Rev 1922 | Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1910 | - | 1 | /************************************************************************/ |
2 | /* Flight Attitude */ |
||
3 | /************************************************************************/ |
||
4 | |||
5 | #include <stdlib.h> |
||
6 | #include <avr/io.h> |
||
7 | |||
8 | #include "attitude.h" |
||
9 | #include "dongfangMath.h" |
||
10 | |||
11 | // For scope debugging only! |
||
12 | #include "rc.h" |
||
13 | |||
14 | // where our main data flow comes from. |
||
15 | #include "analog.h" |
||
16 | |||
17 | #include "configuration.h" |
||
18 | #include "output.h" |
||
19 | |||
20 | // Some calculations are performed depending on some stick related things. |
||
21 | #include "controlMixer.h" |
||
22 | |||
23 | // For Servo_On / Off |
||
24 | // #include "timer2.h" |
||
25 | |||
26 | #define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;} |
||
27 | |||
28 | /* |
||
29 | * Gyro readings, as read from the analog module. It would have been nice to flow |
||
30 | * them around between the different calculations as a struct or array (doing |
||
31 | * things functionally without side effects) but this is shorter and probably |
||
32 | * faster too. |
||
33 | * The variables are overwritten at each attitude calculation invocation - the values |
||
34 | * are not preserved or reused. |
||
35 | */ |
||
36 | int16_t rate_ATT[2], yawRate; |
||
37 | |||
38 | // With different (less) filtering |
||
39 | int16_t rate_PID[2]; |
||
40 | int16_t differential[3]; |
||
41 | |||
42 | /* |
||
43 | * Gyro readings, after performing "axis coupling" - that is, the transfomation |
||
44 | * of rotation rates from the airframe-local coordinate system to a ground-fixed |
||
45 | * coordinate system. If axis copling is disabled, the gyro readings will be |
||
46 | * copied into these directly. |
||
47 | * These are global for the same pragmatic reason as with the gyro readings. |
||
48 | * The variables are overwritten at each attitude calculation invocation - the values |
||
49 | * are not preserved or reused. |
||
50 | */ |
||
51 | int16_t ACRate[2], ACYawRate; |
||
52 | |||
53 | /* |
||
54 | * Gyro integrals. These are the rotation angles of the airframe compared to the |
||
55 | * horizontal plane, yaw relative to yaw at start. |
||
56 | */ |
||
57 | int32_t angle[2], yawAngleDiff; |
||
58 | |||
59 | int readingHeight = 0; |
||
60 | |||
61 | // Yaw angle and compass stuff. |
||
62 | |||
63 | // This is updated/written from MM3. Negative angle indicates invalid data. |
||
64 | int16_t compassHeading = -1; |
||
65 | |||
66 | // This is NOT updated from MM3. Negative angle indicates invalid data. |
||
67 | int16_t compassCourse = -1; |
||
68 | |||
69 | // The difference between the above 2 (heading - course) on a -180..179 degree interval. |
||
70 | // Not necessary. Never read anywhere. |
||
71 | // int16_t compassOffCourse = 0; |
||
72 | |||
73 | uint8_t updateCompassCourse = 0; |
||
74 | uint8_t compassCalState = 0; |
||
75 | uint16_t ignoreCompassTimer = 500; |
||
76 | |||
77 | int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass |
||
78 | int16_t yawGyroDrift; |
||
79 | |||
80 | int16_t correctionSum[2] = { 0, 0 }; |
||
81 | |||
82 | // For NaviCTRL use. |
||
83 | int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0; |
||
84 | |||
85 | /* |
||
86 | * Experiment: Compensating for dynamic-induced gyro biasing. |
||
87 | */ |
||
88 | int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0; |
||
89 | // int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0; |
||
90 | // int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw; |
||
91 | // int16_t dynamicCalCount; |
