RC_buffer[MAX_CHANNELS]; |
14 | volatile uint8_t inBfrPnt = 0; |
||
15 | |||
2099 | - | 16 | volatile uint8_t RCQuality; |
2102 | - | 17 | |
1910 | - | 18 | uint8_t lastRCCommand = COMMAND_NONE; |
2102 | - | 19 | uint8_t lastFlightMode = FLIGHT_MODE_NONE; |
20 | |||
2110 | - | 21 | #define TIME(s) ((int16_t)(((long)F_CPU/(long)8000)*(float)s)) |
2115 | - | 22 | |
1910 | - | 23 | /*************************************************************** |
24 | * 16bit timer 1 is used to decode the PPM-Signal |
||
25 | ***************************************************************/ |
||
26 | void RC_Init(void) { |
||
27 | uint8_t sreg = SREG; |
||
28 | |||
29 | // disable all interrupts before reconfiguration |
||
30 | cli(); |
||
31 | |||
32 | // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1 |
||
2099 | - | 33 | DDRD &= ~(1<<6); |
34 | PORTD |= (1<<PORTD6); |
||
1910 | - | 35 | |
36 | // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5) |
||
37 | // set as output |
||
2099 | - | 38 | DDRD |= (1<<DDD5) | (1<<DDD4) | (1<<DDD3); |
1910 | - | 39 | // low level |
2099 | - | 40 | PORTD &= ~((1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3)); |
1910 | - | 41 | |
42 | // PD3 can't be used if 2nd UART is activated |
||
43 | // because TXD1 is at that port |
||
44 | if (CPUType != ATMEGA644P) { |
||
2099 | - | 45 | DDRD |= (1<<PORTD3); |
46 | PORTD &= ~(1<<PORTD3); |
||
1910 | - | 47 | } |
48 | |||
49 | // Timer/Counter1 Control Register A, B, C |
||
50 | |||
51 | // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0) |
||
52 | // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0) |
||
2119 | - | 53 | // Set clock source to SYSCLK/8 (bit: CS12=0, CS11=1, CS10=0) |
1910 | - | 54 | // Enable input capture noise cancler (bit: ICNC1=1) |
55 | // Trigger on positive edge of the input capture pin (bit: ICES1=1), |
||
2099 | - | 56 | // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s |
1910 | - | 57 | // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s. |
2119 | - | 58 | TCCR1A &= ~((1<<COM1A1)| (1<<COM1A0) | (1<<COM1B1) | (1<<COM1B0) | (1<<WGM11) | (1<<WGM10)); |
59 | TCCR1B &= ~((1<<WGM13) | (1<<WGM12) | (1<<CS12)); |
||
60 | TCCR1B |= (1<<CS11) | (1<<ICNC1); |
||
61 | TCCR1C &= ~((1<<FOC1A) | (1<<FOC1B)); |
||
1910 | - | 62 | |
2119 | - | 63 | if (channelMap.RCPolarity) { |
64 | TCCR1B |= (1<<ICES1); |
||
65 | } else { |
||
66 | TCCR1B &= ~(1<<ICES1); |
||
67 | } |
||
68 | |||
1910 | - | 69 | // Timer/Counter1 Interrupt Mask Register |
70 | // Enable Input Capture Interrupt (bit: ICIE1=1) |
||
71 | // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0) |
||
72 | // Enable Overflow Interrupt (bit: TOIE1=0) |
||
2099 | - | 73 | TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1)); |
74 | TIMSK1 |= (1<<ICIE1); |
||
1910 | - | 75 | |
2099 | - | 76 | RCQuality = 0; |
1910 | - | 77 | |
78 | SREG = sreg; |
||
79 | } |
||
80 | |||
2124 | - | 81 | /* |
82 | * This new and much faster interrupt handler should reduce servo jolts. |
||
83 | */ |
||
84 | ISR(TIMER1_CAPT_vect) { |
||
85 | static uint16_t oldICR1 = 0; |
||
86 | uint16_t signal = (uint16_t)ICR1 - oldICR1; |
||
87 | oldICR1 = ICR1; |
