Subversion Repositories FlightCtrl

Rev

Rev 1924 | Rev 1927 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1910 - 1
/************************************************************************/
2
/* Flight Attitude                                                      */
3
/************************************************************************/
4
 
5
#include <stdlib.h>
6
#include <avr/io.h>
7
 
8
#include "attitude.h"
9
#include "dongfangMath.h"
10
 
11
// For scope debugging only!
12
#include "rc.h"
13
 
14
// where our main data flow comes from.
15
#include "analog.h"
16
 
17
#include "configuration.h"
18
#include "output.h"
19
 
20
// Some calculations are performed depending on some stick related things.
21
#include "controlMixer.h"
22
 
23
// For Servo_On / Off
24
// #include "timer2.h"
25
 
26
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
27
 
28
/*
29
 * Gyro readings, as read from the analog module. It would have been nice to flow
30
 * them around between the different calculations as a struct or array (doing
31
 * things functionally without side effects) but this is shorter and probably
32
 * faster too.
33
 * The variables are overwritten at each attitude calculation invocation - the values
34
 * are not preserved or reused.
35
 */
36
int16_t rate_ATT[2], yawRate;
37
 
38
// With different (less) filtering
39
int16_t rate_PID[2];
40
int16_t differential[3];
41
 
42
/*
1922 - 43
 * Gyro integrals. These are the rotation angles of the airframe compared to the
44
 * horizontal plane, yaw relative to yaw at start. Not really used for anything else
45
 * than diagnostics.
1910 - 46
 */
1926 - 47
int32_t angle[2];
1910 - 48
 
49
/*
1922 - 50
 * Error integrals. Stick is always positive. Gyro is configurable positive or negative.
51
 * These represent the deviation of the attitude angle from the desired on each axis.
1910 - 52
 */
1922 - 53
int32_t error[3];
1910 - 54
 
55
// Yaw angle and compass stuff.
56
// This is updated/written from MM3. Negative angle indicates invalid data.
57
int16_t compassHeading = -1;
58
 
59
// This is NOT updated from MM3. Negative angle indicates invalid data.
60
int16_t compassCourse = -1;
61
 
62
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
63
// Not necessary. Never read anywhere.
64
// int16_t compassOffCourse = 0;
65
 
66
uint8_t updateCompassCourse = 0;
67
uint8_t compassCalState = 0;
68
uint16_t ignoreCompassTimer = 500;
69
 
70
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
71
 
72
int16_t correctionSum[2] = { 0, 0 };
73
 
74
// For NaviCTRL use.
75
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
76
 
77
/*
78
 * Experiment: Compensating for dynamic-induced gyro biasing.
79
 */
80
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
81
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
82
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
83
// int16_t dynamicCalCount;
84
 
85
/************************************************************************
86
 * Set inclination angles from the acc. sensor data.                    
87
 * If acc. sensors are not used, set to zero.                          
88
 * TODO: One could use inverse sine to calculate the angles more        
89
 * accurately, but since: 1) the angles are rather small at times when
90
 * it makes sense to set the integrals (standing on ground, or flying at  
91
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
92
 * it is hardly worth the trouble.                                      
93
 ************************************************************************/
94
 
95
int32_t getAngleEstimateFromAcc(uint8_t axis) {
96
  return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
97
}
98
 
99
void setStaticAttitudeAngles(void) {
100
#ifdef ATTITUDE_USE_ACC_SENSORS
101
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
102
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
103
#else
104
  angle[PITCH] = angle[ROLL] = 0;
105
#endif
106
}
107
 
108
/************************************************************************
109
 * Neutral Readings                                                    
110
 ************************************************************************/
111
void attitude_setNeutral(void) {
112
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
1926 - 113
  driftComp[PITCH] = driftComp[ROLL];
1910 - 114
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
115
 
116
  // Calibrate hardware.
117
  analog_calibrate();
118
 
119
  // reset gyro integrals to acc guessing
120
  setStaticAttitudeAngles();
121
 
122
  // update compass course to current heading
123
  compassCourse = compassHeading;
124
 
125
  // Inititialize YawGyroIntegral value with current compass heading
126
  yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
127
 
