Rev 2109 | Rev 2115 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1910 | - | 1 | #include <stdlib.h> |
2 | #include <avr/io.h> |
||
3 | #include <avr/interrupt.h> |
||
4 | |||
5 | #include "rc.h" |
||
6 | #include "controlMixer.h" |
||
7 | #include "configuration.h" |
||
8 | #include "commands.h" |
||
2099 | - | 9 | #include "output.h" |
1910 | - | 10 | |
2099 | - | 11 | // The channel array is 0-based! |
1910 | - | 12 | volatile int16_t PPM_in[MAX_CHANNELS]; |
2099 | - | 13 | volatile uint8_t RCQuality; |
2102 | - | 14 | |
1910 | - | 15 | uint8_t lastRCCommand = COMMAND_NONE; |
2102 | - | 16 | uint8_t lastFlightMode = FLIGHT_MODE_NONE; |
17 | |||
2110 | - | 18 | #define TIME(s) ((int16_t)(((long)F_CPU/(long)8000)*(float)s)) |
1910 | - | 19 | /*************************************************************** |
20 | * 16bit timer 1 is used to decode the PPM-Signal |
||
21 | ***************************************************************/ |
||
22 | void RC_Init(void) { |
||
23 | uint8_t sreg = SREG; |
||
24 | |||
25 | // disable all interrupts before reconfiguration |
||
26 | cli(); |
||
27 | |||
28 | // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1 |
||
2099 | - | 29 | DDRD &= ~(1<<6); |
30 | PORTD |= (1<<PORTD6); |
||
1910 | - | 31 | |
32 | // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5) |
||
33 | // set as output |
||
2099 | - | 34 | DDRD |= (1<<DDD5) | (1<<DDD4) | (1<<DDD3); |
1910 | - | 35 | // low level |
2099 | - | 36 | PORTD &= ~((1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3)); |
1910 | - | 37 | |
38 | // PD3 can't be used if 2nd UART is activated |
||
39 | // because TXD1 is at that port |
||
40 | if (CPUType != ATMEGA644P) { |
||
2099 | - | 41 | DDRD |= (1<<PORTD3); |
42 | PORTD &= ~(1<<PORTD3); |
||
1910 | - | 43 | } |
44 | |||
45 | // Timer/Counter1 Control Register A, B, C |
||
46 | |||
47 | // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0) |
||
48 | // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0) |
||
49 | // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1) |
||
50 | // Enable input capture noise cancler (bit: ICNC1=1) |
||
51 | // Trigger on positive edge of the input capture pin (bit: ICES1=1), |
||
2099 | - | 52 | // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s |
1910 | - | 53 | // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s. |
2099 | - | 54 | TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0) | (1 << WGM11) | (1 << WGM10)); |
1910 | - | 55 | TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12)); |
2109 | - | 56 | TCCR1B |= (1 << CS11) | (1 << ICES1) | (1 << ICNC1); |
1910 | - | 57 | TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B)); |
58 | |||
59 | // Timer/Counter1 Interrupt Mask Register |
||
60 | // Enable Input Capture Interrupt (bit: ICIE1=1) |
||
61 | // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0) |
||
62 | // Enable Overflow Interrupt (bit: TOIE1=0) |
||
2099 | - | 63 | TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1)); |
64 | TIMSK1 |= (1<<ICIE1); |
||
1910 | - | 65 | |
2099 | - | 66 | RCQuality = 0; |
1910 | - | 67 | |
68 | SREG = sreg; |
||
69 | } |
||
70 | |||
71 | /********************************************************************/ |
||
72 | /* Every time a positive edge is detected at PD6 */ |
||
73 | /********************************************************************/ |
||
74 | /* t-Frame |
||
2099 | - | 75 | <-----------------------------------------------------------------------> |
76 | ____ ______ _____ ________ ______ sync gap ____ |
||
77 | | | | | | | | | | | | |
||
78 | | | | | | | | | | | | |
||
1910 | - | 79 | ___| |_| |_| |_| |_.............| |________________| |