||
88 | //sync gap? (3.5 ms < signal < 25.6 ms) |
||
89 | if (signal > TIME(3.5)) { |
||
90 | inBfrPnt = 0; |
||
91 | } else if (inBfrPnt<MAX_CHANNELS) { |
||
92 | RC_buffer[inBfrPnt++] = signal; |
||
93 | } |
||
94 | } |
||
95 | |||
1910 | - | 96 | /********************************************************************/ |
97 | /* Every time a positive edge is detected at PD6 */ |
||
98 | /********************************************************************/ |
||
99 | /* t-Frame |
||
2099 | - | 100 | <-----------------------------------------------------------------------> |
101 | ____ ______ _____ ________ ______ sync gap ____ |
||
102 | | | | | | | | | | | | |
||
103 | | | | | | | | | | | | |
||
1910 | - | 104 | ___| |_| |_| |_| |_.............| |________________| |
2099 | - | 105 | <-----><-------><------><----------- <------> <--- |
1910 | - | 106 | t0 t1 t2 t4 tn t0 |
107 | |||
108 | The PPM-Frame length is 22.5 ms. |
||
109 | Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse. |
||
110 | The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms. |
||
2099 | - | 111 | The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms. |
1910 | - | 112 | The minimum duration of all channels at minimum value is 8 * 1 ms = 8 ms. |
113 | The maximum duration of all channels at maximum value is 8 * 2 ms = 16 ms. |
||
114 | The remaining time of (22.5 - 8 ms) ms = 14.5 ms to (22.5 - 16 ms) ms = 6.5 ms is |
||
115 | the syncronization gap. |
||
116 | */ |
||
2124 | - | 117 | void RC_process(void) { |
118 | if (RCQuality) RCQuality--; |
||
119 | for (uint8_t channel=0; channel<MAX_CHANNELS; channel++) { |
||
120 | uint16_t signal = RC_buffer[channel]; |
||
121 | if (signal != 0) { |
||
122 | RC_buffer[channel] = 0; // reset to flag value already used. |
||
2110 | - | 123 | if ((signal >= TIME(0.8)) && (signal < TIME(2.2))) { |
2122 | - | 124 | signal -= (TIME(1.5) - 128 + channelMap.HWTrim); |
2124 | - | 125 | if (abs(signal - PPM_in[channel]) < TIME(0.05)) { |
126 | // With 7 channels and 50 frames/sec, we get 350 channel values/sec. |
||
2099 | - | 127 | if (RCQuality < 200) |
2124 | - | 128 | RCQuality += 2; |
1910 | - | 129 | } |
2124 | - | 130 | PPM_in[channel] = signal; |
1910 | - | 131 | } |
132 | } |
||
133 | } |
||
2124 | - | 134 | debugOut.analog[31] = RCQuality; |
1910 | - | 135 | } |
136 | |||
2099 | - | 137 | #define RCChannel(dimension) PPM_in[channelMap.channels[dimension]] |
1910 | - | 138 | |
2103 | - | 139 | uint8_t getControlModeSwitch(void) { |
2109 | - | 140 | int16_t channel = RCChannel(CH_MODESWITCH); |
2110 | - | 141 | uint8_t flightMode = channel < -TIME(0.17) ? FLIGHT_MODE_MANUAL : (channel > TIME(0.17) ? FLIGHT_MODE_ANGLES : FLIGHT_MODE_RATE); |
2102 | - | 142 | return flightMode; |
143 | } |
||
144 | |||
145 | // Gyro calibration is performed as.... well mode switch with no throttle and no airspeed would be nice. |
||
146 | // Maybe simply: Very very low throttle. |
||
147 | // Throttle xlow for COMMAND_TIMER: GYROCAL (once). |
||
148 | // mode switched: CHMOD |
||
149 | |||
150 | uint8_t RC_getCommand(void) { |
||
151 | uint8_t flightMode = getControlModeSwitch(); |