128
  // Servo_On(); //enable servo output
129
}
130
 
131
/************************************************************************
132
 * Get sensor data from the analog module, and release the ADC          
133
 * TODO: Ultimately, the analog module could do this (instead of dumping
134
 * the values into variables).
135
 * The rate variable end up in a range of about [-1024, 1023].
136
 *************************************************************************/
137
void getAnalogData(void) {
138
  uint8_t axis;
139
 
140
  for (axis = PITCH; axis <= ROLL; axis++) {
141
    rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
142
    rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
143
    differential[axis] = gyroD[axis];
144
    averageAcc[axis] += acc[axis];
145
  }
146
 
147
  differential[YAW] = gyroD[YAW];
148
 
149
  averageAccCount++;
150
  yawRate = yawGyro + driftCompYaw;
151
 
152
  // We are done reading variables from the analog module.
153
  // Interrupt-driven sensor reading may restart.
154
  analogDataReady = 0;
155
  analog_start();
156
}
157
 
158
void integrate(void) {
159
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
160
  uint8_t axis;
161
 
1926 - 162
    // TODO: Multiply on a factor. Wont work without...
1924 - 163
  error[PITCH] += control[CONTROL_ELEVATOR];
164
  error[ROLL] += control[CONTROL_AILERONS];
165
  error[YAW] += control[CONTROL_RUDDER];
166
 
1910 - 167
  if (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE) {
1926 - 168
      error[PITCH] += control[CONTROL_ELEVATOR] + (staticParams.ControlSigns & 1 ? rate_ATT[PITCH] : -rate_ATT[PITCH]);
169
      error[ROLL]  += control[CONTROL_AILERONS] + (staticParams.ControlSigns & 2 ? rate_ATT[ROLL]  : -rate_ATT[ROLL]);
170
      error[YAW]   += control[CONTROL_RUDDER]   + (staticParams.ControlSigns & 4 ? yawRate : -yawRate);
1910 - 171
  } else {
1926 - 172
      error[PITCH] += control[CONTROL_ELEVATOR] + (staticParams.ControlSigns & 1 ? rate_ATT[PITCH] : -rate_ATT[PITCH]);
173
      error[ROLL]  += control[CONTROL_AILERONS] + (staticParams.ControlSigns & 2 ? rate_ATT[ROLL]  : -rate_ATT[ROLL]);
174
      error[YAW]   += control[CONTROL_RUDDER]   + (staticParams.ControlSigns & 4 ? yawRate : -yawRate);
1910 - 175
  }
176
 
1922 - 177
    for (axis=PITCH; axis<=YAW; axis++) {
178
  if (error[axis] > ERRORLIMIT) {
179
        error[axis] = ERRORLIMIT;
180
    } else if (angle[axis] <= -ERRORLIMIT) {
181
        angle[axis] = -ERRORLIMIT;
182
    }
183
    }
184
 
1910 - 185
  /*
186
   * Yaw
187
   * Calculate yaw gyro integral (~ to rotation angle)
188
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
189
   */
190
  yawGyroHeading += ACYawRate;
191
 
192
  if (yawGyroHeading >= YAWOVER360) {
193
    yawGyroHeading -= YAWOVER360; // 360 deg. wrap
194
  } else if (yawGyroHeading < 0) {
195
    yawGyroHeading += YAWOVER360;
196
  }
197
 
198
  /*
199
   * Pitch axis integration and range boundary wrap.
200
   */
201
  for (axis = PITCH; axis <= ROLL; axis++) {
1922 - 202
    angle[axis] += rate_ATT[axis];
1910 - 203
    if (angle[axis] > PITCHROLLOVER180) {
204
      angle[axis] -= PITCHROLLOVER360;
205
    } else if (angle[axis] <= -PITCHROLLOVER180) {
206
      angle[axis] += PITCHROLLOVER360;
207
    }
208
  }
209
}
210
 