||
92 | |||
93 | /************************************************************************ |
||
94 | * Set inclination angles from the acc. sensor data. |
||
95 | * If acc. sensors are not used, set to zero. |
||
96 | * TODO: One could use inverse sine to calculate the angles more |
||
97 | * accurately, but since: 1) the angles are rather small at times when |
||
98 | * it makes sense to set the integrals (standing on ground, or flying at |
||
99 | * constant speed, and 2) at small angles a, sin(a) ~= constant * a, |
||
100 | * it is hardly worth the trouble. |
||
101 | ************************************************************************/ |
||
102 | |||
103 | int32_t getAngleEstimateFromAcc(uint8_t axis) { |
||
104 | return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis]; |
||
105 | } |
||
106 | |||
107 | void setStaticAttitudeAngles(void) { |
||
108 | #ifdef ATTITUDE_USE_ACC_SENSORS |
||
109 | angle[PITCH] = getAngleEstimateFromAcc(PITCH); |
||
110 | angle[ROLL] = getAngleEstimateFromAcc(ROLL); |
||
111 | #else |
||
112 | angle[PITCH] = angle[ROLL] = 0; |
||
113 | #endif |
||
114 | } |
||
115 | |||
116 | /************************************************************************ |
||
117 | * Neutral Readings |
||
118 | ************************************************************************/ |
||
119 | void attitude_setNeutral(void) { |
||
120 | // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway. |
||
121 | driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0; |
||
122 | correctionSum[PITCH] = correctionSum[ROLL] = 0; |
||
123 | |||
124 | // Calibrate hardware. |
||
125 | analog_calibrate(); |
||
126 | |||
127 | // reset gyro integrals to acc guessing |
||
128 | setStaticAttitudeAngles(); |
||
129 | yawAngleDiff = 0; |
||
130 | |||
131 | // update compass course to current heading |
||
132 | compassCourse = compassHeading; |
||
133 | |||
134 | // Inititialize YawGyroIntegral value with current compass heading |
||
135 | yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW; |
||
136 | |||
137 | // Servo_On(); //enable servo output |
||
138 | } |
||
139 | |||
140 | /************************************************************************ |
||
141 | * Get sensor data from the analog module, and release the ADC |
||
142 | * TODO: Ultimately, the analog module could do this (instead of dumping |
||
143 | * the values into variables). |
||
144 | * The rate variable end up in a range of about [-1024, 1023]. |
||
145 | *************************************************************************/ |
||
146 | void getAnalogData(void) { |
||
147 | uint8_t axis; |
||
148 | |||
149 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
150 | rate_PID[axis] = gyro_PID[axis] + driftComp[axis]; |
||
151 | rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis]; |
||
152 | differential[axis] = gyroD[axis]; |
||
153 | averageAcc[axis] += acc[axis]; |
||
154 | } |
||
155 | |||
156 | differential[YAW] = gyroD[YAW]; |
||
157 | |||
158 | averageAccCount++; |
||
159 | yawRate = yawGyro + driftCompYaw; |
||
160 | |||
161 | // We are done reading variables from the analog module. |
||
162 | // Interrupt-driven sensor reading may restart. |
||
163 | analogDataReady = 0; |
||
164 | analog_start(); |
||
165 | } |
||
166 | |||
167 | /* |
||
168 | * This is the standard flight-style coordinate system transformation |
||
169 | * (from airframe-local axes to a ground-based system). For some reason |
||
170 | * the MK uses a left-hand coordinate system. The tranformation has been |
||
171 | * changed accordingly. |
||
172 | */ |
||
173 | void trigAxisCoupling(void) { |
||
174 | int16_t cospitch = int_cos(angle[PITCH]); |
||