||
152 | |||
153 | if (lastFlightMode != flightMode) { |
||
154 | lastFlightMode = flightMode; |
||
155 | lastRCCommand = COMMAND_CHMOD; |
||
156 | return lastRCCommand; |
||
157 | } |
||
158 | |||
2103 | - | 159 | int16_t channel = RCChannel(CH_THROTTLE); |
2104 | - | 160 | |
2110 | - | 161 | if (channel <= -TIME(0.55)) { |
2124 | - | 162 | int16_t aux = RCChannel(COMMAND_CHANNEL_HORIZONTAL); |
163 | if (abs(aux) >= TIME(0.3)) // If we pull on the stick, it is gyrocal. Else it is RC cal. |
||
164 | lastRCCommand = COMMAND_GYROCAL; |
||
165 | else |
||
166 | lastRCCommand = COMMAND_RCCAL; |
||
2103 | - | 167 | } else { |
168 | lastRCCommand = COMMAND_NONE; |
||
169 | } |
||
2102 | - | 170 | return lastRCCommand; |
171 | } |
||
172 | |||
173 | uint8_t RC_getArgument(void) { |
||
174 | return lastFlightMode; |
||
175 | } |
||
176 | |||
1910 | - | 177 | /* |
2099 | - | 178 | * Get Pitch, Roll, Throttle, Yaw values |
1910 | - | 179 | */ |
2103 | - | 180 | void RC_periodicTaskAndPRYT(int16_t* PRYT) { |
2124 | - | 181 | RC_process(); |
2099 | - | 182 | |
2124 | - | 183 | PRYT[CONTROL_ELEVATOR] = RCChannel(CH_ELEVATOR) - rcTrim.trim[CH_ELEVATOR]; |
184 | PRYT[CONTROL_AILERONS] = RCChannel(CH_AILERONS) - rcTrim.trim[CH_AILERONS]; |
||
185 | PRYT[CONTROL_RUDDER] = RCChannel(CH_RUDDER) - rcTrim.trim[CH_RUDDER]; |
||
186 | PRYT[CONTROL_THROTTLE] = RCChannel(CH_THROTTLE); // no trim on throttle! |
||
2102 | - | 187 | |
2124 | - | 188 | debugOut.analog[20] = PRYT[CONTROL_ELEVATOR]; |
189 | debugOut.analog[21] = PRYT[CONTROL_AILERONS]; |
||
190 | debugOut.analog[22] = PRYT[CONTROL_RUDDER]; |
||
191 | debugOut.analog[23] = PRYT[CONTROL_THROTTLE]; |
||
1910 | - | 192 | } |
193 | |||
194 | /* |
||
195 | * Get other channel value |
||
196 | */ |
||
197 | int16_t RC_getVariable(uint8_t varNum) { |
||
198 | if (varNum < 4) |
||
199 | // 0th variable is 5th channel (1-based) etc. |
||
2116 | - | 200 | return (RCChannel(varNum + CH_POTS) >> 3) + channelMap.variableOffset; |
1910 | - | 201 | /* |
202 | * Let's just say: |
||
2099 | - | 203 | * The RC variable i is hardwired to channel i, i>=4 |
1910 | - | 204 | */ |
2116 | - | 205 | return (PPM_in[varNum] >> 3) + channelMap.variableOffset; |
1910 | - | 206 | } |
207 | |||
208 | uint8_t RC_getSignalQuality(void) { |
||
2099 | - | 209 | if (RCQuality >= 160) |
1910 | - | 210 | return SIGNAL_GOOD; |
2099 | - | 211 | if (RCQuality >= 140) |
1910 | - | 212 | return SIGNAL_OK; |
2099 | - | 213 | if (RCQuality >= 120) |
1910 | - | 214 | return SIGNAL_BAD; |
215 | return SIGNAL_LOST; |
||
216 | } |
||
217 | |||
218 | void RC_calibrate(void) { |
||
2122 | - | 219 | rcTrim.trim[CH_ELEVATOR] = RCChannel(CH_ELEVATOR); |
220 | rcTrim.trim[CH_AILERONS] = RCChannel(CH_AILERONS); |
||
221 | rcTrim.trim[CH_RUDDER] = RCChannel(CH_RUDDER); |
||
222 | rcTrim.trim[CH_THROTTLE] = 0; |
||
1910 | - | 223 | } |
2115 | - | 224 | |
2119 | - | 225 | int16_t RC_getZeroThrottle(void) { |
2115 | - | 226 | return TIME (-0.5); |
227 | } |
||
2122 | - | 228 | |
229 | void RC_setZeroTrim(void) { |
||
230 | for (uint8_t i=0; i<MAX_CHANNELS; i++) { |
||
231 | rcTrim.trim[i] = 0; |
||
232 | } |
||
233 | } |