Subversion Repositories FlightCtrl

Rev

Rev 2110 | Rev 2116 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1910 - 1
#include <stdlib.h>
2
#include <avr/io.h>
3
#include <avr/interrupt.h>
4
 
5
#include "rc.h"
6
#include "controlMixer.h"
7
#include "configuration.h"
8
#include "commands.h"
2099 - 9
#include "output.h"
1910 - 10
 
2099 - 11
// The channel array is 0-based!
1910 - 12
volatile int16_t PPM_in[MAX_CHANNELS];
2099 - 13
volatile uint8_t RCQuality;
2102 - 14
 
1910 - 15
uint8_t lastRCCommand = COMMAND_NONE;
2102 - 16
uint8_t lastFlightMode = FLIGHT_MODE_NONE;
17
 
2110 - 18
#define TIME(s) ((int16_t)(((long)F_CPU/(long)8000)*(float)s))
2115 - 19
 
1910 - 20
/***************************************************************
21
 *  16bit timer 1 is used to decode the PPM-Signal            
22
 ***************************************************************/
23
void RC_Init(void) {
24
  uint8_t sreg = SREG;
25
 
26
  // disable all interrupts before reconfiguration
27
  cli();
28
 
29
  // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
2099 - 30
  DDRD &= ~(1<<6);
31
  PORTD |= (1<<PORTD6);
1910 - 32
 
33
  // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
34
  // set as output
2099 - 35
  DDRD |= (1<<DDD5) | (1<<DDD4) | (1<<DDD3);
1910 - 36
  // low level
2099 - 37
  PORTD &= ~((1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3));
1910 - 38
 
39
  // PD3 can't be used if 2nd UART is activated
40
  // because TXD1 is at that port
41
  if (CPUType != ATMEGA644P) {
2099 - 42
    DDRD |= (1<<PORTD3);
43
    PORTD &= ~(1<<PORTD3);
1910 - 44
  }
45
 
46
  // Timer/Counter1 Control Register A, B, C
47
 
48
  // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
49
  // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
50
  // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
51
  // Enable input capture noise cancler (bit: ICNC1=1)
52
  // Trigger on positive edge of the input capture pin (bit: ICES1=1),
2099 - 53
  // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s
1910 - 54
  // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
2099 - 55
  TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0) | (1 << WGM11) | (1 << WGM10));
1910 - 56
  TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12));
2109 - 57
  TCCR1B |= (1 << CS11) | (1 << ICES1) | (1 << ICNC1);
1910 - 58
  TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B));
59
 
60
  // Timer/Counter1 Interrupt Mask Register
61
  // Enable Input Capture Interrupt (bit: ICIE1=1)
62
  // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
63
  // Enable Overflow Interrupt (bit: TOIE1=0)
2099 - 64
  TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1));
65
  TIMSK1 |= (1<<ICIE1);
1910 - 66
 
2099 - 67
  RCQuality = 0;
1910 - 68
 
69
  SREG = sreg;
70
}
71
 
72
/********************************************************************/
73
/*         Every time a positive edge is detected at PD6            */
74
/********************************************************************/
75
/*                               t-Frame
2099 - 76
    <----------------------------------------------------------------------->
77
     ____   ______   _____   ________                ______    sync gap      ____
78
    |    | |      | |     | |        |              |      |                |
79
    |    | |      | |     | |        |              |      |                |
1910 - 80
 ___|    |_|      |_|     |_|        |_.............|      |________________|
2099 - 81
    <-----><-------><------><-----------            <------>                <---
1910 - 82
 t0       t1      t2       t4                     tn                     t0
83
 
84
 The PPM-Frame length is 22.5 ms.
85
 Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse.
86
 The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms.
2099 - 87
 The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms.
1910 - 88
 The minimum duration of all channels at minimum value is  8 * 1 ms = 8 ms.
89
 The maximum duration of all channels at maximum value is  8 * 2 ms = 16 ms.
90
 The remaining time of (22.5 - 8 ms) ms = 14.5 ms  to (22.5 - 16 ms) ms = 6.5 ms is
91
 the syncronization gap.
92
 */
2099 - 93
ISR(TIMER1_CAPT_vect) { // typical rate of 1 ms to 2 ms
2107 - 94
  int16_t signal, tmp;
1910 - 95
  static int16_t index;
96
  static uint16_t oldICR1 = 0;
97
 
98
  // 16bit Input Capture Register ICR1 contains the timer value TCNT1
99
  // at the time the edge was detected
100
 
101
  // calculate the time delay to the previous event time which is stored in oldICR1
102
  // calculatiing the difference of the two uint16_t and converting the result to an int16_t
103
  // implicit handles a timer overflow 65535 -> 0 the right way.
104
  signal = (uint16_t) ICR1 - oldICR1;
105
  oldICR1 = ICR1;
106
 