2099 | - | 80 | <-----><-------><------><----------- <------> <--- |
1910 | - | 81 | t0 t1 t2 t4 tn t0 |
82 | |||
83 | The PPM-Frame length is 22.5 ms. |
||
84 | Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse. |
||
85 | The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms. |
||
2099 | - | 86 | The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms. |
1910 | - | 87 | The minimum duration of all channels at minimum value is 8 * 1 ms = 8 ms. |
88 | The maximum duration of all channels at maximum value is 8 * 2 ms = 16 ms. |
||
89 | The remaining time of (22.5 - 8 ms) ms = 14.5 ms to (22.5 - 16 ms) ms = 6.5 ms is |
||
90 | the syncronization gap. |
||
91 | */ |
||
2099 | - | 92 | ISR(TIMER1_CAPT_vect) { // typical rate of 1 ms to 2 ms |
2107 | - | 93 | int16_t signal, tmp; |
1910 | - | 94 | static int16_t index; |
95 | static uint16_t oldICR1 = 0; |
||
96 | |||
97 | // 16bit Input Capture Register ICR1 contains the timer value TCNT1 |
||
98 | // at the time the edge was detected |
||
99 | |||
100 | // calculate the time delay to the previous event time which is stored in oldICR1 |
||
101 | // calculatiing the difference of the two uint16_t and converting the result to an int16_t |
||
102 | // implicit handles a timer overflow 65535 -> 0 the right way. |
||
103 | signal = (uint16_t) ICR1 - oldICR1; |
||
104 | oldICR1 = ICR1; |
||
105 | |||
2109 | - | 106 | //sync gap? (3.5 ms < signal < 25.6 ms) |
2110 | - | 107 | if (signal > TIME(3.5)) { |
2099 | - | 108 | index = 0; |
1910 | - | 109 | } else { // within the PPM frame |
2099 | - | 110 | if (index < MAX_CHANNELS) { // PPM24 supports 12 channels |
2109 | - | 111 | // check for valid signal length (0.8 ms < signal < 2.2 ms) |
2110 | - | 112 | if ((signal >= TIME(0.8)) && (signal < TIME(2.2))) { |
1910 | - | 113 | // shift signal to zero symmetric range -154 to 159 |
2109 | - | 114 | //signal -= 3750; // theoretical value |
2110 | - | 115 | signal -= (TIME(1.5) + RC_TRIM); // best value with my Futaba in zero trim. |
2099 | - | 116 | // check for stable signal |
2110 | - | 117 | if (abs(signal - PPM_in[index]) < TIME(0.05)) { |
2099 | - | 118 | if (RCQuality < 200) |
119 | RCQuality += 10; |
||
1910 | - | 120 | else |
2099 | - | 121 | RCQuality = 200; |
1910 | - | 122 | } |
2099 | - | 123 | // If signal is the same as before +/- 1, just keep it there. Naah lets get rid of this slimy sticy stuff. |
124 | // if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) { |
||
125 | // In addition, if the signal is very close to 0, just set it to 0. |
||
126 | if (signal >= -1 && signal <= 1) { |
||
127 | tmp = 0; |
||
128 | //} else { |
||
129 | // tmp = PPM_in[index]; |
||
130 | // } |
||
131 | } else |
||
132 | tmp = signal; |
||
133 | PPM_in[index] = tmp; // update channel value |
||
1910 | - | 134 | } |
135 | index++; // next channel |
||
2099 | - | 136 | // demux sum signal for channels 5 to 7 to J3, J4, J5 |
137 | // TODO: General configurability of this R/C channel forwarding. Or remove it completely - the |
||
138 | // channels are usually available at the receiver anyway. |
||
139 | // if(index == 5) J3HIGH; else J3LOW; |
||
140 | // if(index == 6) J4HIGH; else J4LOW; |
||
141 | // if(CPUType != ATMEGA644P) // not used as TXD1 |
||
142 | // { |
||
143 | // if(index == 7) J5HIGH; else J5LOW; |
||
144 | // } |
||
1910 | - | 145 | } |
146 | } |
||
147 | } |
||
148 | |||
2099 | - | 149 | #define RCChannel(dimension) PPM_in[channelMap.channels[dimension]] |
150 | #define COMMAND_CHANNEL_VERTICAL CH_THROTTLE |
||
151 | #define COMMAND_CHANNEL_HORIZONTAL CH_YAW |
||
1910 | - | 152 | |