175 | int16_t cosroll = int_cos(angle[ROLL]); |
||
176 | int16_t sinroll = int_sin(angle[ROLL]); |
||
177 | |||
178 | ACRate[PITCH] = (((int32_t)rate_ATT[PITCH] * cosroll - (int32_t)yawRate |
||
179 | * sinroll) >> MATH_UNIT_FACTOR_LOG); |
||
180 | |||
181 | ACRate[ROLL] = rate_ATT[ROLL] + (((((int32_t)rate_ATT[PITCH] * sinroll |
||
182 | + (int32_t)yawRate * cosroll) >> MATH_UNIT_FACTOR_LOG) * int_tan( |
||
183 | angle[PITCH])) >> MATH_UNIT_FACTOR_LOG); |
||
184 | |||
185 | ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch; |
||
186 | |||
187 | ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch; |
||
188 | } |
||
189 | |||
190 | // 480 usec with axis coupling - almost no time without. |
||
191 | void integrate(void) { |
||
192 | // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate. |
||
193 | uint8_t axis; |
||
194 | |||
195 | if (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE) { |
||
196 | trigAxisCoupling(); |
||
197 | } else { |
||
198 | ACRate[PITCH] = rate_ATT[PITCH]; |
||
199 | ACRate[ROLL] = rate_ATT[ROLL]; |
||
200 | ACYawRate = yawRate; |
||
201 | } |
||
202 | |||
203 | /* |
||
204 | * Yaw |
||
205 | * Calculate yaw gyro integral (~ to rotation angle) |
||
206 | * Limit yawGyroHeading proportional to 0 deg to 360 deg |
||
207 | */ |
||
208 | yawGyroHeading += ACYawRate; |
||
209 | yawAngleDiff += yawRate; |
||
210 | |||
211 | if (yawGyroHeading >= YAWOVER360) { |
||
212 | yawGyroHeading -= YAWOVER360; // 360 deg. wrap |
||
213 | } else if (yawGyroHeading < 0) { |
||
214 | yawGyroHeading += YAWOVER360; |
||
215 | } |
||
216 | |||
217 | /* |
||
218 | * Pitch axis integration and range boundary wrap. |
||
219 | */ |
||
220 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
221 | angle[axis] += ACRate[axis]; |
||
222 | if (angle[axis] > PITCHROLLOVER180) { |
||
223 | angle[axis] -= PITCHROLLOVER360; |
||
224 | } else if (angle[axis] <= -PITCHROLLOVER180) { |
||
225 | angle[axis] += PITCHROLLOVER360; |
||
226 | } |
||
227 | } |
||
228 | } |
||
229 | |||
230 | /************************************************************************ |
||
231 | * A kind of 0'th order integral correction, that corrects the integrals |
||
232 | * directly. This is the "gyroAccFactor" stuff in the original code. |
||
233 | * There is (there) also a drift compensation |
||
234 | * - it corrects the differential of the integral = the gyro offsets. |
||
235 | * That should only be necessary with drifty gyros like ENC-03. |
||
236 | ************************************************************************/ |
||
237 | void correctIntegralsByAcc0thOrder(void) { |
||
238 | // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities |
||
239 | // are less than ....., or reintroduce Kalman. |
||
240 | // Well actually the Z axis acc. check is not so silly. |
||
241 | uint8_t axis; |
||
242 | int32_t temp; |
||
243 | if (acc[Z] >= -dynamicParams.UserParams[7] && acc[Z] |
||
244 | <= dynamicParams.UserParams[7]) { |
||
245 | DebugOut.Digital[0] |= DEBUG_ACC0THORDER; |
||
246 | |||
247 | uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!! |
||
248 | uint8_t debugFullWeight = 1; |
||
249 | int32_t accDerived; |
||
250 | |||
251 | if ((control[YAW] < -64) || (control[YAW] > 64)) { // reduce further if yaw stick is active |
||
252 | permilleAcc /= 2; |
||
253 | debugFullWeight = 0; |
||
254 | } |
||
255 | |||
256 | if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity. |
||
257 | permilleAcc /= 2; |
||
258 | debugFullWeight = 0; |
||
259 | } |
||
260 | |||
261 | if (debugFullWeight) |
||
262 | DebugOut.Digital[1] |= DEBUG_ACC0THORDER; |
||
263 | else |
||
264 | DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER; |
||
265 | |||
266 | /* |
||