2109 - 107
  //sync gap? (3.5 ms < signal < 25.6 ms)
2110 - 108
  if (signal > TIME(3.5)) {
2099 - 109
    index = 0;
1910 - 110
  } else { // within the PPM frame
2099 - 111
    if (index < MAX_CHANNELS) { // PPM24 supports 12 channels
2109 - 112
      // check for valid signal length (0.8 ms < signal < 2.2 ms)
2110 - 113
      if ((signal >= TIME(0.8)) && (signal < TIME(2.2))) {
1910 - 114
        // shift signal to zero symmetric range  -154 to 159
2109 - 115
        //signal -= 3750; // theoretical value
2110 - 116
        signal -= (TIME(1.5) + RC_TRIM); // best value with my Futaba in zero trim.
2099 - 117
        // check for stable signal
2110 - 118
        if (abs(signal - PPM_in[index]) < TIME(0.05)) {
2099 - 119
          if (RCQuality < 200)
120
            RCQuality += 10;
1910 - 121
          else
2099 - 122
            RCQuality = 200;
1910 - 123
        }
2099 - 124
        // If signal is the same as before +/- 1, just keep it there. Naah lets get rid of this slimy sticy stuff.
125
        // if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) {
126
          // In addition, if the signal is very close to 0, just set it to 0.
127
        if (signal >= -1 && signal <= 1) {
128
          tmp = 0;
129
        //} else {
130
        //  tmp = PPM_in[index];
131
        //  }
132
        } else
133
          tmp = signal;
134
        PPM_in[index] = tmp; // update channel value
1910 - 135
      }
136
      index++; // next channel
2099 - 137
      // demux sum signal for channels 5 to 7 to J3, J4, J5
138
      // TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
139
      // channels are usually available at the receiver anyway.
140
      // if(index == 5) J3HIGH; else J3LOW;
141
      // if(index == 6) J4HIGH; else J4LOW;
142
      // if(CPUType != ATMEGA644P) // not used as TXD1
143
      //  {
144
      //    if(index == 7) J5HIGH; else J5LOW;
145
      //  }
1910 - 146
    }
147
  }
148
}
149
 
2099 - 150
#define RCChannel(dimension) PPM_in[channelMap.channels[dimension]]
151
#define COMMAND_CHANNEL_VERTICAL CH_THROTTLE
152
#define COMMAND_CHANNEL_HORIZONTAL CH_YAW
1910 - 153
 
2103 - 154
uint8_t getControlModeSwitch(void) {
2109 - 155
        int16_t channel = RCChannel(CH_MODESWITCH);
2110 - 156
        uint8_t flightMode = channel < -TIME(0.17) ? FLIGHT_MODE_MANUAL : (channel > TIME(0.17) ? FLIGHT_MODE_ANGLES : FLIGHT_MODE_RATE);
2102 - 157
        return flightMode;
158
}
159
 
160
// Gyro calibration is performed as.... well mode switch with no throttle and no airspeed would be nice.
161
// Maybe simply: Very very low throttle.
162
// Throttle xlow for COMMAND_TIMER: GYROCAL (once).
163
// mode switched: CHMOD
164
 
165
uint8_t RC_getCommand(void) {
166
        uint8_t flightMode = getControlModeSwitch();
167
 
168
        if (lastFlightMode != flightMode) {
169
                lastFlightMode = flightMode;
170
                lastRCCommand = COMMAND_CHMOD;
171
                return lastRCCommand;
172
        }
173
 
2103 - 174
        int16_t channel = RCChannel(CH_THROTTLE);
2104 - 175
 
2110 - 176
        if (channel <= -TIME(0.55)) {
2109 - 177
          lastRCCommand = COMMAND_GYROCAL;
2103 - 178
        } else {
179
          lastRCCommand = COMMAND_NONE;
180
        }
2102 - 181
        return lastRCCommand;
182
}
183
 
184
uint8_t RC_getArgument(void) {
185
        return lastFlightMode;
186
}
187
 
1910 - 188
/*
2099 - 189
 * Get Pitch, Roll, Throttle, Yaw values
1910 - 190
 */
2103 - 191
void RC_periodicTaskAndPRYT(int16_t* PRYT) {
2099 - 192
  if (RCQuality) {
193
    RCQuality--;
194
 
2103 - 195
    debugOut.analog[20] = RCChannel(CH_ELEVATOR);
196
    debugOut.analog[21] = RCChannel(CH_AILERONS);
197
    debugOut.analog[22] = RCChannel(CH_RUDDER);
198
    debugOut.analog[23] = RCChannel(CH_THROTTLE);
2102 - 199
 
2109 - 200
    PRYT[CONTROL_ELEVATOR]   = RCChannel(CH_ELEVATOR) / RC_SCALING;
201
    PRYT[CONTROL_AILERONS]   = RCChannel(CH_AILERONS) / RC_SCALING;
202
    PRYT[CONTROL_RUDDER]     = RCChannel(CH_RUDDER)   / RC_SCALING;
203
    PRYT[CONTROL_THROTTLE]   = RCChannel(CH_THROTTLE) / RC_SCALING;
2099 - 204
  } // if RCQuality is no good, we just do nothing.
1910 - 205
}
206
 
207
/*
208
 * Get other channel value
209
 */
210
int16_t RC_getVariable(uint8_t varNum) {
211
  if (varNum < 4)
212
    // 0th variable is 5th channel (1-based) etc.
2110 - 213
    return (RCChannel(varNum + CH_POTS) >> 3) + VARIABLE_OFFSET;
1910 - 214
  /*
215
   * Let's just say:
2099 - 216
   * The RC variable i is hardwired to channel i, i>=4
1910 - 217
   */
2110 - 218
  return (PPM_in[varNum] >> 3) + VARIABLE_OFFSET;
1910 - 219
}
220
 
221
uint8_t RC_getSignalQuality(void) {
2099 - 222
  if (RCQuality >= 160)
1910 - 223
    return SIGNAL_GOOD;
2099 - 224
  if (RCQuality >= 140)
1910 - 225
    return SIGNAL_OK;
2099 - 226
  if (RCQuality >= 120)
1910 - 227
    return SIGNAL_BAD;
228
  return SIGNAL_LOST;
229
}
230
 
231
void RC_calibrate(void) {
232
  // Do nothing.
233
}
2115 - 234
 
235
int16_t RC_getZeroThrottle() {
236
        return TIME (-0.5);
237
}