2103 | - | 153 | uint8_t getControlModeSwitch(void) { |
2109 | - | 154 | int16_t channel = RCChannel(CH_MODESWITCH); |
2110 | - | 155 | uint8_t flightMode = channel < -TIME(0.17) ? FLIGHT_MODE_MANUAL : (channel > TIME(0.17) ? FLIGHT_MODE_ANGLES : FLIGHT_MODE_RATE); |
2102 | - | 156 | return flightMode; |
157 | } |
||
158 | |||
159 | // Gyro calibration is performed as.... well mode switch with no throttle and no airspeed would be nice. |
||
160 | // Maybe simply: Very very low throttle. |
||
161 | // Throttle xlow for COMMAND_TIMER: GYROCAL (once). |
||
162 | // mode switched: CHMOD |
||
163 | |||
164 | uint8_t RC_getCommand(void) { |
||
165 | uint8_t flightMode = getControlModeSwitch(); |
||
166 | |||
167 | if (lastFlightMode != flightMode) { |
||
168 | lastFlightMode = flightMode; |
||
169 | lastRCCommand = COMMAND_CHMOD; |
||
170 | return lastRCCommand; |
||
171 | } |
||
172 | |||
2103 | - | 173 | int16_t channel = RCChannel(CH_THROTTLE); |
2104 | - | 174 | |
2110 | - | 175 | if (channel <= -TIME(0.55)) { |
2109 | - | 176 | lastRCCommand = COMMAND_GYROCAL; |
2103 | - | 177 | } else { |
178 | lastRCCommand = COMMAND_NONE; |
||
179 | } |
||
2102 | - | 180 | return lastRCCommand; |
181 | } |
||
182 | |||
183 | uint8_t RC_getArgument(void) { |
||
184 | return lastFlightMode; |
||
185 | } |
||
186 | |||
1910 | - | 187 | /* |
2099 | - | 188 | * Get Pitch, Roll, Throttle, Yaw values |
1910 | - | 189 | */ |
2103 | - | 190 | void RC_periodicTaskAndPRYT(int16_t* PRYT) { |
2099 | - | 191 | if (RCQuality) { |
192 | RCQuality--; |
||
193 | |||
2103 | - | 194 | debugOut.analog[20] = RCChannel(CH_ELEVATOR); |
195 | debugOut.analog[21] = RCChannel(CH_AILERONS); |
||
196 | debugOut.analog[22] = RCChannel(CH_RUDDER); |
||
197 | debugOut.analog[23] = RCChannel(CH_THROTTLE); |
||
2102 | - | 198 | |
2109 | - | 199 | PRYT[CONTROL_ELEVATOR] = RCChannel(CH_ELEVATOR) / RC_SCALING; |
200 | PRYT[CONTROL_AILERONS] = RCChannel(CH_AILERONS) / RC_SCALING; |
||
201 | PRYT[CONTROL_RUDDER] = RCChannel(CH_RUDDER) / RC_SCALING; |
||
202 | PRYT[CONTROL_THROTTLE] = RCChannel(CH_THROTTLE) / RC_SCALING; |
||
2099 | - | 203 | } // if RCQuality is no good, we just do nothing. |
1910 | - | 204 | } |
205 | |||
206 | /* |
||
207 | * Get other channel value |
||
208 | */ |
||
209 | int16_t RC_getVariable(uint8_t varNum) { |
||
210 | if (varNum < 4) |
||
211 | // 0th variable is 5th channel (1-based) etc. |
||
2110 | - | 212 | return (RCChannel(varNum + CH_POTS) >> 3) + VARIABLE_OFFSET; |
1910 | - | 213 | /* |
214 | * Let's just say: |
||
2099 | - | 215 | * The RC variable i is hardwired to channel i, i>=4 |
1910 | - | 216 | */ |
2110 | - | 217 | return (PPM_in[varNum] >> 3) + VARIABLE_OFFSET; |
1910 | - | 218 | } |
219 | |||
220 | uint8_t RC_getSignalQuality(void) { |
||
2099 | - | 221 | if (RCQuality >= 160) |
1910 | - | 222 | return SIGNAL_GOOD; |
2099 | - | 223 | if (RCQuality >= 140) |
1910 | - | 224 | return SIGNAL_OK; |
2099 | - | 225 | if (RCQuality >= 120) |
1910 | - | 226 | return SIGNAL_BAD; |
227 | return SIGNAL_LOST; |
||
228 | } |
||
229 | |||
230 | /* |
||
231 | * To should fired only when the right stick is in the center position. |
||
232 | * This will cause the value of pitch and roll stick to be adjusted |
||
233 | * to zero (not just to near zero, as per the assumption in rc.c |
||
234 | * about the rc signal. I had values about 50..70 with a Futaba |
||
235 | * R617 receiver.) This calibration is not strictly necessary, but |
||
236 | * for control logic that depends on the exact (non)center position |
||
237 | * of a stick, it may be useful. |
||
238 | */ |
||
239 | void RC_calibrate(void) { |
||
240 | // Do nothing. |
||
241 | } |