211
/************************************************************************
212
 * A kind of 0'th order integral correction, that corrects the integrals
213
 * directly. This is the "gyroAccFactor" stuff in the original code.
214
 * There is (there) also a drift compensation
215
 * - it corrects the differential of the integral = the gyro offsets.
216
 * That should only be necessary with drifty gyros like ENC-03.
217
 ************************************************************************/
218
void correctIntegralsByAcc0thOrder(void) {
219
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
220
  // are less than ....., or reintroduce Kalman.
221
  // Well actually the Z axis acc. check is not so silly.
222
  uint8_t axis;
223
  int32_t temp;
224
  if (acc[Z] >= -dynamicParams.UserParams[7] && acc[Z]
225
      <= dynamicParams.UserParams[7]) {
226
    DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
227
 
228
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
229
    uint8_t debugFullWeight = 1;
230
    int32_t accDerived;
231
 
232
    if ((control[YAW] < -64) || (control[YAW] > 64)) { // reduce further if yaw stick is active
233
      permilleAcc /= 2;
234
      debugFullWeight = 0;
235
    }
236
 
237
    if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
238
      permilleAcc /= 2;
239
      debugFullWeight = 0;
240
    }
241
 
242
    if (debugFullWeight)
243
      DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
244
    else
245
      DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
246
 
247
    /*
248
     * Add to each sum: The amount by which the angle is changed just below.
249
     */
250
    for (axis = PITCH; axis <= ROLL; axis++) {
251
      accDerived = getAngleEstimateFromAcc(axis);
252
      // DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
253
 
254
      // 1000 * the correction amount that will be added to the gyro angle in next line.
255
      temp = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
256
      angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
257
          + (int32_t) permilleAcc * accDerived) / 1000L;
258
      correctionSum[axis] += angle[axis] - temp;
259
    }
260
  } else {
261
    DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER;
262
    DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
263
    // DebugOut.Analog[9] = 0;
264
    // DebugOut.Analog[10] = 0;
265
 
266
    DebugOut.Analog[16] = 0;
267
    DebugOut.Analog[17] = 0;
268
    // experiment: Kill drift compensation updates when not flying smooth.
269
    correctionSum[PITCH] = correctionSum[ROLL] = 0;
270
  }
271
}
272
 
273
/************************************************************************
274
 * This is an attempt to correct not the error in the angle integrals
275
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
276
 * cause of it: Gyro drift, vibration and rounding errors.
277
 * All the corrections made in correctIntegralsByAcc0thOrder over
278
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
279
 * then divided by DRIFTCORRECTION_TIME to get the approx.
280
 * correction that should have been applied to each iteration to fix
281
 * the error. This is then added to the dynamic offsets.
282
 ************************************************************************/
283
// 2 times / sec. = 488/2
284
#define DRIFTCORRECTION_TIME 256L
285
void driftCorrection(void) {
286
  static int16_t timer = DRIFTCORRECTION_TIME;
287
  int16_t deltaCorrection;
288
  int16_t round;
289
  uint8_t axis;
290
 
291
  if (!--timer) {
292
    timer = DRIFTCORRECTION_TIME;
293
    for (axis = PITCH; axis <= ROLL; axis++) {
294
      // Take the sum of corrections applied, add it to delta
295
      if (correctionSum[axis] >=0)
296
        round = DRIFTCORRECTION_TIME / 2;
297
      else
298
        round = -DRIFTCORRECTION_TIME / 2;
299
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
300
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
301
      driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
302
      CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
303
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
304
      DebugOut.Analog[16 + axis] = correctionSum[axis];
305
      DebugOut.Analog[28 + axis] = driftComp[axis];
306
 
307
      correctionSum[axis] = 0;
308
    }
309
  }
310
}
311
 
312
/************************************************************************
313
 * Main procedure.
314
 ************************************************************************/
315
void calculateFlightAttitude(void) {
316
  getAnalogData();
317
  integrate();
318
 
319
  DebugOut.Analog[3] = rate_PID[PITCH];
320
  DebugOut.Analog[4] = rate_PID[ROLL];
321
  DebugOut.Analog[5] = yawRate;
322
 
323
#ifdef ATTITUDE_USE_ACC_SENSORS
324
  correctIntegralsByAcc0thOrder();
325
  driftCorrection();
326
#endif
327
}