267 | * Add to each sum: The amount by which the angle is changed just below. |
||
268 | */ |
||
269 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
270 | accDerived = getAngleEstimateFromAcc(axis); |
||
271 | // DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL; |
||
272 | |||
273 | // 1000 * the correction amount that will be added to the gyro angle in next line. |
||
274 | temp = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000; |
||
275 | angle[axis] = ((int32_t) (1000L - permilleAcc) * temp |
||
276 | + (int32_t) permilleAcc * accDerived) / 1000L; |
||
277 | correctionSum[axis] += angle[axis] - temp; |
||
278 | } |
||
279 | } else { |
||
280 | DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER; |
||
281 | DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER; |
||
282 | // DebugOut.Analog[9] = 0; |
||
283 | // DebugOut.Analog[10] = 0; |
||
284 | |||
285 | DebugOut.Analog[16] = 0; |
||
286 | DebugOut.Analog[17] = 0; |
||
287 | // experiment: Kill drift compensation updates when not flying smooth. |
||
288 | correctionSum[PITCH] = correctionSum[ROLL] = 0; |
||
289 | } |
||
290 | } |
||
291 | |||
292 | /************************************************************************ |
||
293 | * This is an attempt to correct not the error in the angle integrals |
||
294 | * (that happens in correctIntegralsByAcc0thOrder above) but rather the |
||
295 | * cause of it: Gyro drift, vibration and rounding errors. |
||
296 | * All the corrections made in correctIntegralsByAcc0thOrder over |
||
297 | * DRIFTCORRECTION_TIME cycles are summed up. This number is |
||
298 | * then divided by DRIFTCORRECTION_TIME to get the approx. |
||
299 | * correction that should have been applied to each iteration to fix |
||
300 | * the error. This is then added to the dynamic offsets. |
||
301 | ************************************************************************/ |
||
302 | // 2 times / sec. = 488/2 |
||
303 | #define DRIFTCORRECTION_TIME 256L |
||
304 | void driftCorrection(void) { |
||
305 | static int16_t timer = DRIFTCORRECTION_TIME; |
||
306 | int16_t deltaCorrection; |
||
307 | int16_t round; |
||
308 | uint8_t axis; |
||
309 | |||
310 | if (!--timer) { |
||
311 | timer = DRIFTCORRECTION_TIME; |
||
312 | for (axis = PITCH; axis <= ROLL; axis++) { |
||
313 | // Take the sum of corrections applied, add it to delta |
||
314 | if (correctionSum[axis] >=0) |
||
315 | round = DRIFTCORRECTION_TIME / 2; |
||
316 | else |
||
317 | round = -DRIFTCORRECTION_TIME / 2; |
||
318 | deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME; |
||
319 | // Add the delta to the compensation. So positive delta means, gyro should have higher value. |
||
320 | driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim; |
||
321 | CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp); |
||
322 | // DebugOut.Analog[11 + axis] = correctionSum[axis]; |
||
323 | DebugOut.Analog[16 + axis] = correctionSum[axis]; |
||
324 | DebugOut.Analog[28 + axis] = driftComp[axis]; |
||
325 | |||
326 | correctionSum[axis] = 0; |
||
327 | } |
||
328 | } |
||
329 | } |
||
330 | |||
331 | /************************************************************************ |
||
332 | * Main procedure. |
||
333 | ************************************************************************/ |
||
334 | void calculateFlightAttitude(void) { |
||
335 | getAnalogData(); |
||
336 | integrate(); |
||
337 | |||
338 | DebugOut.Analog[3] = rate_PID[PITCH]; |
||
339 | DebugOut.Analog[4] = rate_PID[ROLL]; |
||
340 | DebugOut.Analog[5] = yawRate; |
||
341 | |||
342 | #ifdef ATTITUDE_USE_ACC_SENSORS |
||
343 | correctIntegralsByAcc0thOrder(); |
||
344 | driftCorrection(); |
||
345 | #endif |
||
346 | } |